Why AI/Data Science Projects Fail:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
San Rafael
Morgan & Claypool Publishers
2020
|
Schriftenreihe: | Synthesis Lectures on Computation and Analytics Ser
|
Online-Zugang: | BFP01 HWR01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (79 pages) |
ISBN: | 9781636390390 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047688962 | ||
003 | DE-604 | ||
005 | 20220213 | ||
007 | cr|uuu---uuuuu | ||
008 | 220118s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781636390390 |9 978-1-63639-039-0 | ||
035 | |a (ZDB-30-PQE)EBC6451459 | ||
035 | |a (ZDB-30-PAD)EBC6451459 | ||
035 | |a (ZDB-89-EBL)EBL6451459 | ||
035 | |a (OCoLC)1298742092 | ||
035 | |a (DE-599)BVBBV047688962 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s |a DE-525 | ||
100 | 1 | |a Weiner, Joyce |e Verfasser |4 aut | |
245 | 1 | 0 | |a Why AI/Data Science Projects Fail |
264 | 1 | |a San Rafael |b Morgan & Claypool Publishers |c 2020 | |
264 | 4 | |c ©2020 | |
300 | |a 1 online resource (79 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Synthesis Lectures on Computation and Analytics Ser | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Preface -- Introduction and Background -- Project Phases and Common Project Pitfalls -- 2.1 Tips for Managers -- Five Methods to Avoid Common Pitfalls -- 3.1 Ask Questions -- 3.2 Get Alignment -- 3.3 Keep It Simple -- 3.4 Leverage Explainability -- 3.5 Have the Conversation -- 3.6 Tips for Managers -- Define Phase -- 4.1 Project Charter -- 4.2 Supplier-Input-Process-Output-Customer (SIPOC) Analysis -- 4.3 Tips for Managers -- Making the Business Case: Assigning Value to Your Project -- 5.1 Data Analysis Projects -- 5.2 Automation Projects -- 5.3 Improving Business Processes -- 5.4 Data Mining Projects -- 5.5 Improved Data Science -- 5.6 Metrics to Dollar Conversion -- Acquisition and Exploration of Data Phase -- 6.1 Acquiring Data -- 6.2 Developing Data Collection Systems -- 6.3 Data Exploration -- 6.4 What Does the Customer Want to Know? -- 6.5 Preparing for a Report or Model -- 6.6 Tips for Managers -- Model-Building Phase -- 7.1 Keep it Simple -- 7.2 Repeatability -- 7.3 Leverage Explainability -- 7.4 Tips for Managers -- Interpret and communicate phase -- 8.1 Know Your Audience -- 8.2 Reports -- 8.3 Presentations -- 8.4 Models -- 8.5 Tips for Mangers -- Deployment Phase -- 9.1 Plan for Deployment from the Start -- 9.2 Documentation -- 9.3 Maintenance -- 9.4 Tips for Managers -- Summary of the Five Methods to Avoid Common Pitfalls -- 10.1 Ask Questions -- 10.2 Get Alignment -- 10.3 Keep It Simple -- 10.4 Leverage Explainability -- 10.5 Have the Conversation -- References -- Author Biography -- Table 1.1: Five project pitfalls -- Table 1.2: Alignment between data science project phases and Lean six sigma DMAIC framework -- Table 3.1: Connection between the methods to avoid pitfalls and the five project pitfalls -- Table 3.2: Questions to ask at retrospectives -- Table 4.1: Key components of a project charter | |
505 | 8 | |a Table 5.1: Deliverables and metrics for various types of data science projects -- Table 5.2: Example calculation for time saved -- Table 5.3: Types of waste with manufacturing and office examples -- Table 5.4: Common metrics and dollar conversion -- Table 8.1: Data science project types and typical final deliverables -- Table 8.2: Data visualization reading list -- Blank Page | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Weiner, Joyce |t Why AI/Data Science Projects Fail |d San Rafael : Morgan & Claypool Publishers,c2020 |z 9781636390406 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033072977 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/fh-potsdam/detail.action?docID=6451459 |l BFP01 |p ZDB-30-PQE |q BFP01_PDA_PQE |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6451459 |l HWR01 |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804183174490619904 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Weiner, Joyce |
author_facet | Weiner, Joyce |
author_role | aut |
author_sort | Weiner, Joyce |
author_variant | j w jw |
building | Verbundindex |
bvnumber | BV047688962 |
collection | ZDB-30-PQE |
contents | Intro -- Preface -- Introduction and Background -- Project Phases and Common Project Pitfalls -- 2.1 Tips for Managers -- Five Methods to Avoid Common Pitfalls -- 3.1 Ask Questions -- 3.2 Get Alignment -- 3.3 Keep It Simple -- 3.4 Leverage Explainability -- 3.5 Have the Conversation -- 3.6 Tips for Managers -- Define Phase -- 4.1 Project Charter -- 4.2 Supplier-Input-Process-Output-Customer (SIPOC) Analysis -- 4.3 Tips for Managers -- Making the Business Case: Assigning Value to Your Project -- 5.1 Data Analysis Projects -- 5.2 Automation Projects -- 5.3 Improving Business Processes -- 5.4 Data Mining Projects -- 5.5 Improved Data Science -- 5.6 Metrics to Dollar Conversion -- Acquisition and Exploration of Data Phase -- 6.1 Acquiring Data -- 6.2 Developing Data Collection Systems -- 6.3 Data Exploration -- 6.4 What Does the Customer Want to Know? -- 6.5 Preparing for a Report or Model -- 6.6 Tips for Managers -- Model-Building Phase -- 7.1 Keep it Simple -- 7.2 Repeatability -- 7.3 Leverage Explainability -- 7.4 Tips for Managers -- Interpret and communicate phase -- 8.1 Know Your Audience -- 8.2 Reports -- 8.3 Presentations -- 8.4 Models -- 8.5 Tips for Mangers -- Deployment Phase -- 9.1 Plan for Deployment from the Start -- 9.2 Documentation -- 9.3 Maintenance -- 9.4 Tips for Managers -- Summary of the Five Methods to Avoid Common Pitfalls -- 10.1 Ask Questions -- 10.2 Get Alignment -- 10.3 Keep It Simple -- 10.4 Leverage Explainability -- 10.5 Have the Conversation -- References -- Author Biography -- Table 1.1: Five project pitfalls -- Table 1.2: Alignment between data science project phases and Lean six sigma DMAIC framework -- Table 3.1: Connection between the methods to avoid pitfalls and the five project pitfalls -- Table 3.2: Questions to ask at retrospectives -- Table 4.1: Key components of a project charter Table 5.1: Deliverables and metrics for various types of data science projects -- Table 5.2: Example calculation for time saved -- Table 5.3: Types of waste with manufacturing and office examples -- Table 5.4: Common metrics and dollar conversion -- Table 8.1: Data science project types and typical final deliverables -- Table 8.2: Data visualization reading list -- Blank Page |
ctrlnum | (ZDB-30-PQE)EBC6451459 (ZDB-30-PAD)EBC6451459 (ZDB-89-EBL)EBL6451459 (OCoLC)1298742092 (DE-599)BVBBV047688962 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03804nmm a2200397zc 4500</leader><controlfield tag="001">BV047688962</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220213 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220118s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781636390390</subfield><subfield code="9">978-1-63639-039-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6451459</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6451459</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6451459</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1298742092</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047688962</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield><subfield code="a">DE-525</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weiner, Joyce</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Why AI/Data Science Projects Fail</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Rafael</subfield><subfield code="b">Morgan & Claypool Publishers</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (79 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Synthesis Lectures on Computation and Analytics Ser</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Preface -- Introduction and Background -- Project Phases and Common Project Pitfalls -- 2.1 Tips for Managers -- Five Methods to Avoid Common Pitfalls -- 3.1 Ask Questions -- 3.2 Get Alignment -- 3.3 Keep It Simple -- 3.4 Leverage Explainability -- 3.5 Have the Conversation -- 3.6 Tips for Managers -- Define Phase -- 4.1 Project Charter -- 4.2 Supplier-Input-Process-Output-Customer (SIPOC) Analysis -- 4.3 Tips for Managers -- Making the Business Case: Assigning Value to Your Project -- 5.1 Data Analysis Projects -- 5.2 Automation Projects -- 5.3 Improving Business Processes -- 5.4 Data Mining Projects -- 5.5 Improved Data Science -- 5.6 Metrics to Dollar Conversion -- Acquisition and Exploration of Data Phase -- 6.1 Acquiring Data -- 6.2 Developing Data Collection Systems -- 6.3 Data Exploration -- 6.4 What Does the Customer Want to Know? -- 6.5 Preparing for a Report or Model -- 6.6 Tips for Managers -- Model-Building Phase -- 7.1 Keep it Simple -- 7.2 Repeatability -- 7.3 Leverage Explainability -- 7.4 Tips for Managers -- Interpret and communicate phase -- 8.1 Know Your Audience -- 8.2 Reports -- 8.3 Presentations -- 8.4 Models -- 8.5 Tips for Mangers -- Deployment Phase -- 9.1 Plan for Deployment from the Start -- 9.2 Documentation -- 9.3 Maintenance -- 9.4 Tips for Managers -- Summary of the Five Methods to Avoid Common Pitfalls -- 10.1 Ask Questions -- 10.2 Get Alignment -- 10.3 Keep It Simple -- 10.4 Leverage Explainability -- 10.5 Have the Conversation -- References -- Author Biography -- Table 1.1: Five project pitfalls -- Table 1.2: Alignment between data science project phases and Lean six sigma DMAIC framework -- Table 3.1: Connection between the methods to avoid pitfalls and the five project pitfalls -- Table 3.2: Questions to ask at retrospectives -- Table 4.1: Key components of a project charter</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Table 5.1: Deliverables and metrics for various types of data science projects -- Table 5.2: Example calculation for time saved -- Table 5.3: Types of waste with manufacturing and office examples -- Table 5.4: Common metrics and dollar conversion -- Table 8.1: Data science project types and typical final deliverables -- Table 8.2: Data visualization reading list -- Blank Page</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Weiner, Joyce</subfield><subfield code="t">Why AI/Data Science Projects Fail</subfield><subfield code="d">San Rafael : Morgan & Claypool Publishers,c2020</subfield><subfield code="z">9781636390406</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033072977</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/fh-potsdam/detail.action?docID=6451459</subfield><subfield code="l">BFP01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">BFP01_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6451459</subfield><subfield code="l">HWR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047688962 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:57:01Z |
indexdate | 2024-07-10T09:19:15Z |
institution | BVB |
isbn | 9781636390390 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033072977 |
oclc_num | 1298742092 |
open_access_boolean | |
owner | DE-2070s DE-525 |
owner_facet | DE-2070s DE-525 |
physical | 1 online resource (79 pages) |
psigel | ZDB-30-PQE ZDB-30-PQE BFP01_PDA_PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Morgan & Claypool Publishers |
record_format | marc |
series2 | Synthesis Lectures on Computation and Analytics Ser |
spelling | Weiner, Joyce Verfasser aut Why AI/Data Science Projects Fail San Rafael Morgan & Claypool Publishers 2020 ©2020 1 online resource (79 pages) txt rdacontent c rdamedia cr rdacarrier Synthesis Lectures on Computation and Analytics Ser Description based on publisher supplied metadata and other sources Intro -- Preface -- Introduction and Background -- Project Phases and Common Project Pitfalls -- 2.1 Tips for Managers -- Five Methods to Avoid Common Pitfalls -- 3.1 Ask Questions -- 3.2 Get Alignment -- 3.3 Keep It Simple -- 3.4 Leverage Explainability -- 3.5 Have the Conversation -- 3.6 Tips for Managers -- Define Phase -- 4.1 Project Charter -- 4.2 Supplier-Input-Process-Output-Customer (SIPOC) Analysis -- 4.3 Tips for Managers -- Making the Business Case: Assigning Value to Your Project -- 5.1 Data Analysis Projects -- 5.2 Automation Projects -- 5.3 Improving Business Processes -- 5.4 Data Mining Projects -- 5.5 Improved Data Science -- 5.6 Metrics to Dollar Conversion -- Acquisition and Exploration of Data Phase -- 6.1 Acquiring Data -- 6.2 Developing Data Collection Systems -- 6.3 Data Exploration -- 6.4 What Does the Customer Want to Know? -- 6.5 Preparing for a Report or Model -- 6.6 Tips for Managers -- Model-Building Phase -- 7.1 Keep it Simple -- 7.2 Repeatability -- 7.3 Leverage Explainability -- 7.4 Tips for Managers -- Interpret and communicate phase -- 8.1 Know Your Audience -- 8.2 Reports -- 8.3 Presentations -- 8.4 Models -- 8.5 Tips for Mangers -- Deployment Phase -- 9.1 Plan for Deployment from the Start -- 9.2 Documentation -- 9.3 Maintenance -- 9.4 Tips for Managers -- Summary of the Five Methods to Avoid Common Pitfalls -- 10.1 Ask Questions -- 10.2 Get Alignment -- 10.3 Keep It Simple -- 10.4 Leverage Explainability -- 10.5 Have the Conversation -- References -- Author Biography -- Table 1.1: Five project pitfalls -- Table 1.2: Alignment between data science project phases and Lean six sigma DMAIC framework -- Table 3.1: Connection between the methods to avoid pitfalls and the five project pitfalls -- Table 3.2: Questions to ask at retrospectives -- Table 4.1: Key components of a project charter Table 5.1: Deliverables and metrics for various types of data science projects -- Table 5.2: Example calculation for time saved -- Table 5.3: Types of waste with manufacturing and office examples -- Table 5.4: Common metrics and dollar conversion -- Table 8.1: Data science project types and typical final deliverables -- Table 8.2: Data visualization reading list -- Blank Page Erscheint auch als Druck-Ausgabe Weiner, Joyce Why AI/Data Science Projects Fail San Rafael : Morgan & Claypool Publishers,c2020 9781636390406 |
spellingShingle | Weiner, Joyce Why AI/Data Science Projects Fail Intro -- Preface -- Introduction and Background -- Project Phases and Common Project Pitfalls -- 2.1 Tips for Managers -- Five Methods to Avoid Common Pitfalls -- 3.1 Ask Questions -- 3.2 Get Alignment -- 3.3 Keep It Simple -- 3.4 Leverage Explainability -- 3.5 Have the Conversation -- 3.6 Tips for Managers -- Define Phase -- 4.1 Project Charter -- 4.2 Supplier-Input-Process-Output-Customer (SIPOC) Analysis -- 4.3 Tips for Managers -- Making the Business Case: Assigning Value to Your Project -- 5.1 Data Analysis Projects -- 5.2 Automation Projects -- 5.3 Improving Business Processes -- 5.4 Data Mining Projects -- 5.5 Improved Data Science -- 5.6 Metrics to Dollar Conversion -- Acquisition and Exploration of Data Phase -- 6.1 Acquiring Data -- 6.2 Developing Data Collection Systems -- 6.3 Data Exploration -- 6.4 What Does the Customer Want to Know? -- 6.5 Preparing for a Report or Model -- 6.6 Tips for Managers -- Model-Building Phase -- 7.1 Keep it Simple -- 7.2 Repeatability -- 7.3 Leverage Explainability -- 7.4 Tips for Managers -- Interpret and communicate phase -- 8.1 Know Your Audience -- 8.2 Reports -- 8.3 Presentations -- 8.4 Models -- 8.5 Tips for Mangers -- Deployment Phase -- 9.1 Plan for Deployment from the Start -- 9.2 Documentation -- 9.3 Maintenance -- 9.4 Tips for Managers -- Summary of the Five Methods to Avoid Common Pitfalls -- 10.1 Ask Questions -- 10.2 Get Alignment -- 10.3 Keep It Simple -- 10.4 Leverage Explainability -- 10.5 Have the Conversation -- References -- Author Biography -- Table 1.1: Five project pitfalls -- Table 1.2: Alignment between data science project phases and Lean six sigma DMAIC framework -- Table 3.1: Connection between the methods to avoid pitfalls and the five project pitfalls -- Table 3.2: Questions to ask at retrospectives -- Table 4.1: Key components of a project charter Table 5.1: Deliverables and metrics for various types of data science projects -- Table 5.2: Example calculation for time saved -- Table 5.3: Types of waste with manufacturing and office examples -- Table 5.4: Common metrics and dollar conversion -- Table 8.1: Data science project types and typical final deliverables -- Table 8.2: Data visualization reading list -- Blank Page |
title | Why AI/Data Science Projects Fail |
title_auth | Why AI/Data Science Projects Fail |
title_exact_search | Why AI/Data Science Projects Fail |
title_exact_search_txtP | Why AI/Data Science Projects Fail |
title_full | Why AI/Data Science Projects Fail |
title_fullStr | Why AI/Data Science Projects Fail |
title_full_unstemmed | Why AI/Data Science Projects Fail |
title_short | Why AI/Data Science Projects Fail |
title_sort | why ai data science projects fail |
work_keys_str_mv | AT weinerjoyce whyaidatascienceprojectsfail |