The statistical physics of data assimilation and machine learning:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
[2022]
|
Schlagworte: | |
Beschreibung: | xvii, 187 Seiten Diagramme (teilweise farbig) |
ISBN: | 9781316519639 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047810160 | ||
003 | DE-604 | ||
005 | 20241204 | ||
007 | t| | ||
008 | 220201s2022 xx |||| |||| 00||| eng d | ||
020 | |a 9781316519639 |9 978-1-316-51963-9 | ||
024 | 3 | |a 9781316519639 | |
035 | |a (OCoLC)1304483614 | ||
035 | |a (DE-599)BVBBV047810160 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-11 |a DE-188 |a DE-473 | ||
084 | |a UG 3100 |0 (DE-625)145625: |2 rvk | ||
100 | 1 | |a Abarbanel, H. D. I. |d 1943- |e Verfasser |0 (DE-588)171943899 |4 aut | |
245 | 1 | 0 | |a The statistical physics of data assimilation and machine learning |c Henry D. I. Abarbanel, University of California, San Diego |
264 | 1 | |a Cambridge |b Cambridge University Press |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a xvii, 187 Seiten |b Diagramme (teilweise farbig) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
505 | 8 | |a 1. Prologue: linking 'The Future' with the present; 2. A data assimilation reminder; 3. Remembrance of things path; 4. SDA variational principles; Euler–Lagrange equations and Hamiltonian formulation; 5. Using waveform information; 6. Annealing in the model precision Rf; 7. Discrete time integration in data assimilation variational principles; Lagrangian and Hamiltonian formulations; 8. Monte Carlo methods; 9. Machine learning and its equivalence to statistical data assimilation; 10. Two examples of the practical use of data assimilation; 11. Unfinished business; Bibliography; Index | |
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 0 | 7 | |a Statistische Physik |0 (DE-588)4057000-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenassimilation |0 (DE-588)4803260-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
653 | |a Discrete-time systems | ||
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Datenassimilation |0 (DE-588)4803260-8 |D s |
689 | 0 | 2 | |a Statistische Physik |0 (DE-588)4057000-9 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-009024846 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033193691 |
Datensatz im Suchindex
_version_ | 1818708067838066688 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Abarbanel, H. D. I. 1943- |
author_GND | (DE-588)171943899 |
author_facet | Abarbanel, H. D. I. 1943- |
author_role | aut |
author_sort | Abarbanel, H. D. I. 1943- |
author_variant | h d i a hdi hdia |
building | Verbundindex |
bvnumber | BV047810160 |
classification_rvk | UG 3100 |
contents | 1. Prologue: linking 'The Future' with the present; 2. A data assimilation reminder; 3. Remembrance of things path; 4. SDA variational principles; Euler–Lagrange equations and Hamiltonian formulation; 5. Using waveform information; 6. Annealing in the model precision Rf; 7. Discrete time integration in data assimilation variational principles; Lagrangian and Hamiltonian formulations; 8. Monte Carlo methods; 9. Machine learning and its equivalence to statistical data assimilation; 10. Two examples of the practical use of data assimilation; 11. Unfinished business; Bibliography; Index |
ctrlnum | (OCoLC)1304483614 (DE-599)BVBBV047810160 |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV047810160</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241204</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">220201s2022 xx |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316519639</subfield><subfield code="9">978-1-316-51963-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781316519639</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1304483614</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047810160</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3100</subfield><subfield code="0">(DE-625)145625:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abarbanel, H. D. I.</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)171943899</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The statistical physics of data assimilation and machine learning</subfield><subfield code="c">Henry D. I. Abarbanel, University of California, San Diego</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 187 Seiten</subfield><subfield code="b">Diagramme (teilweise farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Prologue: linking 'The Future' with the present; 2. A data assimilation reminder; 3. Remembrance of things path; 4. SDA variational principles; Euler–Lagrange equations and Hamiltonian formulation; 5. Using waveform information; 6. Annealing in the model precision Rf; 7. Discrete time integration in data assimilation variational principles; Lagrangian and Hamiltonian formulations; 8. Monte Carlo methods; 9. Machine learning and its equivalence to statistical data assimilation; 10. Two examples of the practical use of data assimilation; 11. Unfinished business; Bibliography; Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenassimilation</subfield><subfield code="0">(DE-588)4803260-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Discrete-time systems</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenassimilation</subfield><subfield code="0">(DE-588)4803260-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-009024846</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033193691</subfield></datafield></record></collection> |
id | DE-604.BV047810160 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:04:59Z |
indexdate | 2024-12-17T17:06:12Z |
institution | BVB |
isbn | 9781316519639 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033193691 |
oclc_num | 1304483614 |
open_access_boolean | |
owner | DE-29T DE-11 DE-188 DE-473 DE-BY-UBG |
owner_facet | DE-29T DE-11 DE-188 DE-473 DE-BY-UBG |
physical | xvii, 187 Seiten Diagramme (teilweise farbig) |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Abarbanel, H. D. I. 1943- Verfasser (DE-588)171943899 aut The statistical physics of data assimilation and machine learning Henry D. I. Abarbanel, University of California, San Diego Cambridge Cambridge University Press [2022] © 2022 xvii, 187 Seiten Diagramme (teilweise farbig) txt rdacontent n rdamedia nc rdacarrier 1. Prologue: linking 'The Future' with the present; 2. A data assimilation reminder; 3. Remembrance of things path; 4. SDA variational principles; Euler–Lagrange equations and Hamiltonian formulation; 5. Using waveform information; 6. Annealing in the model precision Rf; 7. Discrete time integration in data assimilation variational principles; Lagrangian and Hamiltonian formulations; 8. Monte Carlo methods; 9. Machine learning and its equivalence to statistical data assimilation; 10. Two examples of the practical use of data assimilation; 11. Unfinished business; Bibliography; Index bicssc Statistische Physik (DE-588)4057000-9 gnd rswk-swf Datenassimilation (DE-588)4803260-8 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Discrete-time systems Maschinelles Lernen (DE-588)4193754-5 s Datenassimilation (DE-588)4803260-8 s Statistische Physik (DE-588)4057000-9 s DE-604 Erscheint auch als Online-Ausgabe 978-1-009024846 |
spellingShingle | Abarbanel, H. D. I. 1943- The statistical physics of data assimilation and machine learning 1. Prologue: linking 'The Future' with the present; 2. A data assimilation reminder; 3. Remembrance of things path; 4. SDA variational principles; Euler–Lagrange equations and Hamiltonian formulation; 5. Using waveform information; 6. Annealing in the model precision Rf; 7. Discrete time integration in data assimilation variational principles; Lagrangian and Hamiltonian formulations; 8. Monte Carlo methods; 9. Machine learning and its equivalence to statistical data assimilation; 10. Two examples of the practical use of data assimilation; 11. Unfinished business; Bibliography; Index bicssc Statistische Physik (DE-588)4057000-9 gnd Datenassimilation (DE-588)4803260-8 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4057000-9 (DE-588)4803260-8 (DE-588)4193754-5 |
title | The statistical physics of data assimilation and machine learning |
title_auth | The statistical physics of data assimilation and machine learning |
title_exact_search | The statistical physics of data assimilation and machine learning |
title_exact_search_txtP | The statistical physics of data assimilation and machine learning |
title_full | The statistical physics of data assimilation and machine learning Henry D. I. Abarbanel, University of California, San Diego |
title_fullStr | The statistical physics of data assimilation and machine learning Henry D. I. Abarbanel, University of California, San Diego |
title_full_unstemmed | The statistical physics of data assimilation and machine learning Henry D. I. Abarbanel, University of California, San Diego |
title_short | The statistical physics of data assimilation and machine learning |
title_sort | the statistical physics of data assimilation and machine learning |
topic | bicssc Statistische Physik (DE-588)4057000-9 gnd Datenassimilation (DE-588)4803260-8 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | bicssc Statistische Physik Datenassimilation Maschinelles Lernen |
work_keys_str_mv | AT abarbanelhdi thestatisticalphysicsofdataassimilationandmachinelearning |