Supersingular p-adic L-functions, Maass-Shimura operators and Waldspurger formulas:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Princeton ; Oxford
Princeton University Press
[2021]
|
Schriftenreihe: | Annals of Mathematics Studies
Number 212 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xiii, 258 Seiten 24 cm |
ISBN: | 9780691216461 0691216460 9780691216478 0691216479 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV047802728 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 220127s2021 xxu |||| 00||| eng d | ||
020 | |a 9780691216461 |c paperback |9 978-0-691-21646-1 | ||
020 | |a 0691216460 |c paperback |9 0-691-21646-0 | ||
020 | |a 9780691216478 |c hbk |9 978-0-691-21647-8 | ||
020 | |a 0691216479 |c hbk |9 0-691-21647-9 | ||
024 | 3 | |a 9780691216478 | |
035 | |a (OCoLC)1288344714 | ||
035 | |a (DE-599)KXP1782047379 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-19 | ||
082 | 0 | |a 512.7 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
100 | 1 | |a Kriz, Daniel J. |d 1992- |e Verfasser |0 (DE-588)1247640930 |4 aut | |
245 | 1 | 0 | |a Supersingular p-adic L-functions, Maass-Shimura operators and Waldspurger formulas |c Daniel J. Kriz |
264 | 1 | |a Princeton ; Oxford |b Princeton University Press |c [2021] | |
300 | |a xiii, 258 Seiten |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v Number 212 | |
653 | 0 | |a Number theory | |
653 | 0 | |a p-adic analysis | |
653 | 0 | |a L-functions | |
776 | 0 | |z 9780691225739 |c (e-book) | |
776 | 0 | |z 0691225737 |c (e-book) | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |a Kriz, Daniel |t Supersingular p-adic L-functions, Maass-Shimura operators and Waldspurger formulas |d Princeton : Princeton University Press, 2021 |z 0691225737 |
830 | 0 | |a Annals of Mathematics Studies |v Number 212 |w (DE-604)BV000000991 |9 212 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033186435&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033186435 |
Datensatz im Suchindex
_version_ | 1804183332588617728 |
---|---|
adam_text | Supersingular p-adic L-functions,
Maass-Shimura Operators and
Waldspurger Formulas
Daniel J Kriz
PRINCETON UNIVERSITY PRESS -
PRINCETON AND OXFORD
Contents
Preface
Acknowledgments
1 Introduction
1 1 Previous constructions and Katz’s theory of p-adic
modular forms on the ordinary locus
1 2 Outline of our theory of p-adic analysis on the
supersingular locus and construction of p-adic
L-functions
1 3 Main results
1 4 Some remarks on other works in supersingular
Iwasawa theory
Preliminaries: Generalities
Grothendieck sites and topoi
Pro-categories
Adic spaces
(Pre-)adic spaces and (pre)perfectoid spaces
Some complements on inverse limits of (pre-)adic spaces
The proétale site of an adic space
Period sheaves
The proétale “constant sheaf” Zp,y
Bir y-local systems, OBiR,y-modules with connection,
and the general de Rham comparison theorem
Preliminaries: Geometry of the infinite-level
modular curve
The infinite-level modular curve
Relative étale cohomology and the Weil pairing
The GL2(Q,)-action on Y (and Y)
The Hodge-Tate period and the Hodge-Tate period map
The Lubin-Tate period on the supersingular locus
The relative Hodge-Tate filtration
The fake Hasse invariant
xi
xv
viii
CONTENTS
Relative de Rham cohomology and the Hodge-de
Rham filtration
Relative p-adic de Rham comparison theorem
applied to A+ Y
4 The fundamental de Rham periods
A proétale local description of oss)
The fundamental de Rham periods
GL2(Q,)-transformation properties of the fundamental
de Rham periods
The p-adic Legendre relation
Relation to Colmez’s “p-adic period pairing”
Relation to classical (Serre-Tate) theory on
the ordinary locus
The Kodaira-Spencer isomorphism
The fundamental de Rham period zur
The canonical differential
5 The p-adic Maass-Shimura operator
The “horizontal” lifting of the Hodge-Tate filtration
The “horizontal” relative Hodge-Tate decomposition
over On
Definition of the p-adic Maass-Shimura operator
The p-adic Maass-Shimura operator in coordinates and
generalized p-adic modular forms
The p-adic Maass-Shimura operator with “nearly
holomorphic coefficients”
The relative Hodge-Tate decomposition over ol
The p-adic Maass-Shimura operator in coordinates and
generalized p-adic nearly holomorphic modular forms
Relation of dj and (dj) to the ordinary Atkin-Serre
operator dj as and Katz’s p-adic modular forms
Comparison between the complex and p-adic
Maass-Shimura operators at CM points
Comparison of algeraic Maass-Shimura derivatives
on different levels
6 p-adic analysis of the p-adic Maass-Shimura operators
gar-eXpansions
Relation between gar-expansions and Serre-Tate expansions
Integrality properties of gar-expansions:
the Dieudonné-Dwork lemma
Integral structures on stalks of intermediate period
sheaves between O, and On
CONTENTS ix
6 5 The p-adic Maass-Shimura operator a in gar-coordinates 182
6 6 Integrality of gar-expansions and the b-operator 184
6 7 p-adic analytic properties of p-adic Maass-Shimura operators 186
7 Bounding periods at supersingular CM points 197
7 1 Periods of supersingular CM points 197
7 2 Weights 205
7 3 Good CM points 208
8 Supersingular Rankin-Selberg p-adic L-functions 216
8 1 Preliminaries for the construction 216
8 2 Construction of the p-adic L-function 219
8 3 Interpolation 228
831 Interpolation formula 228
832 Interpolation formula 234
9 The p-adic Waldspurger formula 236
9 1 Coleman integration 237
9 2 Coleman primitives in our situation 237
9 3 The p-adic Waldspurger formula 243
9 4 p-adic Kronecker limit formula 248
Bibliography 251
Index 257
|
adam_txt |
Supersingular p-adic L-functions,
Maass-Shimura Operators and
Waldspurger Formulas
Daniel J Kriz
PRINCETON UNIVERSITY PRESS -
PRINCETON AND OXFORD
Contents
Preface
Acknowledgments
1 Introduction
1 1 Previous constructions and Katz’s theory of p-adic
modular forms on the ordinary locus
1 2 Outline of our theory of p-adic analysis on the
supersingular locus and construction of p-adic
L-functions
1 3 Main results
1 4 Some remarks on other works in supersingular
Iwasawa theory
Preliminaries: Generalities
Grothendieck sites and topoi
Pro-categories
Adic spaces
(Pre-)adic spaces and (pre)perfectoid spaces
Some complements on inverse limits of (pre-)adic spaces
The proétale site of an adic space
Period sheaves
The proétale “constant sheaf” Zp,y
Bir y-local systems, OBiR,y-modules with connection,
and the general de Rham comparison theorem
Preliminaries: Geometry of the infinite-level
modular curve
The infinite-level modular curve
Relative étale cohomology and the Weil pairing
The GL2(Q,)-action on Y (and Y)
The Hodge-Tate period and the Hodge-Tate period map
The Lubin-Tate period on the supersingular locus
The relative Hodge-Tate filtration
The fake Hasse invariant
xi
xv
viii
CONTENTS
Relative de Rham cohomology and the Hodge-de
Rham filtration
Relative p-adic de Rham comparison theorem
applied to A+ Y
4 The fundamental de Rham periods
A proétale local description of oss)
The fundamental de Rham periods
GL2(Q,)-transformation properties of the fundamental
de Rham periods
The p-adic Legendre relation
Relation to Colmez’s “p-adic period pairing”
Relation to classical (Serre-Tate) theory on
the ordinary locus
The Kodaira-Spencer isomorphism
The fundamental de Rham period zur
The canonical differential
5 The p-adic Maass-Shimura operator
The “horizontal” lifting of the Hodge-Tate filtration
The “horizontal” relative Hodge-Tate decomposition
over On
Definition of the p-adic Maass-Shimura operator
The p-adic Maass-Shimura operator in coordinates and
generalized p-adic modular forms
The p-adic Maass-Shimura operator with “nearly
holomorphic coefficients”
The relative Hodge-Tate decomposition over ol
The p-adic Maass-Shimura operator in coordinates and
generalized p-adic nearly holomorphic modular forms
Relation of dj and (dj) to the ordinary Atkin-Serre
operator dj as and Katz’s p-adic modular forms
Comparison between the complex and p-adic
Maass-Shimura operators at CM points
Comparison of algeraic Maass-Shimura derivatives
on different levels
6 p-adic analysis of the p-adic Maass-Shimura operators
gar-eXpansions
Relation between gar-expansions and Serre-Tate expansions
Integrality properties of gar-expansions:
the Dieudonné-Dwork lemma
Integral structures on stalks of intermediate period
sheaves between O, and On
CONTENTS ix
6 5 The p-adic Maass-Shimura operator a in gar-coordinates 182
6 6 Integrality of gar-expansions and the b-operator 184
6 7 p-adic analytic properties of p-adic Maass-Shimura operators 186
7 Bounding periods at supersingular CM points 197
7 1 Periods of supersingular CM points 197
7 2 Weights 205
7 3 Good CM points 208
8 Supersingular Rankin-Selberg p-adic L-functions 216
8 1 Preliminaries for the construction 216
8 2 Construction of the p-adic L-function 219
8 3 Interpolation 228
831 Interpolation formula 228
832 Interpolation formula 234
9 The p-adic Waldspurger formula 236
9 1 Coleman integration 237
9 2 Coleman primitives in our situation 237
9 3 The p-adic Waldspurger formula 243
9 4 p-adic Kronecker limit formula 248
Bibliography 251
Index 257 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Kriz, Daniel J. 1992- |
author_GND | (DE-588)1247640930 |
author_facet | Kriz, Daniel J. 1992- |
author_role | aut |
author_sort | Kriz, Daniel J. 1992- |
author_variant | d j k dj djk |
building | Verbundindex |
bvnumber | BV047802728 |
classification_rvk | SI 830 |
ctrlnum | (OCoLC)1288344714 (DE-599)KXP1782047379 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01858nam a2200445 cb4500</leader><controlfield tag="001">BV047802728</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220127s2021 xxu |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691216461</subfield><subfield code="c">paperback</subfield><subfield code="9">978-0-691-21646-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691216460</subfield><subfield code="c">paperback</subfield><subfield code="9">0-691-21646-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691216478</subfield><subfield code="c">hbk</subfield><subfield code="9">978-0-691-21647-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691216479</subfield><subfield code="c">hbk</subfield><subfield code="9">0-691-21647-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780691216478</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1288344714</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1782047379</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kriz, Daniel J.</subfield><subfield code="d">1992-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1247640930</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Supersingular p-adic L-functions, Maass-Shimura operators and Waldspurger formulas</subfield><subfield code="c">Daniel J. Kriz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton ; Oxford</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 258 Seiten</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">Number 212</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">p-adic analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">L-functions</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">9780691225739</subfield><subfield code="c">(e-book)</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">0691225737</subfield><subfield code="c">(e-book)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="a">Kriz, Daniel</subfield><subfield code="t">Supersingular p-adic L-functions, Maass-Shimura operators and Waldspurger formulas</subfield><subfield code="d">Princeton : Princeton University Press, 2021</subfield><subfield code="z">0691225737</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">Number 212</subfield><subfield code="w">(DE-604)BV000000991</subfield><subfield code="9">212</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033186435&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033186435</subfield></datafield></record></collection> |
id | DE-604.BV047802728 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:02:51Z |
indexdate | 2024-07-10T09:21:46Z |
institution | BVB |
isbn | 9780691216461 0691216460 9780691216478 0691216479 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033186435 |
oclc_num | 1288344714 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | xiii, 258 Seiten 24 cm |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Kriz, Daniel J. 1992- Verfasser (DE-588)1247640930 aut Supersingular p-adic L-functions, Maass-Shimura operators and Waldspurger formulas Daniel J. Kriz Princeton ; Oxford Princeton University Press [2021] xiii, 258 Seiten 24 cm txt rdacontent n rdamedia nc rdacarrier Annals of Mathematics Studies Number 212 Number theory p-adic analysis L-functions 9780691225739 (e-book) 0691225737 (e-book) Erscheint auch als Online-Ausgabe Kriz, Daniel Supersingular p-adic L-functions, Maass-Shimura operators and Waldspurger formulas Princeton : Princeton University Press, 2021 0691225737 Annals of Mathematics Studies Number 212 (DE-604)BV000000991 212 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033186435&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kriz, Daniel J. 1992- Supersingular p-adic L-functions, Maass-Shimura operators and Waldspurger formulas Annals of Mathematics Studies |
title | Supersingular p-adic L-functions, Maass-Shimura operators and Waldspurger formulas |
title_auth | Supersingular p-adic L-functions, Maass-Shimura operators and Waldspurger formulas |
title_exact_search | Supersingular p-adic L-functions, Maass-Shimura operators and Waldspurger formulas |
title_exact_search_txtP | Supersingular p-adic L-functions, Maass-Shimura operators and Waldspurger formulas |
title_full | Supersingular p-adic L-functions, Maass-Shimura operators and Waldspurger formulas Daniel J. Kriz |
title_fullStr | Supersingular p-adic L-functions, Maass-Shimura operators and Waldspurger formulas Daniel J. Kriz |
title_full_unstemmed | Supersingular p-adic L-functions, Maass-Shimura operators and Waldspurger formulas Daniel J. Kriz |
title_short | Supersingular p-adic L-functions, Maass-Shimura operators and Waldspurger formulas |
title_sort | supersingular p adic l functions maass shimura operators and waldspurger formulas |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033186435&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000991 |
work_keys_str_mv | AT krizdanielj supersingularpadiclfunctionsmaassshimuraoperatorsandwaldspurgerformulas |