Business Intelligence: 6th European Summer School, EBISS 2016, Tours, France, July 3-8, 2016, Tutorial Lectures
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing AG
2017
|
Schriftenreihe: | Lecture Notes in Business Information Processing Ser.
v.280 |
Schlagworte: | |
Online-Zugang: | DE-2070s |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (148 pages) |
ISBN: | 9783319611648 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV047693753 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220119s2017 xx o|||| 00||| eng d | ||
020 | |a 9783319611648 |9 978-3-319-61164-8 | ||
035 | |a (ZDB-30-PQE)EBC6301273 | ||
035 | |a (ZDB-30-PAD)EBC6301273 | ||
035 | |a (ZDB-89-EBL)EBL6301273 | ||
035 | |a (OCoLC)1002345667 | ||
035 | |a (DE-599)BVBBV047693753 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 658.4038011 | |
084 | |a QH 500 |0 (DE-625)141607: |2 rvk | ||
084 | |a QP 345 |0 (DE-625)141866: |2 rvk | ||
084 | |a ST 515 |0 (DE-625)143677: |2 rvk | ||
084 | |a ST 610 |0 (DE-625)143683: |2 rvk | ||
100 | 1 | |a Marcel, Patrick |e Verfasser |4 aut | |
245 | 1 | 0 | |a Business Intelligence |b 6th European Summer School, EBISS 2016, Tours, France, July 3-8, 2016, Tutorial Lectures |
264 | 1 | |a Cham |b Springer International Publishing AG |c 2017 | |
264 | 4 | |c ©2017 | |
300 | |a 1 online resource (148 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Business Information Processing Ser. |v v.280 | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Preface -- Organization -- Contents -- Declarative Multidimensional Graph Queries -- 1 Introduction -- 2 Graph Data Models -- 3 Subgraph Matching -- 3.1 Graph Similarity -- 3.2 Matching Semantics -- 3.3 Query Classes -- 3.4 Query Languages -- 4 Graph Transformation -- 4.1 Composability -- 4.2 Aggregation -- 5 Multidimensional Graph Queries -- 5.1 Entity-Oriented Multidimensional Queries -- 5.2 Structure-Oriented Multidimensional Queries -- 6 Conclusion -- References -- Computational Approaches to Translation Studies -- 1 Introduction -- 2 Translationese -- 3 Identification of Translationese -- 3.1 Supervised Classification -- 3.2 Features -- 3.3 Results -- 3.4 Unsupervised Classification -- 4 Applications to Machine Translation -- 4.1 Language Models -- 4.2 Translation Models -- 5 Conclusion -- References -- Two Decades of Pattern Mining: Principles and Methods -- 1 Introduction -- 2 Pattern, Language and Dataset -- 2.1 Basic Definitions -- 2.2 Language Sophistication -- 3 Interestingness Measures -- 3.1 Basic Definitions -- 3.2 The Obsession with Frequency -- 4 Constraint-Based Pattern Mining -- 4.1 Principle -- 4.2 From Frequency to Better Interestingness Measures -- 5 Preference-Based Pattern Mining -- 5.1 Principle -- 5.2 Diversity Issue -- 6 Interactive Pattern Mining -- 6.1 Learning a User Preference Model from Patterns -- 6.2 Pattern Sampling -- 7 Conclusion -- References -- Scalability and Realtime on Big Data, MapReduce, NoSQL and Spark -- Abstract -- 1 Introduction -- 2 Big Data Architectures and Scalability -- 2.1 NoSQL and Key-Value Data Stores -- 2.2 Parallel Database Management Systems -- 2.3 Joins, Aggregations and Shuffling -- 2.4 Hadoop and MapReduce -- 3 Spark and Spark-SQL -- 3.1 Shuffling and Other Overheads in Spark -- 3.2 Data Frames and Datasets -- 4 Realtime Scalable Big Data Analytics -- 4.1 Realtime Concerns | |
505 | 8 | |a 4.2 The Lambda Architecture -- 4.3 Realtime Data Integration -- 4.4 De-normalization and Predictable Response Time -- 4.5 Session Scalability -- 4.6 Scaling for Approximate Execution Time Bound Guarantees -- 5 Conclusions -- References -- Step by Step Towards Energy-Aware Data Warehouse Design -- 1 Introduction -- 2 Related Work -- 3 Background -- 4 Eco-Query Optimizer Design -- 4.1 Parse -- 4.2 Rewrite -- 4.3 Plan/Optimize -- 4.4 Executor -- 4.5 Our Energy-Aware Query Processing -- 4.6 Power Cost Model -- 4.7 Plans Evaluation -- 4.8 EnerQuery GUI -- 5 Energy Incorporation in Logical and Physical Phases -- 5.1 Logical Design -- 5.2 Physical Design -- 5.3 Summary -- 5.4 Energy at Logical and Physical Phases -- 5.5 Capturing Variability of Logical Design -- 5.6 Scenario 1: Impact of VM on Logical Optimizations -- 5.7 Scenario 2: Impact of VM on Physical Optimizations -- 5.8 Experimental Study -- 6 Conclusion -- References -- Author Index | |
650 | 4 | |a Business-Data processing-Congresses | |
650 | 0 | 7 | |a Business Intelligence |0 (DE-588)4588307-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entscheidungsunterstützung |0 (DE-588)4202171-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data-Warehouse-Konzept |0 (DE-588)4406462-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Betriebliches Informationssystem |0 (DE-588)4069386-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 2016 |z Tours |2 gnd-content | |
689 | 0 | 0 | |a Betriebliches Informationssystem |0 (DE-588)4069386-7 |D s |
689 | 0 | 1 | |a Data-Warehouse-Konzept |0 (DE-588)4406462-7 |D s |
689 | 0 | 2 | |a Business Intelligence |0 (DE-588)4588307-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Betriebliches Informationssystem |0 (DE-588)4069386-7 |D s |
689 | 1 | 1 | |a Entscheidungsunterstützung |0 (DE-588)4202171-6 |D s |
689 | 1 | 2 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Zimányi, Esteban |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Marcel, Patrick |t Business Intelligence |d Cham : Springer International Publishing AG,c2017 |z 9783319611631 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033077746 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6301273 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1820882490231881728 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Marcel, Patrick |
author_facet | Marcel, Patrick |
author_role | aut |
author_sort | Marcel, Patrick |
author_variant | p m pm |
building | Verbundindex |
bvnumber | BV047693753 |
classification_rvk | QH 500 QP 345 ST 515 ST 610 |
collection | ZDB-30-PQE |
contents | Intro -- Preface -- Organization -- Contents -- Declarative Multidimensional Graph Queries -- 1 Introduction -- 2 Graph Data Models -- 3 Subgraph Matching -- 3.1 Graph Similarity -- 3.2 Matching Semantics -- 3.3 Query Classes -- 3.4 Query Languages -- 4 Graph Transformation -- 4.1 Composability -- 4.2 Aggregation -- 5 Multidimensional Graph Queries -- 5.1 Entity-Oriented Multidimensional Queries -- 5.2 Structure-Oriented Multidimensional Queries -- 6 Conclusion -- References -- Computational Approaches to Translation Studies -- 1 Introduction -- 2 Translationese -- 3 Identification of Translationese -- 3.1 Supervised Classification -- 3.2 Features -- 3.3 Results -- 3.4 Unsupervised Classification -- 4 Applications to Machine Translation -- 4.1 Language Models -- 4.2 Translation Models -- 5 Conclusion -- References -- Two Decades of Pattern Mining: Principles and Methods -- 1 Introduction -- 2 Pattern, Language and Dataset -- 2.1 Basic Definitions -- 2.2 Language Sophistication -- 3 Interestingness Measures -- 3.1 Basic Definitions -- 3.2 The Obsession with Frequency -- 4 Constraint-Based Pattern Mining -- 4.1 Principle -- 4.2 From Frequency to Better Interestingness Measures -- 5 Preference-Based Pattern Mining -- 5.1 Principle -- 5.2 Diversity Issue -- 6 Interactive Pattern Mining -- 6.1 Learning a User Preference Model from Patterns -- 6.2 Pattern Sampling -- 7 Conclusion -- References -- Scalability and Realtime on Big Data, MapReduce, NoSQL and Spark -- Abstract -- 1 Introduction -- 2 Big Data Architectures and Scalability -- 2.1 NoSQL and Key-Value Data Stores -- 2.2 Parallel Database Management Systems -- 2.3 Joins, Aggregations and Shuffling -- 2.4 Hadoop and MapReduce -- 3 Spark and Spark-SQL -- 3.1 Shuffling and Other Overheads in Spark -- 3.2 Data Frames and Datasets -- 4 Realtime Scalable Big Data Analytics -- 4.1 Realtime Concerns 4.2 The Lambda Architecture -- 4.3 Realtime Data Integration -- 4.4 De-normalization and Predictable Response Time -- 4.5 Session Scalability -- 4.6 Scaling for Approximate Execution Time Bound Guarantees -- 5 Conclusions -- References -- Step by Step Towards Energy-Aware Data Warehouse Design -- 1 Introduction -- 2 Related Work -- 3 Background -- 4 Eco-Query Optimizer Design -- 4.1 Parse -- 4.2 Rewrite -- 4.3 Plan/Optimize -- 4.4 Executor -- 4.5 Our Energy-Aware Query Processing -- 4.6 Power Cost Model -- 4.7 Plans Evaluation -- 4.8 EnerQuery GUI -- 5 Energy Incorporation in Logical and Physical Phases -- 5.1 Logical Design -- 5.2 Physical Design -- 5.3 Summary -- 5.4 Energy at Logical and Physical Phases -- 5.5 Capturing Variability of Logical Design -- 5.6 Scenario 1: Impact of VM on Logical Optimizations -- 5.7 Scenario 2: Impact of VM on Physical Optimizations -- 5.8 Experimental Study -- 6 Conclusion -- References -- Author Index |
ctrlnum | (ZDB-30-PQE)EBC6301273 (ZDB-30-PAD)EBC6301273 (ZDB-89-EBL)EBL6301273 (OCoLC)1002345667 (DE-599)BVBBV047693753 |
dewey-full | 658.4038011 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.4038011 |
dewey-search | 658.4038011 |
dewey-sort | 3658.4038011 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Informatik Wirtschaftswissenschaften |
discipline_str_mv | Informatik Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV047693753</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220119s2017 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319611648</subfield><subfield code="9">978-3-319-61164-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6301273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6301273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6301273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1002345667</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047693753</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.4038011</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 500</subfield><subfield code="0">(DE-625)141607:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 345</subfield><subfield code="0">(DE-625)141866:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 515</subfield><subfield code="0">(DE-625)143677:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 610</subfield><subfield code="0">(DE-625)143683:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marcel, Patrick</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Business Intelligence</subfield><subfield code="b">6th European Summer School, EBISS 2016, Tours, France, July 3-8, 2016, Tutorial Lectures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing AG</subfield><subfield code="c">2017</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (148 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Business Information Processing Ser.</subfield><subfield code="v">v.280</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Preface -- Organization -- Contents -- Declarative Multidimensional Graph Queries -- 1 Introduction -- 2 Graph Data Models -- 3 Subgraph Matching -- 3.1 Graph Similarity -- 3.2 Matching Semantics -- 3.3 Query Classes -- 3.4 Query Languages -- 4 Graph Transformation -- 4.1 Composability -- 4.2 Aggregation -- 5 Multidimensional Graph Queries -- 5.1 Entity-Oriented Multidimensional Queries -- 5.2 Structure-Oriented Multidimensional Queries -- 6 Conclusion -- References -- Computational Approaches to Translation Studies -- 1 Introduction -- 2 Translationese -- 3 Identification of Translationese -- 3.1 Supervised Classification -- 3.2 Features -- 3.3 Results -- 3.4 Unsupervised Classification -- 4 Applications to Machine Translation -- 4.1 Language Models -- 4.2 Translation Models -- 5 Conclusion -- References -- Two Decades of Pattern Mining: Principles and Methods -- 1 Introduction -- 2 Pattern, Language and Dataset -- 2.1 Basic Definitions -- 2.2 Language Sophistication -- 3 Interestingness Measures -- 3.1 Basic Definitions -- 3.2 The Obsession with Frequency -- 4 Constraint-Based Pattern Mining -- 4.1 Principle -- 4.2 From Frequency to Better Interestingness Measures -- 5 Preference-Based Pattern Mining -- 5.1 Principle -- 5.2 Diversity Issue -- 6 Interactive Pattern Mining -- 6.1 Learning a User Preference Model from Patterns -- 6.2 Pattern Sampling -- 7 Conclusion -- References -- Scalability and Realtime on Big Data, MapReduce, NoSQL and Spark -- Abstract -- 1 Introduction -- 2 Big Data Architectures and Scalability -- 2.1 NoSQL and Key-Value Data Stores -- 2.2 Parallel Database Management Systems -- 2.3 Joins, Aggregations and Shuffling -- 2.4 Hadoop and MapReduce -- 3 Spark and Spark-SQL -- 3.1 Shuffling and Other Overheads in Spark -- 3.2 Data Frames and Datasets -- 4 Realtime Scalable Big Data Analytics -- 4.1 Realtime Concerns</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2 The Lambda Architecture -- 4.3 Realtime Data Integration -- 4.4 De-normalization and Predictable Response Time -- 4.5 Session Scalability -- 4.6 Scaling for Approximate Execution Time Bound Guarantees -- 5 Conclusions -- References -- Step by Step Towards Energy-Aware Data Warehouse Design -- 1 Introduction -- 2 Related Work -- 3 Background -- 4 Eco-Query Optimizer Design -- 4.1 Parse -- 4.2 Rewrite -- 4.3 Plan/Optimize -- 4.4 Executor -- 4.5 Our Energy-Aware Query Processing -- 4.6 Power Cost Model -- 4.7 Plans Evaluation -- 4.8 EnerQuery GUI -- 5 Energy Incorporation in Logical and Physical Phases -- 5.1 Logical Design -- 5.2 Physical Design -- 5.3 Summary -- 5.4 Energy at Logical and Physical Phases -- 5.5 Capturing Variability of Logical Design -- 5.6 Scenario 1: Impact of VM on Logical Optimizations -- 5.7 Scenario 2: Impact of VM on Physical Optimizations -- 5.8 Experimental Study -- 6 Conclusion -- References -- Author Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business-Data processing-Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Business Intelligence</subfield><subfield code="0">(DE-588)4588307-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entscheidungsunterstützung</subfield><subfield code="0">(DE-588)4202171-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data-Warehouse-Konzept</subfield><subfield code="0">(DE-588)4406462-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Betriebliches Informationssystem</subfield><subfield code="0">(DE-588)4069386-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2016</subfield><subfield code="z">Tours</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Betriebliches Informationssystem</subfield><subfield code="0">(DE-588)4069386-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Data-Warehouse-Konzept</subfield><subfield code="0">(DE-588)4406462-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Business Intelligence</subfield><subfield code="0">(DE-588)4588307-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Betriebliches Informationssystem</subfield><subfield code="0">(DE-588)4069386-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Entscheidungsunterstützung</subfield><subfield code="0">(DE-588)4202171-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zimányi, Esteban</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Marcel, Patrick</subfield><subfield code="t">Business Intelligence</subfield><subfield code="d">Cham : Springer International Publishing AG,c2017</subfield><subfield code="z">9783319611631</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033077746</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6301273</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 2016 Tours gnd-content |
genre_facet | Konferenzschrift 2016 Tours |
id | DE-604.BV047693753 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:57:27Z |
indexdate | 2025-01-10T17:07:43Z |
institution | BVB |
isbn | 9783319611648 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033077746 |
oclc_num | 1002345667 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 online resource (148 pages) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Springer International Publishing AG |
record_format | marc |
series2 | Lecture Notes in Business Information Processing Ser. |
spelling | Marcel, Patrick Verfasser aut Business Intelligence 6th European Summer School, EBISS 2016, Tours, France, July 3-8, 2016, Tutorial Lectures Cham Springer International Publishing AG 2017 ©2017 1 online resource (148 pages) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Business Information Processing Ser. v.280 Description based on publisher supplied metadata and other sources Intro -- Preface -- Organization -- Contents -- Declarative Multidimensional Graph Queries -- 1 Introduction -- 2 Graph Data Models -- 3 Subgraph Matching -- 3.1 Graph Similarity -- 3.2 Matching Semantics -- 3.3 Query Classes -- 3.4 Query Languages -- 4 Graph Transformation -- 4.1 Composability -- 4.2 Aggregation -- 5 Multidimensional Graph Queries -- 5.1 Entity-Oriented Multidimensional Queries -- 5.2 Structure-Oriented Multidimensional Queries -- 6 Conclusion -- References -- Computational Approaches to Translation Studies -- 1 Introduction -- 2 Translationese -- 3 Identification of Translationese -- 3.1 Supervised Classification -- 3.2 Features -- 3.3 Results -- 3.4 Unsupervised Classification -- 4 Applications to Machine Translation -- 4.1 Language Models -- 4.2 Translation Models -- 5 Conclusion -- References -- Two Decades of Pattern Mining: Principles and Methods -- 1 Introduction -- 2 Pattern, Language and Dataset -- 2.1 Basic Definitions -- 2.2 Language Sophistication -- 3 Interestingness Measures -- 3.1 Basic Definitions -- 3.2 The Obsession with Frequency -- 4 Constraint-Based Pattern Mining -- 4.1 Principle -- 4.2 From Frequency to Better Interestingness Measures -- 5 Preference-Based Pattern Mining -- 5.1 Principle -- 5.2 Diversity Issue -- 6 Interactive Pattern Mining -- 6.1 Learning a User Preference Model from Patterns -- 6.2 Pattern Sampling -- 7 Conclusion -- References -- Scalability and Realtime on Big Data, MapReduce, NoSQL and Spark -- Abstract -- 1 Introduction -- 2 Big Data Architectures and Scalability -- 2.1 NoSQL and Key-Value Data Stores -- 2.2 Parallel Database Management Systems -- 2.3 Joins, Aggregations and Shuffling -- 2.4 Hadoop and MapReduce -- 3 Spark and Spark-SQL -- 3.1 Shuffling and Other Overheads in Spark -- 3.2 Data Frames and Datasets -- 4 Realtime Scalable Big Data Analytics -- 4.1 Realtime Concerns 4.2 The Lambda Architecture -- 4.3 Realtime Data Integration -- 4.4 De-normalization and Predictable Response Time -- 4.5 Session Scalability -- 4.6 Scaling for Approximate Execution Time Bound Guarantees -- 5 Conclusions -- References -- Step by Step Towards Energy-Aware Data Warehouse Design -- 1 Introduction -- 2 Related Work -- 3 Background -- 4 Eco-Query Optimizer Design -- 4.1 Parse -- 4.2 Rewrite -- 4.3 Plan/Optimize -- 4.4 Executor -- 4.5 Our Energy-Aware Query Processing -- 4.6 Power Cost Model -- 4.7 Plans Evaluation -- 4.8 EnerQuery GUI -- 5 Energy Incorporation in Logical and Physical Phases -- 5.1 Logical Design -- 5.2 Physical Design -- 5.3 Summary -- 5.4 Energy at Logical and Physical Phases -- 5.5 Capturing Variability of Logical Design -- 5.6 Scenario 1: Impact of VM on Logical Optimizations -- 5.7 Scenario 2: Impact of VM on Physical Optimizations -- 5.8 Experimental Study -- 6 Conclusion -- References -- Author Index Business-Data processing-Congresses Business Intelligence (DE-588)4588307-5 gnd rswk-swf Entscheidungsunterstützung (DE-588)4202171-6 gnd rswk-swf Data Mining (DE-588)4428654-5 gnd rswk-swf Data-Warehouse-Konzept (DE-588)4406462-7 gnd rswk-swf Betriebliches Informationssystem (DE-588)4069386-7 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 2016 Tours gnd-content Betriebliches Informationssystem (DE-588)4069386-7 s Data-Warehouse-Konzept (DE-588)4406462-7 s Business Intelligence (DE-588)4588307-5 s DE-604 Entscheidungsunterstützung (DE-588)4202171-6 s Data Mining (DE-588)4428654-5 s Zimányi, Esteban Sonstige oth Erscheint auch als Druck-Ausgabe Marcel, Patrick Business Intelligence Cham : Springer International Publishing AG,c2017 9783319611631 |
spellingShingle | Marcel, Patrick Business Intelligence 6th European Summer School, EBISS 2016, Tours, France, July 3-8, 2016, Tutorial Lectures Intro -- Preface -- Organization -- Contents -- Declarative Multidimensional Graph Queries -- 1 Introduction -- 2 Graph Data Models -- 3 Subgraph Matching -- 3.1 Graph Similarity -- 3.2 Matching Semantics -- 3.3 Query Classes -- 3.4 Query Languages -- 4 Graph Transformation -- 4.1 Composability -- 4.2 Aggregation -- 5 Multidimensional Graph Queries -- 5.1 Entity-Oriented Multidimensional Queries -- 5.2 Structure-Oriented Multidimensional Queries -- 6 Conclusion -- References -- Computational Approaches to Translation Studies -- 1 Introduction -- 2 Translationese -- 3 Identification of Translationese -- 3.1 Supervised Classification -- 3.2 Features -- 3.3 Results -- 3.4 Unsupervised Classification -- 4 Applications to Machine Translation -- 4.1 Language Models -- 4.2 Translation Models -- 5 Conclusion -- References -- Two Decades of Pattern Mining: Principles and Methods -- 1 Introduction -- 2 Pattern, Language and Dataset -- 2.1 Basic Definitions -- 2.2 Language Sophistication -- 3 Interestingness Measures -- 3.1 Basic Definitions -- 3.2 The Obsession with Frequency -- 4 Constraint-Based Pattern Mining -- 4.1 Principle -- 4.2 From Frequency to Better Interestingness Measures -- 5 Preference-Based Pattern Mining -- 5.1 Principle -- 5.2 Diversity Issue -- 6 Interactive Pattern Mining -- 6.1 Learning a User Preference Model from Patterns -- 6.2 Pattern Sampling -- 7 Conclusion -- References -- Scalability and Realtime on Big Data, MapReduce, NoSQL and Spark -- Abstract -- 1 Introduction -- 2 Big Data Architectures and Scalability -- 2.1 NoSQL and Key-Value Data Stores -- 2.2 Parallel Database Management Systems -- 2.3 Joins, Aggregations and Shuffling -- 2.4 Hadoop and MapReduce -- 3 Spark and Spark-SQL -- 3.1 Shuffling and Other Overheads in Spark -- 3.2 Data Frames and Datasets -- 4 Realtime Scalable Big Data Analytics -- 4.1 Realtime Concerns 4.2 The Lambda Architecture -- 4.3 Realtime Data Integration -- 4.4 De-normalization and Predictable Response Time -- 4.5 Session Scalability -- 4.6 Scaling for Approximate Execution Time Bound Guarantees -- 5 Conclusions -- References -- Step by Step Towards Energy-Aware Data Warehouse Design -- 1 Introduction -- 2 Related Work -- 3 Background -- 4 Eco-Query Optimizer Design -- 4.1 Parse -- 4.2 Rewrite -- 4.3 Plan/Optimize -- 4.4 Executor -- 4.5 Our Energy-Aware Query Processing -- 4.6 Power Cost Model -- 4.7 Plans Evaluation -- 4.8 EnerQuery GUI -- 5 Energy Incorporation in Logical and Physical Phases -- 5.1 Logical Design -- 5.2 Physical Design -- 5.3 Summary -- 5.4 Energy at Logical and Physical Phases -- 5.5 Capturing Variability of Logical Design -- 5.6 Scenario 1: Impact of VM on Logical Optimizations -- 5.7 Scenario 2: Impact of VM on Physical Optimizations -- 5.8 Experimental Study -- 6 Conclusion -- References -- Author Index Business-Data processing-Congresses Business Intelligence (DE-588)4588307-5 gnd Entscheidungsunterstützung (DE-588)4202171-6 gnd Data Mining (DE-588)4428654-5 gnd Data-Warehouse-Konzept (DE-588)4406462-7 gnd Betriebliches Informationssystem (DE-588)4069386-7 gnd |
subject_GND | (DE-588)4588307-5 (DE-588)4202171-6 (DE-588)4428654-5 (DE-588)4406462-7 (DE-588)4069386-7 (DE-588)1071861417 |
title | Business Intelligence 6th European Summer School, EBISS 2016, Tours, France, July 3-8, 2016, Tutorial Lectures |
title_auth | Business Intelligence 6th European Summer School, EBISS 2016, Tours, France, July 3-8, 2016, Tutorial Lectures |
title_exact_search | Business Intelligence 6th European Summer School, EBISS 2016, Tours, France, July 3-8, 2016, Tutorial Lectures |
title_exact_search_txtP | Business Intelligence 6th European Summer School, EBISS 2016, Tours, France, July 3-8, 2016, Tutorial Lectures |
title_full | Business Intelligence 6th European Summer School, EBISS 2016, Tours, France, July 3-8, 2016, Tutorial Lectures |
title_fullStr | Business Intelligence 6th European Summer School, EBISS 2016, Tours, France, July 3-8, 2016, Tutorial Lectures |
title_full_unstemmed | Business Intelligence 6th European Summer School, EBISS 2016, Tours, France, July 3-8, 2016, Tutorial Lectures |
title_short | Business Intelligence |
title_sort | business intelligence 6th european summer school ebiss 2016 tours france july 3 8 2016 tutorial lectures |
title_sub | 6th European Summer School, EBISS 2016, Tours, France, July 3-8, 2016, Tutorial Lectures |
topic | Business-Data processing-Congresses Business Intelligence (DE-588)4588307-5 gnd Entscheidungsunterstützung (DE-588)4202171-6 gnd Data Mining (DE-588)4428654-5 gnd Data-Warehouse-Konzept (DE-588)4406462-7 gnd Betriebliches Informationssystem (DE-588)4069386-7 gnd |
topic_facet | Business-Data processing-Congresses Business Intelligence Entscheidungsunterstützung Data Mining Data-Warehouse-Konzept Betriebliches Informationssystem Konferenzschrift 2016 Tours |
work_keys_str_mv | AT marcelpatrick businessintelligence6theuropeansummerschoolebiss2016toursfrancejuly382016tutoriallectures AT zimanyiesteban businessintelligence6theuropeansummerschoolebiss2016toursfrancejuly382016tutoriallectures |