Coarse geometry of topological groups:
This book provides a general framework for doing geometric group theory for many non-locally-compact topological transformation groups that arise in mathematical practice, including homeomorphism and diffeomorphism groups of manifolds, isometry groups of separable metric spaces and automorphism grou...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2021
|
Schriftenreihe: | Cambridge tracts in mathematics
223 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book provides a general framework for doing geometric group theory for many non-locally-compact topological transformation groups that arise in mathematical practice, including homeomorphism and diffeomorphism groups of manifolds, isometry groups of separable metric spaces and automorphism groups of countable structures. Using Roe's framework of coarse structures and spaces, the author defines a natural coarse geometric structure on all topological groups. This structure is accessible to investigation, especially in the case of Polish groups, and often has an explicit description, generalising well-known structures in familiar cases including finitely generated discrete groups, compactly generated locally compact groups and Banach spaces. In most cases, the coarse geometric structure is metrisable and may even be refined to a canonical quasimetric structure on the group. The book contains many worked examples and sufficient introductory material to be accessible to beginning graduate students. An appendix outlines several open problems in this young and rich theory |
Beschreibung: | Title from publisher's bibliographic system (viewed on 16 Dec 2021) Coarse structure and metrisability -- Structure theory -- Sections, cocycles and group extensions -- Polish groups of bounded geometry -- Automorphism groups of countable structures -- Zappa-Szép products |
Beschreibung: | 1 Online-Ressource (ix, 297 Seiten) |
ISBN: | 9781108903547 |
DOI: | 10.1017/9781108903547 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047707811 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220124s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781108903547 |c Online |9 978-1-108-90354-7 | ||
024 | 7 | |a 10.1017/9781108903547 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108903547 | ||
035 | |a (OCoLC)1294773453 | ||
035 | |a (DE-599)BVBBV047707811 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.55 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Rosendal, Christian |0 (DE-588)1245440306 |4 aut | |
245 | 1 | 0 | |a Coarse geometry of topological groups |c Christian Rosendal |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2021 | |
300 | |a 1 Online-Ressource (ix, 297 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics | |
490 | 0 | |a 223 | |
500 | |a Title from publisher's bibliographic system (viewed on 16 Dec 2021) | ||
500 | |a Coarse structure and metrisability -- Structure theory -- Sections, cocycles and group extensions -- Polish groups of bounded geometry -- Automorphism groups of countable structures -- Zappa-Szép products | ||
520 | |a This book provides a general framework for doing geometric group theory for many non-locally-compact topological transformation groups that arise in mathematical practice, including homeomorphism and diffeomorphism groups of manifolds, isometry groups of separable metric spaces and automorphism groups of countable structures. Using Roe's framework of coarse structures and spaces, the author defines a natural coarse geometric structure on all topological groups. This structure is accessible to investigation, especially in the case of Polish groups, and often has an explicit description, generalising well-known structures in familiar cases including finitely generated discrete groups, compactly generated locally compact groups and Banach spaces. In most cases, the coarse geometric structure is metrisable and may even be refined to a canonical quasimetric structure on the group. The book contains many worked examples and sufficient introductory material to be accessible to beginning graduate students. An appendix outlines several open problems in this young and rich theory | ||
650 | 4 | |a Geometric group theory | |
650 | 4 | |a Polish spaces (Mathematics) | |
650 | 4 | |a Transformation groups | |
650 | 4 | |a Topological groups | |
650 | 0 | 7 | |a Grobstruktur |0 (DE-588)4519326-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polnischer Raum |0 (DE-588)4289015-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Gruppe |0 (DE-588)4135793-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Gruppentheorie |0 (DE-588)4651615-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Transformationsgruppe |0 (DE-588)4738313-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geometrische Gruppentheorie |0 (DE-588)4651615-3 |D s |
689 | 0 | 1 | |a Grobstruktur |0 (DE-588)4519326-5 |D s |
689 | 0 | 2 | |a Topologische Gruppe |0 (DE-588)4135793-0 |D s |
689 | 0 | 3 | |a Topologische Transformationsgruppe |0 (DE-588)4738313-6 |D s |
689 | 0 | 4 | |a Polnischer Raum |0 (DE-588)4289015-9 |D s |
689 | 0 | 5 | |a Geometrische Gruppentheorie |0 (DE-588)4651615-3 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-84247-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108903547 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033091655 | ||
966 | e | |u https://doi.org/10.1017/9781108903547 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108903547 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804183204997890048 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Rosendal, Christian |
author_GND | (DE-588)1245440306 |
author_facet | Rosendal, Christian |
author_role | aut |
author_sort | Rosendal, Christian |
author_variant | c r cr |
building | Verbundindex |
bvnumber | BV047707811 |
classification_rvk | SK 340 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108903547 (OCoLC)1294773453 (DE-599)BVBBV047707811 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781108903547 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03731nmm a2200613zc 4500</leader><controlfield tag="001">BV047707811</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220124s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108903547</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-90354-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108903547</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108903547</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1294773453</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047707811</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rosendal, Christian</subfield><subfield code="0">(DE-588)1245440306</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coarse geometry of topological groups</subfield><subfield code="c">Christian Rosendal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 297 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">223</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 16 Dec 2021)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Coarse structure and metrisability -- Structure theory -- Sections, cocycles and group extensions -- Polish groups of bounded geometry -- Automorphism groups of countable structures -- Zappa-Szép products</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides a general framework for doing geometric group theory for many non-locally-compact topological transformation groups that arise in mathematical practice, including homeomorphism and diffeomorphism groups of manifolds, isometry groups of separable metric spaces and automorphism groups of countable structures. Using Roe's framework of coarse structures and spaces, the author defines a natural coarse geometric structure on all topological groups. This structure is accessible to investigation, especially in the case of Polish groups, and often has an explicit description, generalising well-known structures in familiar cases including finitely generated discrete groups, compactly generated locally compact groups and Banach spaces. In most cases, the coarse geometric structure is metrisable and may even be refined to a canonical quasimetric structure on the group. The book contains many worked examples and sufficient introductory material to be accessible to beginning graduate students. An appendix outlines several open problems in this young and rich theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polish spaces (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transformation groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grobstruktur</subfield><subfield code="0">(DE-588)4519326-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polnischer Raum</subfield><subfield code="0">(DE-588)4289015-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Gruppe</subfield><subfield code="0">(DE-588)4135793-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Gruppentheorie</subfield><subfield code="0">(DE-588)4651615-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Transformationsgruppe</subfield><subfield code="0">(DE-588)4738313-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrische Gruppentheorie</subfield><subfield code="0">(DE-588)4651615-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Grobstruktur</subfield><subfield code="0">(DE-588)4519326-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Topologische Gruppe</subfield><subfield code="0">(DE-588)4135793-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Topologische Transformationsgruppe</subfield><subfield code="0">(DE-588)4738313-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Polnischer Raum</subfield><subfield code="0">(DE-588)4289015-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Geometrische Gruppentheorie</subfield><subfield code="0">(DE-588)4651615-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-84247-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108903547</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033091655</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108903547</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108903547</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047707811 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:59:43Z |
indexdate | 2024-07-10T09:19:44Z |
institution | BVB |
isbn | 9781108903547 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033091655 |
oclc_num | 1294773453 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 Online-Ressource (ix, 297 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics 223 |
spelling | Rosendal, Christian (DE-588)1245440306 aut Coarse geometry of topological groups Christian Rosendal Cambridge Cambridge University Press 2021 1 Online-Ressource (ix, 297 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 223 Title from publisher's bibliographic system (viewed on 16 Dec 2021) Coarse structure and metrisability -- Structure theory -- Sections, cocycles and group extensions -- Polish groups of bounded geometry -- Automorphism groups of countable structures -- Zappa-Szép products This book provides a general framework for doing geometric group theory for many non-locally-compact topological transformation groups that arise in mathematical practice, including homeomorphism and diffeomorphism groups of manifolds, isometry groups of separable metric spaces and automorphism groups of countable structures. Using Roe's framework of coarse structures and spaces, the author defines a natural coarse geometric structure on all topological groups. This structure is accessible to investigation, especially in the case of Polish groups, and often has an explicit description, generalising well-known structures in familiar cases including finitely generated discrete groups, compactly generated locally compact groups and Banach spaces. In most cases, the coarse geometric structure is metrisable and may even be refined to a canonical quasimetric structure on the group. The book contains many worked examples and sufficient introductory material to be accessible to beginning graduate students. An appendix outlines several open problems in this young and rich theory Geometric group theory Polish spaces (Mathematics) Transformation groups Topological groups Grobstruktur (DE-588)4519326-5 gnd rswk-swf Polnischer Raum (DE-588)4289015-9 gnd rswk-swf Topologische Gruppe (DE-588)4135793-0 gnd rswk-swf Geometrische Gruppentheorie (DE-588)4651615-3 gnd rswk-swf Topologische Transformationsgruppe (DE-588)4738313-6 gnd rswk-swf Geometrische Gruppentheorie (DE-588)4651615-3 s Grobstruktur (DE-588)4519326-5 s Topologische Gruppe (DE-588)4135793-0 s Topologische Transformationsgruppe (DE-588)4738313-6 s Polnischer Raum (DE-588)4289015-9 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-108-84247-1 https://doi.org/10.1017/9781108903547 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Rosendal, Christian Coarse geometry of topological groups Geometric group theory Polish spaces (Mathematics) Transformation groups Topological groups Grobstruktur (DE-588)4519326-5 gnd Polnischer Raum (DE-588)4289015-9 gnd Topologische Gruppe (DE-588)4135793-0 gnd Geometrische Gruppentheorie (DE-588)4651615-3 gnd Topologische Transformationsgruppe (DE-588)4738313-6 gnd |
subject_GND | (DE-588)4519326-5 (DE-588)4289015-9 (DE-588)4135793-0 (DE-588)4651615-3 (DE-588)4738313-6 |
title | Coarse geometry of topological groups |
title_auth | Coarse geometry of topological groups |
title_exact_search | Coarse geometry of topological groups |
title_exact_search_txtP | Coarse geometry of topological groups |
title_full | Coarse geometry of topological groups Christian Rosendal |
title_fullStr | Coarse geometry of topological groups Christian Rosendal |
title_full_unstemmed | Coarse geometry of topological groups Christian Rosendal |
title_short | Coarse geometry of topological groups |
title_sort | coarse geometry of topological groups |
topic | Geometric group theory Polish spaces (Mathematics) Transformation groups Topological groups Grobstruktur (DE-588)4519326-5 gnd Polnischer Raum (DE-588)4289015-9 gnd Topologische Gruppe (DE-588)4135793-0 gnd Geometrische Gruppentheorie (DE-588)4651615-3 gnd Topologische Transformationsgruppe (DE-588)4738313-6 gnd |
topic_facet | Geometric group theory Polish spaces (Mathematics) Transformation groups Topological groups Grobstruktur Polnischer Raum Topologische Gruppe Geometrische Gruppentheorie Topologische Transformationsgruppe |
url | https://doi.org/10.1017/9781108903547 |
work_keys_str_mv | AT rosendalchristian coarsegeometryoftopologicalgroups |