Optimization of the Fuel Cell Renewable Hybrid Power Systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing AG
2020
|
Schriftenreihe: | Green Energy and Technology Ser
|
Schlagworte: | |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (350 pages) |
ISBN: | 9783030402419 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047693224 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220119s2020 |||| o||u| ||||||eng d | ||
020 | |a 9783030402419 |9 978-3-030-40241-9 | ||
035 | |a (ZDB-30-PQE)EBC6109567 | ||
035 | |a (ZDB-30-PAD)EBC6109567 | ||
035 | |a (ZDB-89-EBL)EBL6109567 | ||
035 | |a (OCoLC)1156949173 | ||
035 | |a (DE-599)BVBBV047693224 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 333.79399999999998 | |
100 | 1 | |a Bizon, Nicu |e Verfasser |4 aut | |
245 | 1 | 0 | |a Optimization of the Fuel Cell Renewable Hybrid Power Systems |
264 | 1 | |a Cham |b Springer International Publishing AG |c 2020 | |
264 | 4 | |c ©2020 | |
300 | |a 1 online resource (350 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Green Energy and Technology Ser | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Foreword -- Preface -- Contents -- Abbreviations -- 1 Introduction -- 1.1 Sustainable Energy System Development Using Renewable Energy Sources and Hydrogen Infrastructure -- 1.2 Proton Exchange Membrane Fuel Cell System -- 1.3 Hybrid Power Systems -- 1.4 Research Directions in Hybrid Power Systems -- 1.5 Conclusion -- References -- 2 Hybrid Power Systems -- 2.1 Introduction -- 2.2 Hybrid Power System Architecture -- 2.3 Energy Storage System (ESS) -- 2.3.1 Hybrid ESS Topologies -- 2.3.2 Modeling the Semi-active Hybrid ESS Topology -- 2.3.3 Energy Storage Devices Technologies -- 2.3.4 Power Storage Devices Technologies -- 2.4 Proton Exchange Membrane Fuel Cell (PEMFC) System -- 2.4.1 Modeling the PEMFC System -- 2.4.2 Modeling the Fueling Regulators -- 2.4.3 Modeling the Compressor -- 2.5 Modeling the Renewable Energy Sources -- 2.5.1 Modeling the Wind Turbine -- 2.5.2 Modeling the Photovoltaic Panel -- 2.5.3 Modeling of the Renewable Power Profile -- 2.6 Modeling the Load Demand on the DC Bus -- 2.7 Modeling the Power Converters -- 2.8 The Performance Indicators Hybrid Power System -- 2.8.1 Performance Indicators of the PEMFC System -- 2.8.2 Performance Indicators of the Renewable Energy Sources -- 2.9 Objectives and Directions of Research for the Hybrid Power System -- 2.10 Conclusion -- References -- 3 Optimization Algorithms and Energy Management Strategies -- 3.1 Introduction -- 3.2 Energy Management Strategies -- 3.2.1 Load-Based Strategy -- 3.2.2 Power-Based Strategy -- 3.3 Optimization Algorithms -- 3.3.1 Performance of the Global Maximum Power Point Tracking Algorithms -- 3.3.2 Performance of the Global Maximum Efficiency Point Tracking Algorithms -- 3.3.3 Fuel Economy Algorithms -- 3.4 Fuel Economy Strategy Using Switching of the Fueling Regulators -- 3.4.1 Design for Fuel Economy -- 3.4.2 Fuel Economy -- 3.4.3 Discussion | |
505 | 8 | |a 3.5 Strategy to Mitigate Load Impulses and Low Frequency Power Ripples -- 3.5.1 Strategies Air-PFW and Fuel-PFW -- 3.5.2 HSS Design -- 3.5.3 HSS Control -- 3.5.4 HSS Behavior -- 3.6 Conclusion -- References -- 4 Global Extremum Seeking Algorithms -- 4.1 Introduction -- 4.2 Perturbed-Based Extremum Seeking Control -- 4.2.1 PESC Algorithms Designed for Global Search -- 4.2.2 Derivative-Based PESC Scheme for Global Search -- 4.2.3 Global PESC Scheme Based on Two Band-Pass Filters -- 4.3 Stability Analysis of the GaPESCbpf Scheme -- 4.4 Comparative Analysis of the Schemes GaPESC and GaPESCd -- 4.4.1 Modeling the GaPESC Scheme -- 4.4.2 Stability Model of the GaPESC Scheme -- 4.5 The Search Gradient Estimation -- 4.5.1 Case of the 1-Dimension (1D) Pattern -- 4.5.2 Case of the 2-Dimensions (2D) Pattern -- 4.6 Designing the GaPESC Scheme -- 4.6.1 Case of a Nonlinear System Modeled by a Multimodal Function -- 4.6.2 Case of a Nonlinear System with a Fast Dynamic Part -- 4.6.3 Case of a Nonlinear System with a Slow Dynamic Part -- 4.7 Performance Indicators -- 4.8 Case Studies for GaPESC Performance Evaluation -- 4.8.1 PV Hybrid Power System -- 4.8.2 WT Hybrid Power System -- 4.8.3 FC Hybrid Power System -- 4.8.4 GMPP Search on Different Multimodal Patterns -- 4.9 Searching of Local Extreme Based on the GaPESC Scheme -- 4.9.1 Modeling for Local Search -- 4.9.2 Designing to Search for Local Maximums -- 4.10 Conclusion -- References -- 5 Fuel Cell Net Power Maximization Strategies -- 5.1 Introduction -- 5.2 FC Net Power Control Strategies Based on Load-Following Mode -- 5.3 Behavior of the FC System Under Control Strategies Based on Load-Following Mode -- 5.4 Improve FC Net Power Through the ESC-Based Control of the Air Regulator -- 5.5 Improve FC Net Power Through the ESC-Based Control of Both the Air Regulator and the FC Current | |
505 | 8 | |a 5.6 Improve FC Net Power Through the ESC-Based Control of Both the Fuel Regulator and the FC Current -- 5.7 Performance Analysis of the FC Power Control Strategies Based on Load-Following Mode -- 5.8 Behavior of the FC System Under Control Strategies S3, S5, and S6 -- 5.9 Conclusion -- References -- 6 Fuel Economy Maximization Strategies -- 6.1 Introduction -- 6.2 Fuel Cell Hybrid Power System -- 6.3 Fuel Economy Strategies -- 6.4 Fuel Economy Analysis -- 6.5 Fuel Economy Achieved with Different Tracking Algorithms: Global MPP Versus MPP Tracking -- 6.6 Fuel Economy Obtained in Searching with Different Slope Limits -- 6.7 Behavior of the FC System Under Fuel Economy Strategies -- 6.8 Hydrogen Mobility Demonstrator -- 6.9 Conclusion -- References -- 7 Energy Harvesting from the Partially Shaded Photovoltaic Systems -- 7.1 Introduction -- 7.2 MPPT Algorithms Selection Criteria -- 7.2.1 Performance Indicators -- 7.2.2 Evaluation Index Based on Four Criteria -- 7.2.3 Evaluation Index Based on Eight Criteria -- 7.2.4 Evaluation Index Based on New Criteria Class -- 7.3 The PV Characteristics -- 7.4 GaPESC-Based MPPT Algorithm Evaluation -- 7.4.1 Behavior and Performance of GMMP Searching and Tracking -- 7.4.2 The Search Robustness -- 7.5 Conclusions -- References -- 8 Mitigation of Energy Variability in Renewable/Fuel Cell Hybrid Power Systems -- 8.1 Introduction -- 8.2 Power-Based Control to Mitigate the Energy Variability on the DC Bus -- 8.3 Efficient Energy Strategies for Renewable/Fuel Cell Hybrid Power Systems Using the Power-Based Control -- 8.3.1 Performance Under Constant Load Demand -- 8.3.2 Performance Under Variable Load Demand Using Strategy S5 -- 8.3.3 Performance Under Variable Power from Renewable Energy Sources Using Strategy S5 -- 8.3.4 Performance Under Variable Load Demand Using Strategy S4 | |
505 | 8 | |a 8.3.5 Performance Under Variable Power from Renewable Energy Sources Using Strategy S4 -- 8.3.6 Discussion -- 8.4 Efficient Fuel Economy Strategies for Renewable/Fuel Cell Electrolyzer Hybrid Power Systems Using the Power-Based Control -- 8.4.1 Performance Under Variable Load Demand Using Strategies S5 and S6 -- 8.4.2 Mitigation of Energy Variability in RES/FC/ELZ Hybrid Power Systems -- 8.4.3 Performance Under Variable Power from Renewable Energy Sources -- 8.4.4 Discussion -- 8.5 Conclusion -- References -- Index | |
650 | 4 | |a Renewable energy sources | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Bizon, Nicu |t Optimization of the Fuel Cell Renewable Hybrid Power Systems |d Cham : Springer International Publishing AG,c2020 |z 9783030402402 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033077216 |
Datensatz im Suchindex
_version_ | 1804183179755520001 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Bizon, Nicu |
author_facet | Bizon, Nicu |
author_role | aut |
author_sort | Bizon, Nicu |
author_variant | n b nb |
building | Verbundindex |
bvnumber | BV047693224 |
collection | ZDB-30-PQE |
contents | Intro -- Foreword -- Preface -- Contents -- Abbreviations -- 1 Introduction -- 1.1 Sustainable Energy System Development Using Renewable Energy Sources and Hydrogen Infrastructure -- 1.2 Proton Exchange Membrane Fuel Cell System -- 1.3 Hybrid Power Systems -- 1.4 Research Directions in Hybrid Power Systems -- 1.5 Conclusion -- References -- 2 Hybrid Power Systems -- 2.1 Introduction -- 2.2 Hybrid Power System Architecture -- 2.3 Energy Storage System (ESS) -- 2.3.1 Hybrid ESS Topologies -- 2.3.2 Modeling the Semi-active Hybrid ESS Topology -- 2.3.3 Energy Storage Devices Technologies -- 2.3.4 Power Storage Devices Technologies -- 2.4 Proton Exchange Membrane Fuel Cell (PEMFC) System -- 2.4.1 Modeling the PEMFC System -- 2.4.2 Modeling the Fueling Regulators -- 2.4.3 Modeling the Compressor -- 2.5 Modeling the Renewable Energy Sources -- 2.5.1 Modeling the Wind Turbine -- 2.5.2 Modeling the Photovoltaic Panel -- 2.5.3 Modeling of the Renewable Power Profile -- 2.6 Modeling the Load Demand on the DC Bus -- 2.7 Modeling the Power Converters -- 2.8 The Performance Indicators Hybrid Power System -- 2.8.1 Performance Indicators of the PEMFC System -- 2.8.2 Performance Indicators of the Renewable Energy Sources -- 2.9 Objectives and Directions of Research for the Hybrid Power System -- 2.10 Conclusion -- References -- 3 Optimization Algorithms and Energy Management Strategies -- 3.1 Introduction -- 3.2 Energy Management Strategies -- 3.2.1 Load-Based Strategy -- 3.2.2 Power-Based Strategy -- 3.3 Optimization Algorithms -- 3.3.1 Performance of the Global Maximum Power Point Tracking Algorithms -- 3.3.2 Performance of the Global Maximum Efficiency Point Tracking Algorithms -- 3.3.3 Fuel Economy Algorithms -- 3.4 Fuel Economy Strategy Using Switching of the Fueling Regulators -- 3.4.1 Design for Fuel Economy -- 3.4.2 Fuel Economy -- 3.4.3 Discussion 3.5 Strategy to Mitigate Load Impulses and Low Frequency Power Ripples -- 3.5.1 Strategies Air-PFW and Fuel-PFW -- 3.5.2 HSS Design -- 3.5.3 HSS Control -- 3.5.4 HSS Behavior -- 3.6 Conclusion -- References -- 4 Global Extremum Seeking Algorithms -- 4.1 Introduction -- 4.2 Perturbed-Based Extremum Seeking Control -- 4.2.1 PESC Algorithms Designed for Global Search -- 4.2.2 Derivative-Based PESC Scheme for Global Search -- 4.2.3 Global PESC Scheme Based on Two Band-Pass Filters -- 4.3 Stability Analysis of the GaPESCbpf Scheme -- 4.4 Comparative Analysis of the Schemes GaPESC and GaPESCd -- 4.4.1 Modeling the GaPESC Scheme -- 4.4.2 Stability Model of the GaPESC Scheme -- 4.5 The Search Gradient Estimation -- 4.5.1 Case of the 1-Dimension (1D) Pattern -- 4.5.2 Case of the 2-Dimensions (2D) Pattern -- 4.6 Designing the GaPESC Scheme -- 4.6.1 Case of a Nonlinear System Modeled by a Multimodal Function -- 4.6.2 Case of a Nonlinear System with a Fast Dynamic Part -- 4.6.3 Case of a Nonlinear System with a Slow Dynamic Part -- 4.7 Performance Indicators -- 4.8 Case Studies for GaPESC Performance Evaluation -- 4.8.1 PV Hybrid Power System -- 4.8.2 WT Hybrid Power System -- 4.8.3 FC Hybrid Power System -- 4.8.4 GMPP Search on Different Multimodal Patterns -- 4.9 Searching of Local Extreme Based on the GaPESC Scheme -- 4.9.1 Modeling for Local Search -- 4.9.2 Designing to Search for Local Maximums -- 4.10 Conclusion -- References -- 5 Fuel Cell Net Power Maximization Strategies -- 5.1 Introduction -- 5.2 FC Net Power Control Strategies Based on Load-Following Mode -- 5.3 Behavior of the FC System Under Control Strategies Based on Load-Following Mode -- 5.4 Improve FC Net Power Through the ESC-Based Control of the Air Regulator -- 5.5 Improve FC Net Power Through the ESC-Based Control of Both the Air Regulator and the FC Current 5.6 Improve FC Net Power Through the ESC-Based Control of Both the Fuel Regulator and the FC Current -- 5.7 Performance Analysis of the FC Power Control Strategies Based on Load-Following Mode -- 5.8 Behavior of the FC System Under Control Strategies S3, S5, and S6 -- 5.9 Conclusion -- References -- 6 Fuel Economy Maximization Strategies -- 6.1 Introduction -- 6.2 Fuel Cell Hybrid Power System -- 6.3 Fuel Economy Strategies -- 6.4 Fuel Economy Analysis -- 6.5 Fuel Economy Achieved with Different Tracking Algorithms: Global MPP Versus MPP Tracking -- 6.6 Fuel Economy Obtained in Searching with Different Slope Limits -- 6.7 Behavior of the FC System Under Fuel Economy Strategies -- 6.8 Hydrogen Mobility Demonstrator -- 6.9 Conclusion -- References -- 7 Energy Harvesting from the Partially Shaded Photovoltaic Systems -- 7.1 Introduction -- 7.2 MPPT Algorithms Selection Criteria -- 7.2.1 Performance Indicators -- 7.2.2 Evaluation Index Based on Four Criteria -- 7.2.3 Evaluation Index Based on Eight Criteria -- 7.2.4 Evaluation Index Based on New Criteria Class -- 7.3 The PV Characteristics -- 7.4 GaPESC-Based MPPT Algorithm Evaluation -- 7.4.1 Behavior and Performance of GMMP Searching and Tracking -- 7.4.2 The Search Robustness -- 7.5 Conclusions -- References -- 8 Mitigation of Energy Variability in Renewable/Fuel Cell Hybrid Power Systems -- 8.1 Introduction -- 8.2 Power-Based Control to Mitigate the Energy Variability on the DC Bus -- 8.3 Efficient Energy Strategies for Renewable/Fuel Cell Hybrid Power Systems Using the Power-Based Control -- 8.3.1 Performance Under Constant Load Demand -- 8.3.2 Performance Under Variable Load Demand Using Strategy S5 -- 8.3.3 Performance Under Variable Power from Renewable Energy Sources Using Strategy S5 -- 8.3.4 Performance Under Variable Load Demand Using Strategy S4 8.3.5 Performance Under Variable Power from Renewable Energy Sources Using Strategy S4 -- 8.3.6 Discussion -- 8.4 Efficient Fuel Economy Strategies for Renewable/Fuel Cell Electrolyzer Hybrid Power Systems Using the Power-Based Control -- 8.4.1 Performance Under Variable Load Demand Using Strategies S5 and S6 -- 8.4.2 Mitigation of Energy Variability in RES/FC/ELZ Hybrid Power Systems -- 8.4.3 Performance Under Variable Power from Renewable Energy Sources -- 8.4.4 Discussion -- 8.5 Conclusion -- References -- Index |
ctrlnum | (ZDB-30-PQE)EBC6109567 (ZDB-30-PAD)EBC6109567 (ZDB-89-EBL)EBL6109567 (OCoLC)1156949173 (DE-599)BVBBV047693224 |
dewey-full | 333.79399999999998 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 333 - Economics of land and energy |
dewey-raw | 333.79399999999998 |
dewey-search | 333.79399999999998 |
dewey-sort | 3333.79399999999998 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07559nmm a2200409zc 4500</leader><controlfield tag="001">BV047693224</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220119s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030402419</subfield><subfield code="9">978-3-030-40241-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6109567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6109567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6109567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1156949173</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047693224</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">333.79399999999998</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bizon, Nicu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of the Fuel Cell Renewable Hybrid Power Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing AG</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (350 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Green Energy and Technology Ser</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Foreword -- Preface -- Contents -- Abbreviations -- 1 Introduction -- 1.1 Sustainable Energy System Development Using Renewable Energy Sources and Hydrogen Infrastructure -- 1.2 Proton Exchange Membrane Fuel Cell System -- 1.3 Hybrid Power Systems -- 1.4 Research Directions in Hybrid Power Systems -- 1.5 Conclusion -- References -- 2 Hybrid Power Systems -- 2.1 Introduction -- 2.2 Hybrid Power System Architecture -- 2.3 Energy Storage System (ESS) -- 2.3.1 Hybrid ESS Topologies -- 2.3.2 Modeling the Semi-active Hybrid ESS Topology -- 2.3.3 Energy Storage Devices Technologies -- 2.3.4 Power Storage Devices Technologies -- 2.4 Proton Exchange Membrane Fuel Cell (PEMFC) System -- 2.4.1 Modeling the PEMFC System -- 2.4.2 Modeling the Fueling Regulators -- 2.4.3 Modeling the Compressor -- 2.5 Modeling the Renewable Energy Sources -- 2.5.1 Modeling the Wind Turbine -- 2.5.2 Modeling the Photovoltaic Panel -- 2.5.3 Modeling of the Renewable Power Profile -- 2.6 Modeling the Load Demand on the DC Bus -- 2.7 Modeling the Power Converters -- 2.8 The Performance Indicators Hybrid Power System -- 2.8.1 Performance Indicators of the PEMFC System -- 2.8.2 Performance Indicators of the Renewable Energy Sources -- 2.9 Objectives and Directions of Research for the Hybrid Power System -- 2.10 Conclusion -- References -- 3 Optimization Algorithms and Energy Management Strategies -- 3.1 Introduction -- 3.2 Energy Management Strategies -- 3.2.1 Load-Based Strategy -- 3.2.2 Power-Based Strategy -- 3.3 Optimization Algorithms -- 3.3.1 Performance of the Global Maximum Power Point Tracking Algorithms -- 3.3.2 Performance of the Global Maximum Efficiency Point Tracking Algorithms -- 3.3.3 Fuel Economy Algorithms -- 3.4 Fuel Economy Strategy Using Switching of the Fueling Regulators -- 3.4.1 Design for Fuel Economy -- 3.4.2 Fuel Economy -- 3.4.3 Discussion</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.5 Strategy to Mitigate Load Impulses and Low Frequency Power Ripples -- 3.5.1 Strategies Air-PFW and Fuel-PFW -- 3.5.2 HSS Design -- 3.5.3 HSS Control -- 3.5.4 HSS Behavior -- 3.6 Conclusion -- References -- 4 Global Extremum Seeking Algorithms -- 4.1 Introduction -- 4.2 Perturbed-Based Extremum Seeking Control -- 4.2.1 PESC Algorithms Designed for Global Search -- 4.2.2 Derivative-Based PESC Scheme for Global Search -- 4.2.3 Global PESC Scheme Based on Two Band-Pass Filters -- 4.3 Stability Analysis of the GaPESCbpf Scheme -- 4.4 Comparative Analysis of the Schemes GaPESC and GaPESCd -- 4.4.1 Modeling the GaPESC Scheme -- 4.4.2 Stability Model of the GaPESC Scheme -- 4.5 The Search Gradient Estimation -- 4.5.1 Case of the 1-Dimension (1D) Pattern -- 4.5.2 Case of the 2-Dimensions (2D) Pattern -- 4.6 Designing the GaPESC Scheme -- 4.6.1 Case of a Nonlinear System Modeled by a Multimodal Function -- 4.6.2 Case of a Nonlinear System with a Fast Dynamic Part -- 4.6.3 Case of a Nonlinear System with a Slow Dynamic Part -- 4.7 Performance Indicators -- 4.8 Case Studies for GaPESC Performance Evaluation -- 4.8.1 PV Hybrid Power System -- 4.8.2 WT Hybrid Power System -- 4.8.3 FC Hybrid Power System -- 4.8.4 GMPP Search on Different Multimodal Patterns -- 4.9 Searching of Local Extreme Based on the GaPESC Scheme -- 4.9.1 Modeling for Local Search -- 4.9.2 Designing to Search for Local Maximums -- 4.10 Conclusion -- References -- 5 Fuel Cell Net Power Maximization Strategies -- 5.1 Introduction -- 5.2 FC Net Power Control Strategies Based on Load-Following Mode -- 5.3 Behavior of the FC System Under Control Strategies Based on Load-Following Mode -- 5.4 Improve FC Net Power Through the ESC-Based Control of the Air Regulator -- 5.5 Improve FC Net Power Through the ESC-Based Control of Both the Air Regulator and the FC Current</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.6 Improve FC Net Power Through the ESC-Based Control of Both the Fuel Regulator and the FC Current -- 5.7 Performance Analysis of the FC Power Control Strategies Based on Load-Following Mode -- 5.8 Behavior of the FC System Under Control Strategies S3, S5, and S6 -- 5.9 Conclusion -- References -- 6 Fuel Economy Maximization Strategies -- 6.1 Introduction -- 6.2 Fuel Cell Hybrid Power System -- 6.3 Fuel Economy Strategies -- 6.4 Fuel Economy Analysis -- 6.5 Fuel Economy Achieved with Different Tracking Algorithms: Global MPP Versus MPP Tracking -- 6.6 Fuel Economy Obtained in Searching with Different Slope Limits -- 6.7 Behavior of the FC System Under Fuel Economy Strategies -- 6.8 Hydrogen Mobility Demonstrator -- 6.9 Conclusion -- References -- 7 Energy Harvesting from the Partially Shaded Photovoltaic Systems -- 7.1 Introduction -- 7.2 MPPT Algorithms Selection Criteria -- 7.2.1 Performance Indicators -- 7.2.2 Evaluation Index Based on Four Criteria -- 7.2.3 Evaluation Index Based on Eight Criteria -- 7.2.4 Evaluation Index Based on New Criteria Class -- 7.3 The PV Characteristics -- 7.4 GaPESC-Based MPPT Algorithm Evaluation -- 7.4.1 Behavior and Performance of GMMP Searching and Tracking -- 7.4.2 The Search Robustness -- 7.5 Conclusions -- References -- 8 Mitigation of Energy Variability in Renewable/Fuel Cell Hybrid Power Systems -- 8.1 Introduction -- 8.2 Power-Based Control to Mitigate the Energy Variability on the DC Bus -- 8.3 Efficient Energy Strategies for Renewable/Fuel Cell Hybrid Power Systems Using the Power-Based Control -- 8.3.1 Performance Under Constant Load Demand -- 8.3.2 Performance Under Variable Load Demand Using Strategy S5 -- 8.3.3 Performance Under Variable Power from Renewable Energy Sources Using Strategy S5 -- 8.3.4 Performance Under Variable Load Demand Using Strategy S4</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.3.5 Performance Under Variable Power from Renewable Energy Sources Using Strategy S4 -- 8.3.6 Discussion -- 8.4 Efficient Fuel Economy Strategies for Renewable/Fuel Cell Electrolyzer Hybrid Power Systems Using the Power-Based Control -- 8.4.1 Performance Under Variable Load Demand Using Strategies S5 and S6 -- 8.4.2 Mitigation of Energy Variability in RES/FC/ELZ Hybrid Power Systems -- 8.4.3 Performance Under Variable Power from Renewable Energy Sources -- 8.4.4 Discussion -- 8.5 Conclusion -- References -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Bizon, Nicu</subfield><subfield code="t">Optimization of the Fuel Cell Renewable Hybrid Power Systems</subfield><subfield code="d">Cham : Springer International Publishing AG,c2020</subfield><subfield code="z">9783030402402</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033077216</subfield></datafield></record></collection> |
id | DE-604.BV047693224 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:57:26Z |
indexdate | 2024-07-10T09:19:20Z |
institution | BVB |
isbn | 9783030402419 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033077216 |
oclc_num | 1156949173 |
open_access_boolean | |
physical | 1 online resource (350 pages) |
psigel | ZDB-30-PQE |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer International Publishing AG |
record_format | marc |
series2 | Green Energy and Technology Ser |
spelling | Bizon, Nicu Verfasser aut Optimization of the Fuel Cell Renewable Hybrid Power Systems Cham Springer International Publishing AG 2020 ©2020 1 online resource (350 pages) txt rdacontent c rdamedia cr rdacarrier Green Energy and Technology Ser Description based on publisher supplied metadata and other sources Intro -- Foreword -- Preface -- Contents -- Abbreviations -- 1 Introduction -- 1.1 Sustainable Energy System Development Using Renewable Energy Sources and Hydrogen Infrastructure -- 1.2 Proton Exchange Membrane Fuel Cell System -- 1.3 Hybrid Power Systems -- 1.4 Research Directions in Hybrid Power Systems -- 1.5 Conclusion -- References -- 2 Hybrid Power Systems -- 2.1 Introduction -- 2.2 Hybrid Power System Architecture -- 2.3 Energy Storage System (ESS) -- 2.3.1 Hybrid ESS Topologies -- 2.3.2 Modeling the Semi-active Hybrid ESS Topology -- 2.3.3 Energy Storage Devices Technologies -- 2.3.4 Power Storage Devices Technologies -- 2.4 Proton Exchange Membrane Fuel Cell (PEMFC) System -- 2.4.1 Modeling the PEMFC System -- 2.4.2 Modeling the Fueling Regulators -- 2.4.3 Modeling the Compressor -- 2.5 Modeling the Renewable Energy Sources -- 2.5.1 Modeling the Wind Turbine -- 2.5.2 Modeling the Photovoltaic Panel -- 2.5.3 Modeling of the Renewable Power Profile -- 2.6 Modeling the Load Demand on the DC Bus -- 2.7 Modeling the Power Converters -- 2.8 The Performance Indicators Hybrid Power System -- 2.8.1 Performance Indicators of the PEMFC System -- 2.8.2 Performance Indicators of the Renewable Energy Sources -- 2.9 Objectives and Directions of Research for the Hybrid Power System -- 2.10 Conclusion -- References -- 3 Optimization Algorithms and Energy Management Strategies -- 3.1 Introduction -- 3.2 Energy Management Strategies -- 3.2.1 Load-Based Strategy -- 3.2.2 Power-Based Strategy -- 3.3 Optimization Algorithms -- 3.3.1 Performance of the Global Maximum Power Point Tracking Algorithms -- 3.3.2 Performance of the Global Maximum Efficiency Point Tracking Algorithms -- 3.3.3 Fuel Economy Algorithms -- 3.4 Fuel Economy Strategy Using Switching of the Fueling Regulators -- 3.4.1 Design for Fuel Economy -- 3.4.2 Fuel Economy -- 3.4.3 Discussion 3.5 Strategy to Mitigate Load Impulses and Low Frequency Power Ripples -- 3.5.1 Strategies Air-PFW and Fuel-PFW -- 3.5.2 HSS Design -- 3.5.3 HSS Control -- 3.5.4 HSS Behavior -- 3.6 Conclusion -- References -- 4 Global Extremum Seeking Algorithms -- 4.1 Introduction -- 4.2 Perturbed-Based Extremum Seeking Control -- 4.2.1 PESC Algorithms Designed for Global Search -- 4.2.2 Derivative-Based PESC Scheme for Global Search -- 4.2.3 Global PESC Scheme Based on Two Band-Pass Filters -- 4.3 Stability Analysis of the GaPESCbpf Scheme -- 4.4 Comparative Analysis of the Schemes GaPESC and GaPESCd -- 4.4.1 Modeling the GaPESC Scheme -- 4.4.2 Stability Model of the GaPESC Scheme -- 4.5 The Search Gradient Estimation -- 4.5.1 Case of the 1-Dimension (1D) Pattern -- 4.5.2 Case of the 2-Dimensions (2D) Pattern -- 4.6 Designing the GaPESC Scheme -- 4.6.1 Case of a Nonlinear System Modeled by a Multimodal Function -- 4.6.2 Case of a Nonlinear System with a Fast Dynamic Part -- 4.6.3 Case of a Nonlinear System with a Slow Dynamic Part -- 4.7 Performance Indicators -- 4.8 Case Studies for GaPESC Performance Evaluation -- 4.8.1 PV Hybrid Power System -- 4.8.2 WT Hybrid Power System -- 4.8.3 FC Hybrid Power System -- 4.8.4 GMPP Search on Different Multimodal Patterns -- 4.9 Searching of Local Extreme Based on the GaPESC Scheme -- 4.9.1 Modeling for Local Search -- 4.9.2 Designing to Search for Local Maximums -- 4.10 Conclusion -- References -- 5 Fuel Cell Net Power Maximization Strategies -- 5.1 Introduction -- 5.2 FC Net Power Control Strategies Based on Load-Following Mode -- 5.3 Behavior of the FC System Under Control Strategies Based on Load-Following Mode -- 5.4 Improve FC Net Power Through the ESC-Based Control of the Air Regulator -- 5.5 Improve FC Net Power Through the ESC-Based Control of Both the Air Regulator and the FC Current 5.6 Improve FC Net Power Through the ESC-Based Control of Both the Fuel Regulator and the FC Current -- 5.7 Performance Analysis of the FC Power Control Strategies Based on Load-Following Mode -- 5.8 Behavior of the FC System Under Control Strategies S3, S5, and S6 -- 5.9 Conclusion -- References -- 6 Fuel Economy Maximization Strategies -- 6.1 Introduction -- 6.2 Fuel Cell Hybrid Power System -- 6.3 Fuel Economy Strategies -- 6.4 Fuel Economy Analysis -- 6.5 Fuel Economy Achieved with Different Tracking Algorithms: Global MPP Versus MPP Tracking -- 6.6 Fuel Economy Obtained in Searching with Different Slope Limits -- 6.7 Behavior of the FC System Under Fuel Economy Strategies -- 6.8 Hydrogen Mobility Demonstrator -- 6.9 Conclusion -- References -- 7 Energy Harvesting from the Partially Shaded Photovoltaic Systems -- 7.1 Introduction -- 7.2 MPPT Algorithms Selection Criteria -- 7.2.1 Performance Indicators -- 7.2.2 Evaluation Index Based on Four Criteria -- 7.2.3 Evaluation Index Based on Eight Criteria -- 7.2.4 Evaluation Index Based on New Criteria Class -- 7.3 The PV Characteristics -- 7.4 GaPESC-Based MPPT Algorithm Evaluation -- 7.4.1 Behavior and Performance of GMMP Searching and Tracking -- 7.4.2 The Search Robustness -- 7.5 Conclusions -- References -- 8 Mitigation of Energy Variability in Renewable/Fuel Cell Hybrid Power Systems -- 8.1 Introduction -- 8.2 Power-Based Control to Mitigate the Energy Variability on the DC Bus -- 8.3 Efficient Energy Strategies for Renewable/Fuel Cell Hybrid Power Systems Using the Power-Based Control -- 8.3.1 Performance Under Constant Load Demand -- 8.3.2 Performance Under Variable Load Demand Using Strategy S5 -- 8.3.3 Performance Under Variable Power from Renewable Energy Sources Using Strategy S5 -- 8.3.4 Performance Under Variable Load Demand Using Strategy S4 8.3.5 Performance Under Variable Power from Renewable Energy Sources Using Strategy S4 -- 8.3.6 Discussion -- 8.4 Efficient Fuel Economy Strategies for Renewable/Fuel Cell Electrolyzer Hybrid Power Systems Using the Power-Based Control -- 8.4.1 Performance Under Variable Load Demand Using Strategies S5 and S6 -- 8.4.2 Mitigation of Energy Variability in RES/FC/ELZ Hybrid Power Systems -- 8.4.3 Performance Under Variable Power from Renewable Energy Sources -- 8.4.4 Discussion -- 8.5 Conclusion -- References -- Index Renewable energy sources Erscheint auch als Druck-Ausgabe Bizon, Nicu Optimization of the Fuel Cell Renewable Hybrid Power Systems Cham : Springer International Publishing AG,c2020 9783030402402 |
spellingShingle | Bizon, Nicu Optimization of the Fuel Cell Renewable Hybrid Power Systems Intro -- Foreword -- Preface -- Contents -- Abbreviations -- 1 Introduction -- 1.1 Sustainable Energy System Development Using Renewable Energy Sources and Hydrogen Infrastructure -- 1.2 Proton Exchange Membrane Fuel Cell System -- 1.3 Hybrid Power Systems -- 1.4 Research Directions in Hybrid Power Systems -- 1.5 Conclusion -- References -- 2 Hybrid Power Systems -- 2.1 Introduction -- 2.2 Hybrid Power System Architecture -- 2.3 Energy Storage System (ESS) -- 2.3.1 Hybrid ESS Topologies -- 2.3.2 Modeling the Semi-active Hybrid ESS Topology -- 2.3.3 Energy Storage Devices Technologies -- 2.3.4 Power Storage Devices Technologies -- 2.4 Proton Exchange Membrane Fuel Cell (PEMFC) System -- 2.4.1 Modeling the PEMFC System -- 2.4.2 Modeling the Fueling Regulators -- 2.4.3 Modeling the Compressor -- 2.5 Modeling the Renewable Energy Sources -- 2.5.1 Modeling the Wind Turbine -- 2.5.2 Modeling the Photovoltaic Panel -- 2.5.3 Modeling of the Renewable Power Profile -- 2.6 Modeling the Load Demand on the DC Bus -- 2.7 Modeling the Power Converters -- 2.8 The Performance Indicators Hybrid Power System -- 2.8.1 Performance Indicators of the PEMFC System -- 2.8.2 Performance Indicators of the Renewable Energy Sources -- 2.9 Objectives and Directions of Research for the Hybrid Power System -- 2.10 Conclusion -- References -- 3 Optimization Algorithms and Energy Management Strategies -- 3.1 Introduction -- 3.2 Energy Management Strategies -- 3.2.1 Load-Based Strategy -- 3.2.2 Power-Based Strategy -- 3.3 Optimization Algorithms -- 3.3.1 Performance of the Global Maximum Power Point Tracking Algorithms -- 3.3.2 Performance of the Global Maximum Efficiency Point Tracking Algorithms -- 3.3.3 Fuel Economy Algorithms -- 3.4 Fuel Economy Strategy Using Switching of the Fueling Regulators -- 3.4.1 Design for Fuel Economy -- 3.4.2 Fuel Economy -- 3.4.3 Discussion 3.5 Strategy to Mitigate Load Impulses and Low Frequency Power Ripples -- 3.5.1 Strategies Air-PFW and Fuel-PFW -- 3.5.2 HSS Design -- 3.5.3 HSS Control -- 3.5.4 HSS Behavior -- 3.6 Conclusion -- References -- 4 Global Extremum Seeking Algorithms -- 4.1 Introduction -- 4.2 Perturbed-Based Extremum Seeking Control -- 4.2.1 PESC Algorithms Designed for Global Search -- 4.2.2 Derivative-Based PESC Scheme for Global Search -- 4.2.3 Global PESC Scheme Based on Two Band-Pass Filters -- 4.3 Stability Analysis of the GaPESCbpf Scheme -- 4.4 Comparative Analysis of the Schemes GaPESC and GaPESCd -- 4.4.1 Modeling the GaPESC Scheme -- 4.4.2 Stability Model of the GaPESC Scheme -- 4.5 The Search Gradient Estimation -- 4.5.1 Case of the 1-Dimension (1D) Pattern -- 4.5.2 Case of the 2-Dimensions (2D) Pattern -- 4.6 Designing the GaPESC Scheme -- 4.6.1 Case of a Nonlinear System Modeled by a Multimodal Function -- 4.6.2 Case of a Nonlinear System with a Fast Dynamic Part -- 4.6.3 Case of a Nonlinear System with a Slow Dynamic Part -- 4.7 Performance Indicators -- 4.8 Case Studies for GaPESC Performance Evaluation -- 4.8.1 PV Hybrid Power System -- 4.8.2 WT Hybrid Power System -- 4.8.3 FC Hybrid Power System -- 4.8.4 GMPP Search on Different Multimodal Patterns -- 4.9 Searching of Local Extreme Based on the GaPESC Scheme -- 4.9.1 Modeling for Local Search -- 4.9.2 Designing to Search for Local Maximums -- 4.10 Conclusion -- References -- 5 Fuel Cell Net Power Maximization Strategies -- 5.1 Introduction -- 5.2 FC Net Power Control Strategies Based on Load-Following Mode -- 5.3 Behavior of the FC System Under Control Strategies Based on Load-Following Mode -- 5.4 Improve FC Net Power Through the ESC-Based Control of the Air Regulator -- 5.5 Improve FC Net Power Through the ESC-Based Control of Both the Air Regulator and the FC Current 5.6 Improve FC Net Power Through the ESC-Based Control of Both the Fuel Regulator and the FC Current -- 5.7 Performance Analysis of the FC Power Control Strategies Based on Load-Following Mode -- 5.8 Behavior of the FC System Under Control Strategies S3, S5, and S6 -- 5.9 Conclusion -- References -- 6 Fuel Economy Maximization Strategies -- 6.1 Introduction -- 6.2 Fuel Cell Hybrid Power System -- 6.3 Fuel Economy Strategies -- 6.4 Fuel Economy Analysis -- 6.5 Fuel Economy Achieved with Different Tracking Algorithms: Global MPP Versus MPP Tracking -- 6.6 Fuel Economy Obtained in Searching with Different Slope Limits -- 6.7 Behavior of the FC System Under Fuel Economy Strategies -- 6.8 Hydrogen Mobility Demonstrator -- 6.9 Conclusion -- References -- 7 Energy Harvesting from the Partially Shaded Photovoltaic Systems -- 7.1 Introduction -- 7.2 MPPT Algorithms Selection Criteria -- 7.2.1 Performance Indicators -- 7.2.2 Evaluation Index Based on Four Criteria -- 7.2.3 Evaluation Index Based on Eight Criteria -- 7.2.4 Evaluation Index Based on New Criteria Class -- 7.3 The PV Characteristics -- 7.4 GaPESC-Based MPPT Algorithm Evaluation -- 7.4.1 Behavior and Performance of GMMP Searching and Tracking -- 7.4.2 The Search Robustness -- 7.5 Conclusions -- References -- 8 Mitigation of Energy Variability in Renewable/Fuel Cell Hybrid Power Systems -- 8.1 Introduction -- 8.2 Power-Based Control to Mitigate the Energy Variability on the DC Bus -- 8.3 Efficient Energy Strategies for Renewable/Fuel Cell Hybrid Power Systems Using the Power-Based Control -- 8.3.1 Performance Under Constant Load Demand -- 8.3.2 Performance Under Variable Load Demand Using Strategy S5 -- 8.3.3 Performance Under Variable Power from Renewable Energy Sources Using Strategy S5 -- 8.3.4 Performance Under Variable Load Demand Using Strategy S4 8.3.5 Performance Under Variable Power from Renewable Energy Sources Using Strategy S4 -- 8.3.6 Discussion -- 8.4 Efficient Fuel Economy Strategies for Renewable/Fuel Cell Electrolyzer Hybrid Power Systems Using the Power-Based Control -- 8.4.1 Performance Under Variable Load Demand Using Strategies S5 and S6 -- 8.4.2 Mitigation of Energy Variability in RES/FC/ELZ Hybrid Power Systems -- 8.4.3 Performance Under Variable Power from Renewable Energy Sources -- 8.4.4 Discussion -- 8.5 Conclusion -- References -- Index Renewable energy sources |
title | Optimization of the Fuel Cell Renewable Hybrid Power Systems |
title_auth | Optimization of the Fuel Cell Renewable Hybrid Power Systems |
title_exact_search | Optimization of the Fuel Cell Renewable Hybrid Power Systems |
title_exact_search_txtP | Optimization of the Fuel Cell Renewable Hybrid Power Systems |
title_full | Optimization of the Fuel Cell Renewable Hybrid Power Systems |
title_fullStr | Optimization of the Fuel Cell Renewable Hybrid Power Systems |
title_full_unstemmed | Optimization of the Fuel Cell Renewable Hybrid Power Systems |
title_short | Optimization of the Fuel Cell Renewable Hybrid Power Systems |
title_sort | optimization of the fuel cell renewable hybrid power systems |
topic | Renewable energy sources |
topic_facet | Renewable energy sources |
work_keys_str_mv | AT bizonnicu optimizationofthefuelcellrenewablehybridpowersystems |