Big Data Analytics in Supply Chain Management: Theory and Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Milton
Taylor & Francis Group
2020
|
Schlagworte: | |
Online-Zugang: | HWR01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (211 pages) |
ISBN: | 9781000326932 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047694018 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220119s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781000326932 |9 978-1-00-032693-2 | ||
035 | |a (ZDB-30-PQE)EBC6401873 | ||
035 | |a (ZDB-30-PAD)EBC6401873 | ||
035 | |a (ZDB-89-EBL)EBL6401873 | ||
035 | |a (OCoLC)1223095662 | ||
035 | |a (DE-599)BVBBV047694018 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 658.7 | |
084 | |a QP 530 |0 (DE-625)141897: |2 rvk | ||
100 | 1 | |a Rahimi, Iman |e Verfasser |4 aut | |
245 | 1 | 0 | |a Big Data Analytics in Supply Chain Management |b Theory and Applications |
264 | 1 | |a Milton |b Taylor & Francis Group |c 2020 | |
264 | 4 | |c ©2021 | |
300 | |a 1 online resource (211 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- Chapter 1 Big Data Analytics in Supply Chain Management: A Scientometric Analysis -- 1.1 Introduction -- 1.2 Analysis -- 1.2.1 Data Collection -- 1.3 Scientometric Analysis -- 1.3.1 An Analysis on Keywords -- 1.3.2 A Short Analysis on Countries and Affiliations -- 1.3.3 Co-author Analysis -- 1.3.4 An Analysis on Sources -- 1.3.5 Co-citation Analysis -- 1.3 Discussion and Conclusion -- References -- Chapter 2 Supply Chain Analytics Technology for Big Data -- 2.1 Introduction -- 2.1.1 Introduction to Supply Chain Analytics Technology -- 2.1.2 Necessity for Supply Chain Analytics for Big Data -- 2.2 Features of Supply Chain Analytics -- 2.3 Opportunities and Applications for Supply Chain Analytics -- 2.3.1 Opportunities for Supply Chain Analytics -- 2.3.2 Process Specific applications of Big Data Analytics -- 2.4 Tools for Supply Chain Analytics -- 2.5 Supply Chain Analytics Methods -- 2.5.1 Descriptive Analytics -- 2.5.2 Predictive Analytics -- 2.5.3 Prescriptive Analytics -- 2.6 Supply Chain Challenges in Adopting Big Data Analytics -- 2.7 Future of Supply Chain Analytics -- 2.8 Conclusion -- References -- Chapter 3 Prioritizing the Barriers and Challenges of Big Data Analytics in Logistics and Supply Chain Management Using MCDM Method -- 3.1 Introduction to Big Data Analytics -- 3.2 Barriers to BDA: Background -- 3.3 Methodology -- 3.3.1 The Steps of HBWM -- 3.3.2 Determining the Consistency Rate -- 3.4 Results and Discussion -- 3.5 Conclusion -- References -- Chapter 4 Big Data in Procurement 4.0: Critical Success Factors and Solutions -- 4.1 Introduction -- 4.2 Macroenvironment -- 4.3 Literature Review -- 4.4 Methodology -- 4.5 Critical Success Factors for Procurement 4.0 -- 4.5.1 Cybernetics | |
505 | 8 | |a 4.5.2 Communication -- 4.5.3 Controllership -- 4.5.4 Collaboration -- 4.5.5 Connection -- 4.5.6 Cognition -- 4.5.7 Coordination -- 4.5.8 Confidence -- 4.6 Critical Success Factors and Procurement Cycle -- 4.7 Supporting Solutions -- 4.8 Application of the Model -- 4.9 Conclusions, Practical Implications, and Future Research -- Abbreviations -- References -- Chapter 5 Recommendation Model Based on Expiry Date of Product Using Big Data Analytics -- 5.1 Introduction -- 5.1.1 Statement and Objective -- 5.1.2 Literature Survey -- 5.2 Product Recommendation System -- 5.2.1 User's Preferences/ Choices -- 5.2.2 Keyword Classification -- 5.3 Implementation of Statistical Analysis for Products -- 5.3.1 One-Sided and Two-Sided T-Test of Data Sets -- 5.3.2 Linear Regression Model -- 5.3.3 Experimental Assessment -- 5.4 Effects of Recommendation System -- 5.4.1 Recommendation for Ratings and Reviews of the Customer of Products -- 5.4.2 Advantages of the Recommendation System -- 5.5 Conclusion -- References -- Chapter 6 Comparing Company's Performance to Its Peers: A Data Envelopment Approach -- 6.1 Introduction -- 6.2 Previous Related Research -- 6.3 Methodology Description -- 6.3.1 Slacks-Based Measure of Efficiency -- 6.3.2 Multiple Criteria Decision-Making -- 6.4 Empirical Results -- 6.4.1 Data Description and Preprocessing -- 6.4.2 Main DEA Results -- 6.4.3 Discussion on the Best and Worst Ranked Companies -- 6.4.4 Robustness Checking - MCDM -- 6.4.5 Further Possible Integrations of DEA and MCDM -- 6.5 Conclusion -- Appendix -- References -- Chapter 7 Sustainability, Big Data, and Consumer Behavior: A Supply Chain Framework -- 7.1 Background -- 7.2 Attributes Impacting Consumer's Purchasing Behavior -- Purchase Price -- Derived Utility -- Product Quality -- Product Support Services -- Return Policy -- Summary -- 7.3 A Bidirectional Supply Chain Framework | |
505 | 8 | |a 7.4 Concluding Remarks -- References -- Chapter 8 A Soft Computing Techniques Application of an Inventory Model in Solving Two-Warehouses Using Cuckoo Search Algorithm -- 8.1 Introduction -- 8.1.1 Inventory Models with Two Warehouses -- 8.1.2 Cuckoo Behavior and Lévy Flights -- 8.2 Related Works -- 8.3 Assumption and Notations -- 8.4 Mathematical Formulation of Model and Analysis -- 8.5 Cuckoo Search Algorithm -- 8.6 Numerical Analysis -- 8.7 Sensitivity Analysis -- 8.8 Conclusions -- References -- Chapter 9 An Overview of the Internet of Things Technologies Focusing on Disaster Response -- 9.1 Introduction -- 9.2 Artificial Intelligence -- 9.3 Internet of Things -- 9.4 The Use of IoT and AI for Risk and Disaster Management -- 9.5 The IoT Relationship in the Supply Chain During Disaster -- 9.6 Discussion -- 9.7 Future Trends -- 9.8 Conclusions -- References -- Chapter 10 Closing the Big Data Talent Gap -- 10.1 Research Benefits | What's in It for Me? -- 10.2 The State of Big Data Education -- 10.3 Data Scientist vs Data Analyst -- 10.4 A Qualitative Approach -- 10.5 Dependability and Trustworthiness -- 10.6 Data Analysis -- 10.7 Big Data Initiatives -- 10.8 Years of Big Data Initiatives -- 10.9 Size of Big Data Teams -- 10.10 Big Data Resources Needed -- 10.11 Where Are Organizations Finding Big Data Resources? -- 10.12 Challenges Finding Big Data Resources -- 10.13 Qualities Most Difficult to Find in Candidates -- 10.14 The Ideal Big Data Specialist Candidate -- 10.15 Number of Candidates Interviewed -- 10.16 Easing the Big Data Hiring Process -- 10.17 IT Manager Interviews -- 10.18 Specialist Interviews -- 10.19 Key Analysis & -- Findings -- 10.19.1 Theme 1: " Lacking" -- 10.19.2 Theme 2: " Passion" -- 10.19.3 Theme 3: Soft Skills -- 10.19.4 Theme 4: Technical Skills -- 10.20 Conclusion -- 10.21 Discussion -- References -- Index | |
650 | 4 | |a Business logistics | |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Supply Chain Management |0 (DE-588)4684051-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Industrie 4.0 |0 (DE-588)1072179776 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Supply Chain Management |0 (DE-588)4684051-5 |D s |
689 | 0 | 1 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | 2 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 3 | |a Industrie 4.0 |0 (DE-588)1072179776 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Gandomi, Amir H. |e Sonstige |4 oth | |
700 | 1 | |a Fong, Simon James |e Sonstige |4 oth | |
700 | 1 | |a Ülkü, M. Ali |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Rahimi, Iman |t Big Data Analytics in Supply Chain Management |d Milton : Taylor & Francis Group,c2020 |z 9780367407179 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033078012 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6401873 |l HWR01 |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804183180510494720 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Rahimi, Iman |
author_facet | Rahimi, Iman |
author_role | aut |
author_sort | Rahimi, Iman |
author_variant | i r ir |
building | Verbundindex |
bvnumber | BV047694018 |
classification_rvk | QP 530 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- Chapter 1 Big Data Analytics in Supply Chain Management: A Scientometric Analysis -- 1.1 Introduction -- 1.2 Analysis -- 1.2.1 Data Collection -- 1.3 Scientometric Analysis -- 1.3.1 An Analysis on Keywords -- 1.3.2 A Short Analysis on Countries and Affiliations -- 1.3.3 Co-author Analysis -- 1.3.4 An Analysis on Sources -- 1.3.5 Co-citation Analysis -- 1.3 Discussion and Conclusion -- References -- Chapter 2 Supply Chain Analytics Technology for Big Data -- 2.1 Introduction -- 2.1.1 Introduction to Supply Chain Analytics Technology -- 2.1.2 Necessity for Supply Chain Analytics for Big Data -- 2.2 Features of Supply Chain Analytics -- 2.3 Opportunities and Applications for Supply Chain Analytics -- 2.3.1 Opportunities for Supply Chain Analytics -- 2.3.2 Process Specific applications of Big Data Analytics -- 2.4 Tools for Supply Chain Analytics -- 2.5 Supply Chain Analytics Methods -- 2.5.1 Descriptive Analytics -- 2.5.2 Predictive Analytics -- 2.5.3 Prescriptive Analytics -- 2.6 Supply Chain Challenges in Adopting Big Data Analytics -- 2.7 Future of Supply Chain Analytics -- 2.8 Conclusion -- References -- Chapter 3 Prioritizing the Barriers and Challenges of Big Data Analytics in Logistics and Supply Chain Management Using MCDM Method -- 3.1 Introduction to Big Data Analytics -- 3.2 Barriers to BDA: Background -- 3.3 Methodology -- 3.3.1 The Steps of HBWM -- 3.3.2 Determining the Consistency Rate -- 3.4 Results and Discussion -- 3.5 Conclusion -- References -- Chapter 4 Big Data in Procurement 4.0: Critical Success Factors and Solutions -- 4.1 Introduction -- 4.2 Macroenvironment -- 4.3 Literature Review -- 4.4 Methodology -- 4.5 Critical Success Factors for Procurement 4.0 -- 4.5.1 Cybernetics 4.5.2 Communication -- 4.5.3 Controllership -- 4.5.4 Collaboration -- 4.5.5 Connection -- 4.5.6 Cognition -- 4.5.7 Coordination -- 4.5.8 Confidence -- 4.6 Critical Success Factors and Procurement Cycle -- 4.7 Supporting Solutions -- 4.8 Application of the Model -- 4.9 Conclusions, Practical Implications, and Future Research -- Abbreviations -- References -- Chapter 5 Recommendation Model Based on Expiry Date of Product Using Big Data Analytics -- 5.1 Introduction -- 5.1.1 Statement and Objective -- 5.1.2 Literature Survey -- 5.2 Product Recommendation System -- 5.2.1 User's Preferences/ Choices -- 5.2.2 Keyword Classification -- 5.3 Implementation of Statistical Analysis for Products -- 5.3.1 One-Sided and Two-Sided T-Test of Data Sets -- 5.3.2 Linear Regression Model -- 5.3.3 Experimental Assessment -- 5.4 Effects of Recommendation System -- 5.4.1 Recommendation for Ratings and Reviews of the Customer of Products -- 5.4.2 Advantages of the Recommendation System -- 5.5 Conclusion -- References -- Chapter 6 Comparing Company's Performance to Its Peers: A Data Envelopment Approach -- 6.1 Introduction -- 6.2 Previous Related Research -- 6.3 Methodology Description -- 6.3.1 Slacks-Based Measure of Efficiency -- 6.3.2 Multiple Criteria Decision-Making -- 6.4 Empirical Results -- 6.4.1 Data Description and Preprocessing -- 6.4.2 Main DEA Results -- 6.4.3 Discussion on the Best and Worst Ranked Companies -- 6.4.4 Robustness Checking - MCDM -- 6.4.5 Further Possible Integrations of DEA and MCDM -- 6.5 Conclusion -- Appendix -- References -- Chapter 7 Sustainability, Big Data, and Consumer Behavior: A Supply Chain Framework -- 7.1 Background -- 7.2 Attributes Impacting Consumer's Purchasing Behavior -- Purchase Price -- Derived Utility -- Product Quality -- Product Support Services -- Return Policy -- Summary -- 7.3 A Bidirectional Supply Chain Framework 7.4 Concluding Remarks -- References -- Chapter 8 A Soft Computing Techniques Application of an Inventory Model in Solving Two-Warehouses Using Cuckoo Search Algorithm -- 8.1 Introduction -- 8.1.1 Inventory Models with Two Warehouses -- 8.1.2 Cuckoo Behavior and Lévy Flights -- 8.2 Related Works -- 8.3 Assumption and Notations -- 8.4 Mathematical Formulation of Model and Analysis -- 8.5 Cuckoo Search Algorithm -- 8.6 Numerical Analysis -- 8.7 Sensitivity Analysis -- 8.8 Conclusions -- References -- Chapter 9 An Overview of the Internet of Things Technologies Focusing on Disaster Response -- 9.1 Introduction -- 9.2 Artificial Intelligence -- 9.3 Internet of Things -- 9.4 The Use of IoT and AI for Risk and Disaster Management -- 9.5 The IoT Relationship in the Supply Chain During Disaster -- 9.6 Discussion -- 9.7 Future Trends -- 9.8 Conclusions -- References -- Chapter 10 Closing the Big Data Talent Gap -- 10.1 Research Benefits | What's in It for Me? -- 10.2 The State of Big Data Education -- 10.3 Data Scientist vs Data Analyst -- 10.4 A Qualitative Approach -- 10.5 Dependability and Trustworthiness -- 10.6 Data Analysis -- 10.7 Big Data Initiatives -- 10.8 Years of Big Data Initiatives -- 10.9 Size of Big Data Teams -- 10.10 Big Data Resources Needed -- 10.11 Where Are Organizations Finding Big Data Resources? -- 10.12 Challenges Finding Big Data Resources -- 10.13 Qualities Most Difficult to Find in Candidates -- 10.14 The Ideal Big Data Specialist Candidate -- 10.15 Number of Candidates Interviewed -- 10.16 Easing the Big Data Hiring Process -- 10.17 IT Manager Interviews -- 10.18 Specialist Interviews -- 10.19 Key Analysis & -- Findings -- 10.19.1 Theme 1: " Lacking" -- 10.19.2 Theme 2: " Passion" -- 10.19.3 Theme 3: Soft Skills -- 10.19.4 Theme 4: Technical Skills -- 10.20 Conclusion -- 10.21 Discussion -- References -- Index |
ctrlnum | (ZDB-30-PQE)EBC6401873 (ZDB-30-PAD)EBC6401873 (ZDB-89-EBL)EBL6401873 (OCoLC)1223095662 (DE-599)BVBBV047694018 |
dewey-full | 658.7 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.7 |
dewey-search | 658.7 |
dewey-sort | 3658.7 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07778nmm a2200577zc 4500</leader><controlfield tag="001">BV047694018</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220119s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000326932</subfield><subfield code="9">978-1-00-032693-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6401873</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6401873</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6401873</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1223095662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047694018</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.7</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 530</subfield><subfield code="0">(DE-625)141897:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rahimi, Iman</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Big Data Analytics in Supply Chain Management</subfield><subfield code="b">Theory and Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Milton</subfield><subfield code="b">Taylor & Francis Group</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (211 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- Chapter 1 Big Data Analytics in Supply Chain Management: A Scientometric Analysis -- 1.1 Introduction -- 1.2 Analysis -- 1.2.1 Data Collection -- 1.3 Scientometric Analysis -- 1.3.1 An Analysis on Keywords -- 1.3.2 A Short Analysis on Countries and Affiliations -- 1.3.3 Co-author Analysis -- 1.3.4 An Analysis on Sources -- 1.3.5 Co-citation Analysis -- 1.3 Discussion and Conclusion -- References -- Chapter 2 Supply Chain Analytics Technology for Big Data -- 2.1 Introduction -- 2.1.1 Introduction to Supply Chain Analytics Technology -- 2.1.2 Necessity for Supply Chain Analytics for Big Data -- 2.2 Features of Supply Chain Analytics -- 2.3 Opportunities and Applications for Supply Chain Analytics -- 2.3.1 Opportunities for Supply Chain Analytics -- 2.3.2 Process Specific applications of Big Data Analytics -- 2.4 Tools for Supply Chain Analytics -- 2.5 Supply Chain Analytics Methods -- 2.5.1 Descriptive Analytics -- 2.5.2 Predictive Analytics -- 2.5.3 Prescriptive Analytics -- 2.6 Supply Chain Challenges in Adopting Big Data Analytics -- 2.7 Future of Supply Chain Analytics -- 2.8 Conclusion -- References -- Chapter 3 Prioritizing the Barriers and Challenges of Big Data Analytics in Logistics and Supply Chain Management Using MCDM Method -- 3.1 Introduction to Big Data Analytics -- 3.2 Barriers to BDA: Background -- 3.3 Methodology -- 3.3.1 The Steps of HBWM -- 3.3.2 Determining the Consistency Rate -- 3.4 Results and Discussion -- 3.5 Conclusion -- References -- Chapter 4 Big Data in Procurement 4.0: Critical Success Factors and Solutions -- 4.1 Introduction -- 4.2 Macroenvironment -- 4.3 Literature Review -- 4.4 Methodology -- 4.5 Critical Success Factors for Procurement 4.0 -- 4.5.1 Cybernetics</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.5.2 Communication -- 4.5.3 Controllership -- 4.5.4 Collaboration -- 4.5.5 Connection -- 4.5.6 Cognition -- 4.5.7 Coordination -- 4.5.8 Confidence -- 4.6 Critical Success Factors and Procurement Cycle -- 4.7 Supporting Solutions -- 4.8 Application of the Model -- 4.9 Conclusions, Practical Implications, and Future Research -- Abbreviations -- References -- Chapter 5 Recommendation Model Based on Expiry Date of Product Using Big Data Analytics -- 5.1 Introduction -- 5.1.1 Statement and Objective -- 5.1.2 Literature Survey -- 5.2 Product Recommendation System -- 5.2.1 User's Preferences/ Choices -- 5.2.2 Keyword Classification -- 5.3 Implementation of Statistical Analysis for Products -- 5.3.1 One-Sided and Two-Sided T-Test of Data Sets -- 5.3.2 Linear Regression Model -- 5.3.3 Experimental Assessment -- 5.4 Effects of Recommendation System -- 5.4.1 Recommendation for Ratings and Reviews of the Customer of Products -- 5.4.2 Advantages of the Recommendation System -- 5.5 Conclusion -- References -- Chapter 6 Comparing Company's Performance to Its Peers: A Data Envelopment Approach -- 6.1 Introduction -- 6.2 Previous Related Research -- 6.3 Methodology Description -- 6.3.1 Slacks-Based Measure of Efficiency -- 6.3.2 Multiple Criteria Decision-Making -- 6.4 Empirical Results -- 6.4.1 Data Description and Preprocessing -- 6.4.2 Main DEA Results -- 6.4.3 Discussion on the Best and Worst Ranked Companies -- 6.4.4 Robustness Checking - MCDM -- 6.4.5 Further Possible Integrations of DEA and MCDM -- 6.5 Conclusion -- Appendix -- References -- Chapter 7 Sustainability, Big Data, and Consumer Behavior: A Supply Chain Framework -- 7.1 Background -- 7.2 Attributes Impacting Consumer's Purchasing Behavior -- Purchase Price -- Derived Utility -- Product Quality -- Product Support Services -- Return Policy -- Summary -- 7.3 A Bidirectional Supply Chain Framework</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.4 Concluding Remarks -- References -- Chapter 8 A Soft Computing Techniques Application of an Inventory Model in Solving Two-Warehouses Using Cuckoo Search Algorithm -- 8.1 Introduction -- 8.1.1 Inventory Models with Two Warehouses -- 8.1.2 Cuckoo Behavior and Lévy Flights -- 8.2 Related Works -- 8.3 Assumption and Notations -- 8.4 Mathematical Formulation of Model and Analysis -- 8.5 Cuckoo Search Algorithm -- 8.6 Numerical Analysis -- 8.7 Sensitivity Analysis -- 8.8 Conclusions -- References -- Chapter 9 An Overview of the Internet of Things Technologies Focusing on Disaster Response -- 9.1 Introduction -- 9.2 Artificial Intelligence -- 9.3 Internet of Things -- 9.4 The Use of IoT and AI for Risk and Disaster Management -- 9.5 The IoT Relationship in the Supply Chain During Disaster -- 9.6 Discussion -- 9.7 Future Trends -- 9.8 Conclusions -- References -- Chapter 10 Closing the Big Data Talent Gap -- 10.1 Research Benefits | What's in It for Me? -- 10.2 The State of Big Data Education -- 10.3 Data Scientist vs Data Analyst -- 10.4 A Qualitative Approach -- 10.5 Dependability and Trustworthiness -- 10.6 Data Analysis -- 10.7 Big Data Initiatives -- 10.8 Years of Big Data Initiatives -- 10.9 Size of Big Data Teams -- 10.10 Big Data Resources Needed -- 10.11 Where Are Organizations Finding Big Data Resources? -- 10.12 Challenges Finding Big Data Resources -- 10.13 Qualities Most Difficult to Find in Candidates -- 10.14 The Ideal Big Data Specialist Candidate -- 10.15 Number of Candidates Interviewed -- 10.16 Easing the Big Data Hiring Process -- 10.17 IT Manager Interviews -- 10.18 Specialist Interviews -- 10.19 Key Analysis &amp -- Findings -- 10.19.1 Theme 1: " Lacking" -- 10.19.2 Theme 2: " Passion" -- 10.19.3 Theme 3: Soft Skills -- 10.19.4 Theme 4: Technical Skills -- 10.20 Conclusion -- 10.21 Discussion -- References -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business logistics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Supply Chain Management</subfield><subfield code="0">(DE-588)4684051-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Industrie 4.0</subfield><subfield code="0">(DE-588)1072179776</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Supply Chain Management</subfield><subfield code="0">(DE-588)4684051-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Industrie 4.0</subfield><subfield code="0">(DE-588)1072179776</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gandomi, Amir H.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fong, Simon James</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ülkü, M. Ali</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Rahimi, Iman</subfield><subfield code="t">Big Data Analytics in Supply Chain Management</subfield><subfield code="d">Milton : Taylor & Francis Group,c2020</subfield><subfield code="z">9780367407179</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033078012</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6401873</subfield><subfield code="l">HWR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV047694018 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:57:27Z |
indexdate | 2024-07-10T09:19:21Z |
institution | BVB |
isbn | 9781000326932 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033078012 |
oclc_num | 1223095662 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 online resource (211 pages) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Taylor & Francis Group |
record_format | marc |
spelling | Rahimi, Iman Verfasser aut Big Data Analytics in Supply Chain Management Theory and Applications Milton Taylor & Francis Group 2020 ©2021 1 online resource (211 pages) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- Chapter 1 Big Data Analytics in Supply Chain Management: A Scientometric Analysis -- 1.1 Introduction -- 1.2 Analysis -- 1.2.1 Data Collection -- 1.3 Scientometric Analysis -- 1.3.1 An Analysis on Keywords -- 1.3.2 A Short Analysis on Countries and Affiliations -- 1.3.3 Co-author Analysis -- 1.3.4 An Analysis on Sources -- 1.3.5 Co-citation Analysis -- 1.3 Discussion and Conclusion -- References -- Chapter 2 Supply Chain Analytics Technology for Big Data -- 2.1 Introduction -- 2.1.1 Introduction to Supply Chain Analytics Technology -- 2.1.2 Necessity for Supply Chain Analytics for Big Data -- 2.2 Features of Supply Chain Analytics -- 2.3 Opportunities and Applications for Supply Chain Analytics -- 2.3.1 Opportunities for Supply Chain Analytics -- 2.3.2 Process Specific applications of Big Data Analytics -- 2.4 Tools for Supply Chain Analytics -- 2.5 Supply Chain Analytics Methods -- 2.5.1 Descriptive Analytics -- 2.5.2 Predictive Analytics -- 2.5.3 Prescriptive Analytics -- 2.6 Supply Chain Challenges in Adopting Big Data Analytics -- 2.7 Future of Supply Chain Analytics -- 2.8 Conclusion -- References -- Chapter 3 Prioritizing the Barriers and Challenges of Big Data Analytics in Logistics and Supply Chain Management Using MCDM Method -- 3.1 Introduction to Big Data Analytics -- 3.2 Barriers to BDA: Background -- 3.3 Methodology -- 3.3.1 The Steps of HBWM -- 3.3.2 Determining the Consistency Rate -- 3.4 Results and Discussion -- 3.5 Conclusion -- References -- Chapter 4 Big Data in Procurement 4.0: Critical Success Factors and Solutions -- 4.1 Introduction -- 4.2 Macroenvironment -- 4.3 Literature Review -- 4.4 Methodology -- 4.5 Critical Success Factors for Procurement 4.0 -- 4.5.1 Cybernetics 4.5.2 Communication -- 4.5.3 Controllership -- 4.5.4 Collaboration -- 4.5.5 Connection -- 4.5.6 Cognition -- 4.5.7 Coordination -- 4.5.8 Confidence -- 4.6 Critical Success Factors and Procurement Cycle -- 4.7 Supporting Solutions -- 4.8 Application of the Model -- 4.9 Conclusions, Practical Implications, and Future Research -- Abbreviations -- References -- Chapter 5 Recommendation Model Based on Expiry Date of Product Using Big Data Analytics -- 5.1 Introduction -- 5.1.1 Statement and Objective -- 5.1.2 Literature Survey -- 5.2 Product Recommendation System -- 5.2.1 User's Preferences/ Choices -- 5.2.2 Keyword Classification -- 5.3 Implementation of Statistical Analysis for Products -- 5.3.1 One-Sided and Two-Sided T-Test of Data Sets -- 5.3.2 Linear Regression Model -- 5.3.3 Experimental Assessment -- 5.4 Effects of Recommendation System -- 5.4.1 Recommendation for Ratings and Reviews of the Customer of Products -- 5.4.2 Advantages of the Recommendation System -- 5.5 Conclusion -- References -- Chapter 6 Comparing Company's Performance to Its Peers: A Data Envelopment Approach -- 6.1 Introduction -- 6.2 Previous Related Research -- 6.3 Methodology Description -- 6.3.1 Slacks-Based Measure of Efficiency -- 6.3.2 Multiple Criteria Decision-Making -- 6.4 Empirical Results -- 6.4.1 Data Description and Preprocessing -- 6.4.2 Main DEA Results -- 6.4.3 Discussion on the Best and Worst Ranked Companies -- 6.4.4 Robustness Checking - MCDM -- 6.4.5 Further Possible Integrations of DEA and MCDM -- 6.5 Conclusion -- Appendix -- References -- Chapter 7 Sustainability, Big Data, and Consumer Behavior: A Supply Chain Framework -- 7.1 Background -- 7.2 Attributes Impacting Consumer's Purchasing Behavior -- Purchase Price -- Derived Utility -- Product Quality -- Product Support Services -- Return Policy -- Summary -- 7.3 A Bidirectional Supply Chain Framework 7.4 Concluding Remarks -- References -- Chapter 8 A Soft Computing Techniques Application of an Inventory Model in Solving Two-Warehouses Using Cuckoo Search Algorithm -- 8.1 Introduction -- 8.1.1 Inventory Models with Two Warehouses -- 8.1.2 Cuckoo Behavior and Lévy Flights -- 8.2 Related Works -- 8.3 Assumption and Notations -- 8.4 Mathematical Formulation of Model and Analysis -- 8.5 Cuckoo Search Algorithm -- 8.6 Numerical Analysis -- 8.7 Sensitivity Analysis -- 8.8 Conclusions -- References -- Chapter 9 An Overview of the Internet of Things Technologies Focusing on Disaster Response -- 9.1 Introduction -- 9.2 Artificial Intelligence -- 9.3 Internet of Things -- 9.4 The Use of IoT and AI for Risk and Disaster Management -- 9.5 The IoT Relationship in the Supply Chain During Disaster -- 9.6 Discussion -- 9.7 Future Trends -- 9.8 Conclusions -- References -- Chapter 10 Closing the Big Data Talent Gap -- 10.1 Research Benefits | What's in It for Me? -- 10.2 The State of Big Data Education -- 10.3 Data Scientist vs Data Analyst -- 10.4 A Qualitative Approach -- 10.5 Dependability and Trustworthiness -- 10.6 Data Analysis -- 10.7 Big Data Initiatives -- 10.8 Years of Big Data Initiatives -- 10.9 Size of Big Data Teams -- 10.10 Big Data Resources Needed -- 10.11 Where Are Organizations Finding Big Data Resources? -- 10.12 Challenges Finding Big Data Resources -- 10.13 Qualities Most Difficult to Find in Candidates -- 10.14 The Ideal Big Data Specialist Candidate -- 10.15 Number of Candidates Interviewed -- 10.16 Easing the Big Data Hiring Process -- 10.17 IT Manager Interviews -- 10.18 Specialist Interviews -- 10.19 Key Analysis & -- Findings -- 10.19.1 Theme 1: " Lacking" -- 10.19.2 Theme 2: " Passion" -- 10.19.3 Theme 3: Soft Skills -- 10.19.4 Theme 4: Technical Skills -- 10.20 Conclusion -- 10.21 Discussion -- References -- Index Business logistics Datenanalyse (DE-588)4123037-1 gnd rswk-swf Supply Chain Management (DE-588)4684051-5 gnd rswk-swf Big Data (DE-588)4802620-7 gnd rswk-swf Industrie 4.0 (DE-588)1072179776 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Supply Chain Management (DE-588)4684051-5 s Big Data (DE-588)4802620-7 s Datenanalyse (DE-588)4123037-1 s Industrie 4.0 (DE-588)1072179776 s DE-604 Gandomi, Amir H. Sonstige oth Fong, Simon James Sonstige oth Ülkü, M. Ali Sonstige oth Erscheint auch als Druck-Ausgabe Rahimi, Iman Big Data Analytics in Supply Chain Management Milton : Taylor & Francis Group,c2020 9780367407179 |
spellingShingle | Rahimi, Iman Big Data Analytics in Supply Chain Management Theory and Applications Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- Chapter 1 Big Data Analytics in Supply Chain Management: A Scientometric Analysis -- 1.1 Introduction -- 1.2 Analysis -- 1.2.1 Data Collection -- 1.3 Scientometric Analysis -- 1.3.1 An Analysis on Keywords -- 1.3.2 A Short Analysis on Countries and Affiliations -- 1.3.3 Co-author Analysis -- 1.3.4 An Analysis on Sources -- 1.3.5 Co-citation Analysis -- 1.3 Discussion and Conclusion -- References -- Chapter 2 Supply Chain Analytics Technology for Big Data -- 2.1 Introduction -- 2.1.1 Introduction to Supply Chain Analytics Technology -- 2.1.2 Necessity for Supply Chain Analytics for Big Data -- 2.2 Features of Supply Chain Analytics -- 2.3 Opportunities and Applications for Supply Chain Analytics -- 2.3.1 Opportunities for Supply Chain Analytics -- 2.3.2 Process Specific applications of Big Data Analytics -- 2.4 Tools for Supply Chain Analytics -- 2.5 Supply Chain Analytics Methods -- 2.5.1 Descriptive Analytics -- 2.5.2 Predictive Analytics -- 2.5.3 Prescriptive Analytics -- 2.6 Supply Chain Challenges in Adopting Big Data Analytics -- 2.7 Future of Supply Chain Analytics -- 2.8 Conclusion -- References -- Chapter 3 Prioritizing the Barriers and Challenges of Big Data Analytics in Logistics and Supply Chain Management Using MCDM Method -- 3.1 Introduction to Big Data Analytics -- 3.2 Barriers to BDA: Background -- 3.3 Methodology -- 3.3.1 The Steps of HBWM -- 3.3.2 Determining the Consistency Rate -- 3.4 Results and Discussion -- 3.5 Conclusion -- References -- Chapter 4 Big Data in Procurement 4.0: Critical Success Factors and Solutions -- 4.1 Introduction -- 4.2 Macroenvironment -- 4.3 Literature Review -- 4.4 Methodology -- 4.5 Critical Success Factors for Procurement 4.0 -- 4.5.1 Cybernetics 4.5.2 Communication -- 4.5.3 Controllership -- 4.5.4 Collaboration -- 4.5.5 Connection -- 4.5.6 Cognition -- 4.5.7 Coordination -- 4.5.8 Confidence -- 4.6 Critical Success Factors and Procurement Cycle -- 4.7 Supporting Solutions -- 4.8 Application of the Model -- 4.9 Conclusions, Practical Implications, and Future Research -- Abbreviations -- References -- Chapter 5 Recommendation Model Based on Expiry Date of Product Using Big Data Analytics -- 5.1 Introduction -- 5.1.1 Statement and Objective -- 5.1.2 Literature Survey -- 5.2 Product Recommendation System -- 5.2.1 User's Preferences/ Choices -- 5.2.2 Keyword Classification -- 5.3 Implementation of Statistical Analysis for Products -- 5.3.1 One-Sided and Two-Sided T-Test of Data Sets -- 5.3.2 Linear Regression Model -- 5.3.3 Experimental Assessment -- 5.4 Effects of Recommendation System -- 5.4.1 Recommendation for Ratings and Reviews of the Customer of Products -- 5.4.2 Advantages of the Recommendation System -- 5.5 Conclusion -- References -- Chapter 6 Comparing Company's Performance to Its Peers: A Data Envelopment Approach -- 6.1 Introduction -- 6.2 Previous Related Research -- 6.3 Methodology Description -- 6.3.1 Slacks-Based Measure of Efficiency -- 6.3.2 Multiple Criteria Decision-Making -- 6.4 Empirical Results -- 6.4.1 Data Description and Preprocessing -- 6.4.2 Main DEA Results -- 6.4.3 Discussion on the Best and Worst Ranked Companies -- 6.4.4 Robustness Checking - MCDM -- 6.4.5 Further Possible Integrations of DEA and MCDM -- 6.5 Conclusion -- Appendix -- References -- Chapter 7 Sustainability, Big Data, and Consumer Behavior: A Supply Chain Framework -- 7.1 Background -- 7.2 Attributes Impacting Consumer's Purchasing Behavior -- Purchase Price -- Derived Utility -- Product Quality -- Product Support Services -- Return Policy -- Summary -- 7.3 A Bidirectional Supply Chain Framework 7.4 Concluding Remarks -- References -- Chapter 8 A Soft Computing Techniques Application of an Inventory Model in Solving Two-Warehouses Using Cuckoo Search Algorithm -- 8.1 Introduction -- 8.1.1 Inventory Models with Two Warehouses -- 8.1.2 Cuckoo Behavior and Lévy Flights -- 8.2 Related Works -- 8.3 Assumption and Notations -- 8.4 Mathematical Formulation of Model and Analysis -- 8.5 Cuckoo Search Algorithm -- 8.6 Numerical Analysis -- 8.7 Sensitivity Analysis -- 8.8 Conclusions -- References -- Chapter 9 An Overview of the Internet of Things Technologies Focusing on Disaster Response -- 9.1 Introduction -- 9.2 Artificial Intelligence -- 9.3 Internet of Things -- 9.4 The Use of IoT and AI for Risk and Disaster Management -- 9.5 The IoT Relationship in the Supply Chain During Disaster -- 9.6 Discussion -- 9.7 Future Trends -- 9.8 Conclusions -- References -- Chapter 10 Closing the Big Data Talent Gap -- 10.1 Research Benefits | What's in It for Me? -- 10.2 The State of Big Data Education -- 10.3 Data Scientist vs Data Analyst -- 10.4 A Qualitative Approach -- 10.5 Dependability and Trustworthiness -- 10.6 Data Analysis -- 10.7 Big Data Initiatives -- 10.8 Years of Big Data Initiatives -- 10.9 Size of Big Data Teams -- 10.10 Big Data Resources Needed -- 10.11 Where Are Organizations Finding Big Data Resources? -- 10.12 Challenges Finding Big Data Resources -- 10.13 Qualities Most Difficult to Find in Candidates -- 10.14 The Ideal Big Data Specialist Candidate -- 10.15 Number of Candidates Interviewed -- 10.16 Easing the Big Data Hiring Process -- 10.17 IT Manager Interviews -- 10.18 Specialist Interviews -- 10.19 Key Analysis & -- Findings -- 10.19.1 Theme 1: " Lacking" -- 10.19.2 Theme 2: " Passion" -- 10.19.3 Theme 3: Soft Skills -- 10.19.4 Theme 4: Technical Skills -- 10.20 Conclusion -- 10.21 Discussion -- References -- Index Business logistics Datenanalyse (DE-588)4123037-1 gnd Supply Chain Management (DE-588)4684051-5 gnd Big Data (DE-588)4802620-7 gnd Industrie 4.0 (DE-588)1072179776 gnd |
subject_GND | (DE-588)4123037-1 (DE-588)4684051-5 (DE-588)4802620-7 (DE-588)1072179776 (DE-588)4143413-4 |
title | Big Data Analytics in Supply Chain Management Theory and Applications |
title_auth | Big Data Analytics in Supply Chain Management Theory and Applications |
title_exact_search | Big Data Analytics in Supply Chain Management Theory and Applications |
title_exact_search_txtP | Big Data Analytics in Supply Chain Management Theory and Applications |
title_full | Big Data Analytics in Supply Chain Management Theory and Applications |
title_fullStr | Big Data Analytics in Supply Chain Management Theory and Applications |
title_full_unstemmed | Big Data Analytics in Supply Chain Management Theory and Applications |
title_short | Big Data Analytics in Supply Chain Management |
title_sort | big data analytics in supply chain management theory and applications |
title_sub | Theory and Applications |
topic | Business logistics Datenanalyse (DE-588)4123037-1 gnd Supply Chain Management (DE-588)4684051-5 gnd Big Data (DE-588)4802620-7 gnd Industrie 4.0 (DE-588)1072179776 gnd |
topic_facet | Business logistics Datenanalyse Supply Chain Management Big Data Industrie 4.0 Aufsatzsammlung |
work_keys_str_mv | AT rahimiiman bigdataanalyticsinsupplychainmanagementtheoryandapplications AT gandomiamirh bigdataanalyticsinsupplychainmanagementtheoryandapplications AT fongsimonjames bigdataanalyticsinsupplychainmanagementtheoryandapplications AT ulkumali bigdataanalyticsinsupplychainmanagementtheoryandapplications |