Business Intelligence and Analytics in Small and Medium Enterprises:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Milton
Taylor & Francis Group
2019
|
Schriftenreihe: | Manufacturing Design and Technology Ser
|
Online-Zugang: | HWR01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (166 pages) |
ISBN: | 9780429508745 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047687746 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220118s2019 |||| o||u| ||||||eng d | ||
020 | |a 9780429508745 |9 978-0-429-50874-5 | ||
035 | |a (ZDB-30-PQE)EBC5984932 | ||
035 | |a (ZDB-30-PAD)EBC5984932 | ||
035 | |a (ZDB-89-EBL)EBL5984932 | ||
035 | |a (OCoLC)1129206670 | ||
035 | |a (DE-599)BVBBV047687746 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
100 | 1 | |a Melo, Pedro Novo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Business Intelligence and Analytics in Small and Medium Enterprises |
264 | 1 | |a Milton |b Taylor & Francis Group |c 2019 | |
264 | 4 | |c ©2021 | |
300 | |a 1 online resource (166 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Manufacturing Design and Technology Ser | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Editors Biographies -- List of Contributors -- Chapter 1: Process Mining - Prerequisites and Their Applicability for Small and Mediumsized Enterprises -- CONTENTS -- 1.1. Introduction -- 1.2. What is Process Mining? -- 1.3. Prerequisites for Successful Process Mining -- 1.3.1. Organizational Prerequisites -- 1.3.2. Process-Related Prerequisites -- 1.3.3. IT-Related Prerequisites -- 1.3.4. Data-Related Prerequisites -- 1.3.5. Employee-Related Prerequisites -- 1.3.6. Legal Requirements -- 1.3.7. Means and Resources -- 1.4. Process Mining in SME - Two Case Studies -- 1.4.1. Is Process Mining a Suitable Technology for SMEs? -- 1.4.2. Are the Seven Identified Prerequisites for Process Mining Being Fulfilled in the Respective SME? -- 1.5. Concluding Remarks -- Notes -- References -- Chapter 2: Using Customer Analytics to Succeed: The Case of Mexican SMEs -- CONTENTS -- 2.1. Introduction -- 2.2. Business Intelligence and Analytics in SMEs -- 2.3. Small and Medium Enterprises in Mexico -- 2.4. Social Media Analytics Tools for Customer Engagement in Mexican SMEs -- 2.5. Digital Recommendation for SMEs: A Framework for Customer Analytics on Social Media -- 2.6. Challenges and Opportunities -- References -- Chapter 3: Data Management Software Solutions for Business Sustainability - An Overview -- CONTENTS -- 3.1. Introduction -- 3.2. Materials and Methods -- 3.3. Result and Discussions -- 3.3.1. DG, DM, and MDM Software Solutions -- 3.3.2. The Study Regarding the Use of Data Management Software Solutions by Romanian Companies -- 3.4. Conclusions -- References -- Chapter 4: A Paradigm Shift in Accounting and Auditing of Big Data -- CONTENTS -- 4.1. Introduction -- 4.2. Business Intelligence, Analytics and Big Data | |
505 | 8 | |a 4.3. The Opportunities of Big Data Analytics for the Accounting and Auditing Professions -- 4.4. The Case of SMEs -- 4.5. The Impact on Accounting Education -- 4.6. Conclusion -- Note -- References -- Chapter 5: Mobile Advertising Framework: Format, Location and Context -- CONTENTS -- 5.1. Introduction -- 5.2. Research Method -- 5.3. Findings -- 5.3.1. Location-Based Advertising (LBA) -- 5.3.2. SMS -- 5.3.3. In-app Advertising -- 5.3.4. Mobile Social Media and Search Engine Advertising -- 5.3.4.1. Mobile Search Engine Advertising -- 5.4. Privacy and Application of GDPR -- 5.5. Theoretical Implications -- 5.6. Practical Implications -- 5.7. Limitations and Future Research Directions -- 5.8. Conclusion -- References -- Chapter 6: Marketing Analytics: Why Measuring Web and Social Media Matters -- CONTENTS -- 6.1. Introduction: What You Can't Measure, Doesn't Exist -- 6.2. Setting Objectives and Kpis: The Smart Rule -- 6.3. Funnel Analytics: Conversion Funnel -- 6.4. Measuring -- 6.4.1. Web: Main Metrics with Web Analytics: Segments, Filters -- 6.4.1.1. e-Commerce Websites -- 6.4.2. Social Media: Main Metrics on Facebook, Twitter or Instagram -- 6.4.3. Newsletters -- 6.4.4. Mobile Apps -- 6.5. Analyzing and Reporting: What a Web Analytics and Social Media Report Should Analyze -- 6.6. Where Should the Efforts of Small and Medium Size Enterprises be Invested -- References -- Chapter 7: Managers' Perception of Business Intelligence Capability of SMEs in Turkey -- CONTENTS -- 7.1. Introduction -- 7.2. Need for Business Intelligence -- 7.3. The Future of Business Intelligence -- 7.4. The Challenges for Business Intelligence Practitioners -- 7.5. SME and BI Usage in Turkey -- 7.5.1. Research on Business Intelligence Adoption of SMEs in Turkey -- 7.6. Conclusion and Discussion -- References -- Chapter 8: The Development of Loyalty Programs in the Retail Sector | |
505 | 8 | |a CONTENTS -- 8.1. Introduction -- 8.2. Literature Review -- 8.2.1. Loyalty Programs -- 8.2.2. Traditional Loyalty Programs -- 8.2.3. Loyalty Programs and its Technology Use -- 8.3. The Loyalty Program Lifecycle: Design, Implementation and Assessment -- 8.3.1. The Design Stage -- 8.3.2. The Implementation Stage -- 8.3.2.1. Communication -- 8.3.2.2. Communication Style -- 8.3.3. Firm-Created Communication -- 8.3.4. Customer-Created Communication -- 8.3.4.1. Customer Support -- 8.3.4.2. Privacy Matters -- 8.3.4.3. Location Based Services -- 8.3.4.4. Automation and Efficiency -- 8.3.5. The Performance Assessment Stage -- 8.4. Discussion -- References -- Chapter 9: Business Intelligence, Big Data and Data Governance -- CONTENTS -- 9.1. Introduction -- 9.2. From Business Intelligence to Big Data and Data Science -- 9.2.1. Evolution and Applications -- 9.2.2. Challenges -- 9.3. Business Intelligence Maturity Assessment -- 9.3.1. Maturity Assessment -- 9.3.2. Maturity Assessment and Business Intelligence -- 9.3.3. Data Governance, BI Maturity Model and Small Business -- 9.4. Data Governance -- 9.4.1. Data Governance Maturity Assessment -- 9.4.2. Data Governance Program Approach -- 9.4.3. Tools -- 9.4.4. Data Governance Program Progress and Impact Analysis -- 9.5. Conclusions -- References -- Index | |
700 | 1 | |a Machado, Carolina |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Melo, Pedro Novo |t Business Intelligence and Analytics in Small and Medium Enterprises |d Milton : Taylor & Francis Group,c2019 |z 9780367173883 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033071762 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=5984932 |l HWR01 |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804183173751373824 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Melo, Pedro Novo |
author_facet | Melo, Pedro Novo |
author_role | aut |
author_sort | Melo, Pedro Novo |
author_variant | p n m pn pnm |
building | Verbundindex |
bvnumber | BV047687746 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Editors Biographies -- List of Contributors -- Chapter 1: Process Mining - Prerequisites and Their Applicability for Small and Mediumsized Enterprises -- CONTENTS -- 1.1. Introduction -- 1.2. What is Process Mining? -- 1.3. Prerequisites for Successful Process Mining -- 1.3.1. Organizational Prerequisites -- 1.3.2. Process-Related Prerequisites -- 1.3.3. IT-Related Prerequisites -- 1.3.4. Data-Related Prerequisites -- 1.3.5. Employee-Related Prerequisites -- 1.3.6. Legal Requirements -- 1.3.7. Means and Resources -- 1.4. Process Mining in SME - Two Case Studies -- 1.4.1. Is Process Mining a Suitable Technology for SMEs? -- 1.4.2. Are the Seven Identified Prerequisites for Process Mining Being Fulfilled in the Respective SME? -- 1.5. Concluding Remarks -- Notes -- References -- Chapter 2: Using Customer Analytics to Succeed: The Case of Mexican SMEs -- CONTENTS -- 2.1. Introduction -- 2.2. Business Intelligence and Analytics in SMEs -- 2.3. Small and Medium Enterprises in Mexico -- 2.4. Social Media Analytics Tools for Customer Engagement in Mexican SMEs -- 2.5. Digital Recommendation for SMEs: A Framework for Customer Analytics on Social Media -- 2.6. Challenges and Opportunities -- References -- Chapter 3: Data Management Software Solutions for Business Sustainability - An Overview -- CONTENTS -- 3.1. Introduction -- 3.2. Materials and Methods -- 3.3. Result and Discussions -- 3.3.1. DG, DM, and MDM Software Solutions -- 3.3.2. The Study Regarding the Use of Data Management Software Solutions by Romanian Companies -- 3.4. Conclusions -- References -- Chapter 4: A Paradigm Shift in Accounting and Auditing of Big Data -- CONTENTS -- 4.1. Introduction -- 4.2. Business Intelligence, Analytics and Big Data 4.3. The Opportunities of Big Data Analytics for the Accounting and Auditing Professions -- 4.4. The Case of SMEs -- 4.5. The Impact on Accounting Education -- 4.6. Conclusion -- Note -- References -- Chapter 5: Mobile Advertising Framework: Format, Location and Context -- CONTENTS -- 5.1. Introduction -- 5.2. Research Method -- 5.3. Findings -- 5.3.1. Location-Based Advertising (LBA) -- 5.3.2. SMS -- 5.3.3. In-app Advertising -- 5.3.4. Mobile Social Media and Search Engine Advertising -- 5.3.4.1. Mobile Search Engine Advertising -- 5.4. Privacy and Application of GDPR -- 5.5. Theoretical Implications -- 5.6. Practical Implications -- 5.7. Limitations and Future Research Directions -- 5.8. Conclusion -- References -- Chapter 6: Marketing Analytics: Why Measuring Web and Social Media Matters -- CONTENTS -- 6.1. Introduction: What You Can't Measure, Doesn't Exist -- 6.2. Setting Objectives and Kpis: The Smart Rule -- 6.3. Funnel Analytics: Conversion Funnel -- 6.4. Measuring -- 6.4.1. Web: Main Metrics with Web Analytics: Segments, Filters -- 6.4.1.1. e-Commerce Websites -- 6.4.2. Social Media: Main Metrics on Facebook, Twitter or Instagram -- 6.4.3. Newsletters -- 6.4.4. Mobile Apps -- 6.5. Analyzing and Reporting: What a Web Analytics and Social Media Report Should Analyze -- 6.6. Where Should the Efforts of Small and Medium Size Enterprises be Invested -- References -- Chapter 7: Managers' Perception of Business Intelligence Capability of SMEs in Turkey -- CONTENTS -- 7.1. Introduction -- 7.2. Need for Business Intelligence -- 7.3. The Future of Business Intelligence -- 7.4. The Challenges for Business Intelligence Practitioners -- 7.5. SME and BI Usage in Turkey -- 7.5.1. Research on Business Intelligence Adoption of SMEs in Turkey -- 7.6. Conclusion and Discussion -- References -- Chapter 8: The Development of Loyalty Programs in the Retail Sector CONTENTS -- 8.1. Introduction -- 8.2. Literature Review -- 8.2.1. Loyalty Programs -- 8.2.2. Traditional Loyalty Programs -- 8.2.3. Loyalty Programs and its Technology Use -- 8.3. The Loyalty Program Lifecycle: Design, Implementation and Assessment -- 8.3.1. The Design Stage -- 8.3.2. The Implementation Stage -- 8.3.2.1. Communication -- 8.3.2.2. Communication Style -- 8.3.3. Firm-Created Communication -- 8.3.4. Customer-Created Communication -- 8.3.4.1. Customer Support -- 8.3.4.2. Privacy Matters -- 8.3.4.3. Location Based Services -- 8.3.4.4. Automation and Efficiency -- 8.3.5. The Performance Assessment Stage -- 8.4. Discussion -- References -- Chapter 9: Business Intelligence, Big Data and Data Governance -- CONTENTS -- 9.1. Introduction -- 9.2. From Business Intelligence to Big Data and Data Science -- 9.2.1. Evolution and Applications -- 9.2.2. Challenges -- 9.3. Business Intelligence Maturity Assessment -- 9.3.1. Maturity Assessment -- 9.3.2. Maturity Assessment and Business Intelligence -- 9.3.3. Data Governance, BI Maturity Model and Small Business -- 9.4. Data Governance -- 9.4.1. Data Governance Maturity Assessment -- 9.4.2. Data Governance Program Approach -- 9.4.3. Tools -- 9.4.4. Data Governance Program Progress and Impact Analysis -- 9.5. Conclusions -- References -- Index |
ctrlnum | (ZDB-30-PQE)EBC5984932 (ZDB-30-PAD)EBC5984932 (ZDB-89-EBL)EBL5984932 (OCoLC)1129206670 (DE-599)BVBBV047687746 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06506nmm a2200409zc 4500</leader><controlfield tag="001">BV047687746</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220118s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780429508745</subfield><subfield code="9">978-0-429-50874-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC5984932</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC5984932</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL5984932</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1129206670</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047687746</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Melo, Pedro Novo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Business Intelligence and Analytics in Small and Medium Enterprises</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Milton</subfield><subfield code="b">Taylor & Francis Group</subfield><subfield code="c">2019</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (166 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Manufacturing Design and Technology Ser</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Editors Biographies -- List of Contributors -- Chapter 1: Process Mining - Prerequisites and Their Applicability for Small and Mediumsized Enterprises -- CONTENTS -- 1.1. Introduction -- 1.2. What is Process Mining? -- 1.3. Prerequisites for Successful Process Mining -- 1.3.1. Organizational Prerequisites -- 1.3.2. Process-Related Prerequisites -- 1.3.3. IT-Related Prerequisites -- 1.3.4. Data-Related Prerequisites -- 1.3.5. Employee-Related Prerequisites -- 1.3.6. Legal Requirements -- 1.3.7. Means and Resources -- 1.4. Process Mining in SME - Two Case Studies -- 1.4.1. Is Process Mining a Suitable Technology for SMEs? -- 1.4.2. Are the Seven Identified Prerequisites for Process Mining Being Fulfilled in the Respective SME? -- 1.5. Concluding Remarks -- Notes -- References -- Chapter 2: Using Customer Analytics to Succeed: The Case of Mexican SMEs -- CONTENTS -- 2.1. Introduction -- 2.2. Business Intelligence and Analytics in SMEs -- 2.3. Small and Medium Enterprises in Mexico -- 2.4. Social Media Analytics Tools for Customer Engagement in Mexican SMEs -- 2.5. Digital Recommendation for SMEs: A Framework for Customer Analytics on Social Media -- 2.6. Challenges and Opportunities -- References -- Chapter 3: Data Management Software Solutions for Business Sustainability - An Overview -- CONTENTS -- 3.1. Introduction -- 3.2. Materials and Methods -- 3.3. Result and Discussions -- 3.3.1. DG, DM, and MDM Software Solutions -- 3.3.2. The Study Regarding the Use of Data Management Software Solutions by Romanian Companies -- 3.4. Conclusions -- References -- Chapter 4: A Paradigm Shift in Accounting and Auditing of Big Data -- CONTENTS -- 4.1. Introduction -- 4.2. Business Intelligence, Analytics and Big Data</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3. The Opportunities of Big Data Analytics for the Accounting and Auditing Professions -- 4.4. The Case of SMEs -- 4.5. The Impact on Accounting Education -- 4.6. Conclusion -- Note -- References -- Chapter 5: Mobile Advertising Framework: Format, Location and Context -- CONTENTS -- 5.1. Introduction -- 5.2. Research Method -- 5.3. Findings -- 5.3.1. Location-Based Advertising (LBA) -- 5.3.2. SMS -- 5.3.3. In-app Advertising -- 5.3.4. Mobile Social Media and Search Engine Advertising -- 5.3.4.1. Mobile Search Engine Advertising -- 5.4. Privacy and Application of GDPR -- 5.5. Theoretical Implications -- 5.6. Practical Implications -- 5.7. Limitations and Future Research Directions -- 5.8. Conclusion -- References -- Chapter 6: Marketing Analytics: Why Measuring Web and Social Media Matters -- CONTENTS -- 6.1. Introduction: What You Can't Measure, Doesn't Exist -- 6.2. Setting Objectives and Kpis: The Smart Rule -- 6.3. Funnel Analytics: Conversion Funnel -- 6.4. Measuring -- 6.4.1. Web: Main Metrics with Web Analytics: Segments, Filters -- 6.4.1.1. e-Commerce Websites -- 6.4.2. Social Media: Main Metrics on Facebook, Twitter or Instagram -- 6.4.3. Newsletters -- 6.4.4. Mobile Apps -- 6.5. Analyzing and Reporting: What a Web Analytics and Social Media Report Should Analyze -- 6.6. Where Should the Efforts of Small and Medium Size Enterprises be Invested -- References -- Chapter 7: Managers' Perception of Business Intelligence Capability of SMEs in Turkey -- CONTENTS -- 7.1. Introduction -- 7.2. Need for Business Intelligence -- 7.3. The Future of Business Intelligence -- 7.4. The Challenges for Business Intelligence Practitioners -- 7.5. SME and BI Usage in Turkey -- 7.5.1. Research on Business Intelligence Adoption of SMEs in Turkey -- 7.6. Conclusion and Discussion -- References -- Chapter 8: The Development of Loyalty Programs in the Retail Sector</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">CONTENTS -- 8.1. Introduction -- 8.2. Literature Review -- 8.2.1. Loyalty Programs -- 8.2.2. Traditional Loyalty Programs -- 8.2.3. Loyalty Programs and its Technology Use -- 8.3. The Loyalty Program Lifecycle: Design, Implementation and Assessment -- 8.3.1. The Design Stage -- 8.3.2. The Implementation Stage -- 8.3.2.1. Communication -- 8.3.2.2. Communication Style -- 8.3.3. Firm-Created Communication -- 8.3.4. Customer-Created Communication -- 8.3.4.1. Customer Support -- 8.3.4.2. Privacy Matters -- 8.3.4.3. Location Based Services -- 8.3.4.4. Automation and Efficiency -- 8.3.5. The Performance Assessment Stage -- 8.4. Discussion -- References -- Chapter 9: Business Intelligence, Big Data and Data Governance -- CONTENTS -- 9.1. Introduction -- 9.2. From Business Intelligence to Big Data and Data Science -- 9.2.1. Evolution and Applications -- 9.2.2. Challenges -- 9.3. Business Intelligence Maturity Assessment -- 9.3.1. Maturity Assessment -- 9.3.2. Maturity Assessment and Business Intelligence -- 9.3.3. Data Governance, BI Maturity Model and Small Business -- 9.4. Data Governance -- 9.4.1. Data Governance Maturity Assessment -- 9.4.2. Data Governance Program Approach -- 9.4.3. Tools -- 9.4.4. Data Governance Program Progress and Impact Analysis -- 9.5. Conclusions -- References -- Index</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Machado, Carolina</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Melo, Pedro Novo</subfield><subfield code="t">Business Intelligence and Analytics in Small and Medium Enterprises</subfield><subfield code="d">Milton : Taylor & Francis Group,c2019</subfield><subfield code="z">9780367173883</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033071762</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=5984932</subfield><subfield code="l">HWR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047687746 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:57:00Z |
indexdate | 2024-07-10T09:19:14Z |
institution | BVB |
isbn | 9780429508745 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033071762 |
oclc_num | 1129206670 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 online resource (166 pages) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Taylor & Francis Group |
record_format | marc |
series2 | Manufacturing Design and Technology Ser |
spelling | Melo, Pedro Novo Verfasser aut Business Intelligence and Analytics in Small and Medium Enterprises Milton Taylor & Francis Group 2019 ©2021 1 online resource (166 pages) txt rdacontent c rdamedia cr rdacarrier Manufacturing Design and Technology Ser Description based on publisher supplied metadata and other sources Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Editors Biographies -- List of Contributors -- Chapter 1: Process Mining - Prerequisites and Their Applicability for Small and Mediumsized Enterprises -- CONTENTS -- 1.1. Introduction -- 1.2. What is Process Mining? -- 1.3. Prerequisites for Successful Process Mining -- 1.3.1. Organizational Prerequisites -- 1.3.2. Process-Related Prerequisites -- 1.3.3. IT-Related Prerequisites -- 1.3.4. Data-Related Prerequisites -- 1.3.5. Employee-Related Prerequisites -- 1.3.6. Legal Requirements -- 1.3.7. Means and Resources -- 1.4. Process Mining in SME - Two Case Studies -- 1.4.1. Is Process Mining a Suitable Technology for SMEs? -- 1.4.2. Are the Seven Identified Prerequisites for Process Mining Being Fulfilled in the Respective SME? -- 1.5. Concluding Remarks -- Notes -- References -- Chapter 2: Using Customer Analytics to Succeed: The Case of Mexican SMEs -- CONTENTS -- 2.1. Introduction -- 2.2. Business Intelligence and Analytics in SMEs -- 2.3. Small and Medium Enterprises in Mexico -- 2.4. Social Media Analytics Tools for Customer Engagement in Mexican SMEs -- 2.5. Digital Recommendation for SMEs: A Framework for Customer Analytics on Social Media -- 2.6. Challenges and Opportunities -- References -- Chapter 3: Data Management Software Solutions for Business Sustainability - An Overview -- CONTENTS -- 3.1. Introduction -- 3.2. Materials and Methods -- 3.3. Result and Discussions -- 3.3.1. DG, DM, and MDM Software Solutions -- 3.3.2. The Study Regarding the Use of Data Management Software Solutions by Romanian Companies -- 3.4. Conclusions -- References -- Chapter 4: A Paradigm Shift in Accounting and Auditing of Big Data -- CONTENTS -- 4.1. Introduction -- 4.2. Business Intelligence, Analytics and Big Data 4.3. The Opportunities of Big Data Analytics for the Accounting and Auditing Professions -- 4.4. The Case of SMEs -- 4.5. The Impact on Accounting Education -- 4.6. Conclusion -- Note -- References -- Chapter 5: Mobile Advertising Framework: Format, Location and Context -- CONTENTS -- 5.1. Introduction -- 5.2. Research Method -- 5.3. Findings -- 5.3.1. Location-Based Advertising (LBA) -- 5.3.2. SMS -- 5.3.3. In-app Advertising -- 5.3.4. Mobile Social Media and Search Engine Advertising -- 5.3.4.1. Mobile Search Engine Advertising -- 5.4. Privacy and Application of GDPR -- 5.5. Theoretical Implications -- 5.6. Practical Implications -- 5.7. Limitations and Future Research Directions -- 5.8. Conclusion -- References -- Chapter 6: Marketing Analytics: Why Measuring Web and Social Media Matters -- CONTENTS -- 6.1. Introduction: What You Can't Measure, Doesn't Exist -- 6.2. Setting Objectives and Kpis: The Smart Rule -- 6.3. Funnel Analytics: Conversion Funnel -- 6.4. Measuring -- 6.4.1. Web: Main Metrics with Web Analytics: Segments, Filters -- 6.4.1.1. e-Commerce Websites -- 6.4.2. Social Media: Main Metrics on Facebook, Twitter or Instagram -- 6.4.3. Newsletters -- 6.4.4. Mobile Apps -- 6.5. Analyzing and Reporting: What a Web Analytics and Social Media Report Should Analyze -- 6.6. Where Should the Efforts of Small and Medium Size Enterprises be Invested -- References -- Chapter 7: Managers' Perception of Business Intelligence Capability of SMEs in Turkey -- CONTENTS -- 7.1. Introduction -- 7.2. Need for Business Intelligence -- 7.3. The Future of Business Intelligence -- 7.4. The Challenges for Business Intelligence Practitioners -- 7.5. SME and BI Usage in Turkey -- 7.5.1. Research on Business Intelligence Adoption of SMEs in Turkey -- 7.6. Conclusion and Discussion -- References -- Chapter 8: The Development of Loyalty Programs in the Retail Sector CONTENTS -- 8.1. Introduction -- 8.2. Literature Review -- 8.2.1. Loyalty Programs -- 8.2.2. Traditional Loyalty Programs -- 8.2.3. Loyalty Programs and its Technology Use -- 8.3. The Loyalty Program Lifecycle: Design, Implementation and Assessment -- 8.3.1. The Design Stage -- 8.3.2. The Implementation Stage -- 8.3.2.1. Communication -- 8.3.2.2. Communication Style -- 8.3.3. Firm-Created Communication -- 8.3.4. Customer-Created Communication -- 8.3.4.1. Customer Support -- 8.3.4.2. Privacy Matters -- 8.3.4.3. Location Based Services -- 8.3.4.4. Automation and Efficiency -- 8.3.5. The Performance Assessment Stage -- 8.4. Discussion -- References -- Chapter 9: Business Intelligence, Big Data and Data Governance -- CONTENTS -- 9.1. Introduction -- 9.2. From Business Intelligence to Big Data and Data Science -- 9.2.1. Evolution and Applications -- 9.2.2. Challenges -- 9.3. Business Intelligence Maturity Assessment -- 9.3.1. Maturity Assessment -- 9.3.2. Maturity Assessment and Business Intelligence -- 9.3.3. Data Governance, BI Maturity Model and Small Business -- 9.4. Data Governance -- 9.4.1. Data Governance Maturity Assessment -- 9.4.2. Data Governance Program Approach -- 9.4.3. Tools -- 9.4.4. Data Governance Program Progress and Impact Analysis -- 9.5. Conclusions -- References -- Index Machado, Carolina Sonstige oth Erscheint auch als Druck-Ausgabe Melo, Pedro Novo Business Intelligence and Analytics in Small and Medium Enterprises Milton : Taylor & Francis Group,c2019 9780367173883 |
spellingShingle | Melo, Pedro Novo Business Intelligence and Analytics in Small and Medium Enterprises Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Editors Biographies -- List of Contributors -- Chapter 1: Process Mining - Prerequisites and Their Applicability for Small and Mediumsized Enterprises -- CONTENTS -- 1.1. Introduction -- 1.2. What is Process Mining? -- 1.3. Prerequisites for Successful Process Mining -- 1.3.1. Organizational Prerequisites -- 1.3.2. Process-Related Prerequisites -- 1.3.3. IT-Related Prerequisites -- 1.3.4. Data-Related Prerequisites -- 1.3.5. Employee-Related Prerequisites -- 1.3.6. Legal Requirements -- 1.3.7. Means and Resources -- 1.4. Process Mining in SME - Two Case Studies -- 1.4.1. Is Process Mining a Suitable Technology for SMEs? -- 1.4.2. Are the Seven Identified Prerequisites for Process Mining Being Fulfilled in the Respective SME? -- 1.5. Concluding Remarks -- Notes -- References -- Chapter 2: Using Customer Analytics to Succeed: The Case of Mexican SMEs -- CONTENTS -- 2.1. Introduction -- 2.2. Business Intelligence and Analytics in SMEs -- 2.3. Small and Medium Enterprises in Mexico -- 2.4. Social Media Analytics Tools for Customer Engagement in Mexican SMEs -- 2.5. Digital Recommendation for SMEs: A Framework for Customer Analytics on Social Media -- 2.6. Challenges and Opportunities -- References -- Chapter 3: Data Management Software Solutions for Business Sustainability - An Overview -- CONTENTS -- 3.1. Introduction -- 3.2. Materials and Methods -- 3.3. Result and Discussions -- 3.3.1. DG, DM, and MDM Software Solutions -- 3.3.2. The Study Regarding the Use of Data Management Software Solutions by Romanian Companies -- 3.4. Conclusions -- References -- Chapter 4: A Paradigm Shift in Accounting and Auditing of Big Data -- CONTENTS -- 4.1. Introduction -- 4.2. Business Intelligence, Analytics and Big Data 4.3. The Opportunities of Big Data Analytics for the Accounting and Auditing Professions -- 4.4. The Case of SMEs -- 4.5. The Impact on Accounting Education -- 4.6. Conclusion -- Note -- References -- Chapter 5: Mobile Advertising Framework: Format, Location and Context -- CONTENTS -- 5.1. Introduction -- 5.2. Research Method -- 5.3. Findings -- 5.3.1. Location-Based Advertising (LBA) -- 5.3.2. SMS -- 5.3.3. In-app Advertising -- 5.3.4. Mobile Social Media and Search Engine Advertising -- 5.3.4.1. Mobile Search Engine Advertising -- 5.4. Privacy and Application of GDPR -- 5.5. Theoretical Implications -- 5.6. Practical Implications -- 5.7. Limitations and Future Research Directions -- 5.8. Conclusion -- References -- Chapter 6: Marketing Analytics: Why Measuring Web and Social Media Matters -- CONTENTS -- 6.1. Introduction: What You Can't Measure, Doesn't Exist -- 6.2. Setting Objectives and Kpis: The Smart Rule -- 6.3. Funnel Analytics: Conversion Funnel -- 6.4. Measuring -- 6.4.1. Web: Main Metrics with Web Analytics: Segments, Filters -- 6.4.1.1. e-Commerce Websites -- 6.4.2. Social Media: Main Metrics on Facebook, Twitter or Instagram -- 6.4.3. Newsletters -- 6.4.4. Mobile Apps -- 6.5. Analyzing and Reporting: What a Web Analytics and Social Media Report Should Analyze -- 6.6. Where Should the Efforts of Small and Medium Size Enterprises be Invested -- References -- Chapter 7: Managers' Perception of Business Intelligence Capability of SMEs in Turkey -- CONTENTS -- 7.1. Introduction -- 7.2. Need for Business Intelligence -- 7.3. The Future of Business Intelligence -- 7.4. The Challenges for Business Intelligence Practitioners -- 7.5. SME and BI Usage in Turkey -- 7.5.1. Research on Business Intelligence Adoption of SMEs in Turkey -- 7.6. Conclusion and Discussion -- References -- Chapter 8: The Development of Loyalty Programs in the Retail Sector CONTENTS -- 8.1. Introduction -- 8.2. Literature Review -- 8.2.1. Loyalty Programs -- 8.2.2. Traditional Loyalty Programs -- 8.2.3. Loyalty Programs and its Technology Use -- 8.3. The Loyalty Program Lifecycle: Design, Implementation and Assessment -- 8.3.1. The Design Stage -- 8.3.2. The Implementation Stage -- 8.3.2.1. Communication -- 8.3.2.2. Communication Style -- 8.3.3. Firm-Created Communication -- 8.3.4. Customer-Created Communication -- 8.3.4.1. Customer Support -- 8.3.4.2. Privacy Matters -- 8.3.4.3. Location Based Services -- 8.3.4.4. Automation and Efficiency -- 8.3.5. The Performance Assessment Stage -- 8.4. Discussion -- References -- Chapter 9: Business Intelligence, Big Data and Data Governance -- CONTENTS -- 9.1. Introduction -- 9.2. From Business Intelligence to Big Data and Data Science -- 9.2.1. Evolution and Applications -- 9.2.2. Challenges -- 9.3. Business Intelligence Maturity Assessment -- 9.3.1. Maturity Assessment -- 9.3.2. Maturity Assessment and Business Intelligence -- 9.3.3. Data Governance, BI Maturity Model and Small Business -- 9.4. Data Governance -- 9.4.1. Data Governance Maturity Assessment -- 9.4.2. Data Governance Program Approach -- 9.4.3. Tools -- 9.4.4. Data Governance Program Progress and Impact Analysis -- 9.5. Conclusions -- References -- Index |
title | Business Intelligence and Analytics in Small and Medium Enterprises |
title_auth | Business Intelligence and Analytics in Small and Medium Enterprises |
title_exact_search | Business Intelligence and Analytics in Small and Medium Enterprises |
title_exact_search_txtP | Business Intelligence and Analytics in Small and Medium Enterprises |
title_full | Business Intelligence and Analytics in Small and Medium Enterprises |
title_fullStr | Business Intelligence and Analytics in Small and Medium Enterprises |
title_full_unstemmed | Business Intelligence and Analytics in Small and Medium Enterprises |
title_short | Business Intelligence and Analytics in Small and Medium Enterprises |
title_sort | business intelligence and analytics in small and medium enterprises |
work_keys_str_mv | AT melopedronovo businessintelligenceandanalyticsinsmallandmediumenterprises AT machadocarolina businessintelligenceandanalyticsinsmallandmediumenterprises |