Model-driven development methodology and domain-specific languages for the design of artificial intelligence in cyber-physical systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Düren
Shaker
2021
|
Schriftenreihe: | Aachener Informatik-Berichte, Software-Engineering
Band 49 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xiii, 324 Seiten Illustrationen 24 cm x 17 cm, 510 g |
ISBN: | 9783844082869 3844082867 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV047664139 | ||
003 | DE-604 | ||
005 | 20220330 | ||
007 | t | ||
008 | 220111s2021 gw a||| m||| 00||| eng d | ||
015 | |a 21,N44 |2 dnb | ||
016 | 7 | |a 1244430013 |2 DE-101 | |
020 | |a 9783844082869 |c : EUR 39.80 (DE), EUR 39.80 (AT), CHF 49.80 (freier Preis) |9 978-3-8440-8286-9 | ||
020 | |a 3844082867 |9 3-8440-8286-7 | ||
024 | 3 | |a 9783844082869 | |
035 | |a (OCoLC)1302325108 | ||
035 | |a (DE-599)DNB1244430013 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-NW | ||
049 | |a DE-83 |a DE-355 | ||
084 | |a ST 240 |0 (DE-625)143625: |2 rvk | ||
084 | |8 1\p |a 004 |2 23sdnb | ||
100 | 1 | |a Kusmenko, Evgeny |e Verfasser |0 (DE-588)1247121062 |4 aut | |
245 | 1 | 0 | |a Model-driven development methodology and domain-specific languages for the design of artificial intelligence in cyber-physical systems |c vorgelegt von Evgeny Kusmenko |
264 | 1 | |a Düren |b Shaker |c 2021 | |
300 | |a xiii, 324 Seiten |b Illustrationen |c 24 cm x 17 cm, 510 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Aachener Informatik-Berichte, Software-Engineering |v Band 49 | |
502 | |b Dissertation |c RWTH Aachen University |d 2021 | ||
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modellgetriebene Entwicklung |0 (DE-588)4832365-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Domänenspezifische Programmiersprache |0 (DE-588)7585264-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Cyber-physisches System |0 (DE-588)1069505412 |2 gnd |9 rswk-swf |
653 | |a DSLs | ||
653 | |a AI | ||
653 | |a MDSE | ||
653 | |a Machine Learning | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Modellgetriebene Entwicklung |0 (DE-588)4832365-2 |D s |
689 | 0 | 1 | |a Domänenspezifische Programmiersprache |0 (DE-588)7585264-0 |D s |
689 | 0 | 2 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 3 | |a Cyber-physisches System |0 (DE-588)1069505412 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Shaker Verlag |0 (DE-588)1064118135 |4 pbl | |
830 | 0 | |a Aachener Informatik-Berichte, Software-Engineering |v Band 49 |w (DE-604)BV040516036 |9 49 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033048904&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033048904 | ||
883 | 1 | |8 1\p |a vlb |d 20211021 |q DE-101 |u https://d-nb.info/provenance/plan#vlb |
Datensatz im Suchindex
_version_ | 1804183137498955776 |
---|---|
adam_text | CONTENTS
1
INTRODUCTION
1
1.1
MOTIVATION
........................................................................................................
1
1.2
RESEARCH
QUESTIONS
............................................................................................
2
1.3
CPS
BASICS
........................................................................................................
2
1.3.1
AUTONOMOUS
DRIVING
ARCHITECTURES
....................................................
2
1.3.2
CONTROL
..................................................................................................
4
1.3.3
MACHINE
LEARNING
IN
AUTONOMOUS
DRIVING
........................................
4
1.4
REQUIREMENTS
.....................................................................................................
5
1.5
THESIS
STRUCTURE
...............................................................................................
6
1.6
PUBLICATIONS
........................................................................................................
7
1.7
PRELIMINARIES
.....................................................................................................
10
1.7.1
NOTATION
..................................................................................................
10
1.7.2
MODEL-DRIVEN
ENGINEERING
AND
DOMAIN
SPECIFIC
LANGUAGES
....
12
1.7.3
THE
MONTICORE
LANGUAGE
WORKBENCH
..............................................
13
1.7.4
SI
UNITS
..................................................................................................
15
1.7.5
MODEL-DRIVEN
ENGINEERING
PROCESSES
IN
THE
AUTOMOTIVE
DOMAIN
.
17
1.7.6
COMPONENT
&
CONNECTOR
MODELING
....................................................
19
2
EMBEDDEDMONTIARC
23
2.1
REQUIREMENTS
.....................................................................................................
23
2.2
THE
DATA
TYPE
SYSTEM
..................................................................................
24
2.2.1
PRIMITIVE
DATA
TYPES
.........................................................................
24
2.2.2
VECTORS,
MATRICES
AND
CUBES
.............................................................
26
2.2.3
MATRIX
PROPERTIES
...............................................................................
26
2.2.4
SI
UNITS
IN
EMBEDDEDMONTIARC
..........................................................
29
2.2.5
STRUCTS
AND
ENUMS
...............................................................................
29
2.3
STATIC
ARCHITECTURE
DESCRIPTION
......................................................................
31
2.3.1
COMPONENTS,
PORTS
AND
CONNECTORS
.................................................
31
2.3.2
ARRAYS
AND
CONNECTION
PATTERNS
.......................................................
33
2.3.3
EXECUTION
SEMANTICS
.............................................................................
35
2.4
MONTIMATH
........................................................................................................
40
2.4.1
BASIC
SYNTAX
.........................................................................................
40
2.4.2
DERIVING
MATRIX
PROPERTIES
FOR
CONCRETE
MATRICES
..............................
42
2.4.3
DERIVING
MATRIX
PROPERTIES
FOR
OPERATIONS
.........................................
45
XIII
2.4.4
EMBEDDEDMONTIARCMATH
....................................................................
46
2.4.5
OPTIMIZATION
IN
MONTIMATH
.................................................................
47
2.4.6
COMPONENT
VARIABILTY
FOR
SELF-ADAPTABLE
SYSTEMS
.............................
49
2.5
CODE
GENERATOR
...................................................................................................
53
2.6
MODEL-DRIVEN
UNIT-TESTING
..............................................................................
56
2.6.1
THE
STREAM
LANGUAGE
..........................................................................
56
2.6.2
THE
MAVEN
STREAMTEST
PLUGIN
..............................................................
58
2.6.3
SIMULATION
.............................................................................................
59
3
DYNAMICS
ASPECTS
OF
EMBEDDEDMONTIARC
63
3.1
COOPERATIVE
AGENTS
.............................................................................................
63
3.2
BACKGROUND
&
REQUIREMENTS
..........................................................................
65
3.3
DYNAMIC
ADLS
...................................................................................................
68
3.3.1
BRIEF
OVERVIEW
.......................................................................................
68
3.3.2
REQUIREMENTS
ASSESSMENT
....................................................................
72
3.4
EMBEDDEDMONTIARC
DYNAMICS
.......................................................................
73
3.4.1
EMAD
EXECUTION
SEMANTICS
..............................................................
74
3.4.2
DATA-TRIGGERED
INTERNAL
RECONFIGURATION
............................................
74
3.4.3
SERVICE-BASED
EXTERNAL
RECONFIGURATION
............................................
79
3.4.4
MODELING
COMPONENT
PIPELINES
...........................................................
86
3.4.5
RECONFIGURATION
VIEWS
AND
GRAPHICAL
NOTATION
.................................
89
3.4.6
REMARKS
ON
ARCHITECTURAL
CONSISTENCY
...............................................
90
3.5
CONCLUSION
.........................................................................................................
93
4
MODELING
ARTIFICIAL
NEURAL
NETWORKS
WITH
MONTIANNA
95
4.1
DEEP
LEARNING
FOR
AUTONOMOUS
SYSTEMS
..........................................................
95
4.1.1
SUPERVISED
MACHINE
LEARNING
FOUNDATIONS
........................................
95
4.1.2
NEURAL
NETWORKS
....................................................................................
96
4.1.3
TRAINING
OF
LAYERED
NEURAL
NETWORKS
..................................................
99
4.1.4
DEEP
NETWORK
ARCHITECTURES
....................................................................
101
4.2
REQUIREMENTS
OF
A
DEEP
LEARNING
MODELING
FRAMEWORK
FOR
CYBER-PHYSICAL
SYSTEMS
..................................................................................................................
106
4.3
OVERVIEW
OF
DEEP
LEARNING
FRAMEWORKS
..........................................................
108
4.4
MACHINE
LEARNING
MODELING
FRAMEWORKS
..........................................................
112
4.5
THE
MONTIANNA
FRAMEWORK
................................................................................
116
4.6
AN
OVERVIEW
OF
MODELING
LANGUAGES
................................................................
117
4.6.1
THE
COMPILER
TOOLCHAIN
..........................................................................
119
4.6.2
THE
GENERATED
ARTIFACTS
..........................................................................
120
4.7
MODELING
FEEDFORWARD
NEURAL
ARCHITECTURES
WITH
CNNARC
...........................
121
4.7.1
DEFINING
A
STAND-ALONE
NETWORK
..........................................................
121
4.7.2
MODELING
LAYERS
AND
NETWORKS
.............................................................
122
4.7.3
CODE
REUSE
IN
CNNARC
..........................................................................
128
4.8
MODELING
RECURRENT
NEURAL
NETWORKS
................................................................
134
4.8.1
BASIC
CONCEPTS
........................................................................................
134
4.8.2
MODELING
AN
ENCODER-DECODER
NETWORK
.............................................
135
4.9
MODELING
TRAINING
..............................................................................................
140
4.9.1
THE
COMPOSED
MODEL
............................................................................
143
4.10
EMBEDDEDMONTIARCDL
.....................................................................................
144
4.10.1
CNNARC
AS
IMPLEMENTATION
LANGUAGE
FOR
EMBEDDEDMONTIARC
COM
PONENTS
........................................................................................
145
4.10.2
MODELING
THE
DATASET
............................................................................
146
4.10.3
THE
MNISTCALCULATOR
EXAMPLE
.........................................................
147
4.10.4
MODELING
A
DIRECT
PERCEPTION
AUTONOMOUS
VEHICLE
CONTROLLER
.
.
.
151
5
MODELING
DEEP
REINFORCEMENT
LEARNING
ARCHITECTURES
157
5.1
FOUNDATIONS
OF
DEEP
REINFORCEMENT
LEARNING
................................................
157
5.2
REQUIREMENTS
.......................................................................................................
159
5.3
RELATED
WORK
.......................................................................................................
160
5.4
MODELING
REINFORCEMENT
LEARNING
...................................................................
164
5.5
MODELING
THE
FUNCTION
APPROXIMATORS
............................................................
164
5.6
MODELING
THE
TRAINING
........................................................................................
168
5.6.1
GENERAL
REINFORCEMENT
LEARNING
PARAMETERS
....................................
168
5.6.2
THE
TORCS
TRAINING
MODEL
................................................................
171
5.6.3
REWARD
FUNCTION
.....................................................................................
173
5.7
ENVIRONMENT
.......................................................................................................
175
5.8
CODE
GENERATION
.................................................................................................
177
5.9
MODELING
GENERATIVE
ADVERSARIAL
NETWORKS
...................................................
179
5.10
EVALUATION
.............................................................................................................
180
5.10.1
TORCS
AND
OPEN
AL
GYM
...................................................................
180
5.10.2
DECISION
MAKING
IN
FORESTRY
5.0
............................................................
183
5.11
CONCLUSION
AND
FUTURE
WORK
...............................................................................
188
6
MODELING
DISTRIBUTED
ARCHITECTURES
191
6.1
THE
NEED
FOR
DISTRIBUTED
SYSTEMS
...................................................................
191
6.2
EXISTING
APPROACHES
FOR
MIDDLEWARE
INTEGRATION
..........................................
192
6.3
RUNNING
EXAMPLE
AND
USE
CASES
........................................................................
194
6.4
REQUIREMENTS
.......................................................................................................
196
6.5
TAGGING-BASED
MIDDLEWARE
MODELING
................................................................
197
6.6
CODE
GENERATOR
COMPOSITION
............................................................................
202
6.7
EVALUATION
.............................................................................................................
210
6.8
AUTOMATING
MODEL
SLICING
FOR
DISTRIBUTED
DEPLOYMENT
.................................
211
6.8.1
MOTIVATION
..............................................................................................
211
6.8.2
COMPONENT
CLUSTERING
............................................................................
212
6.8.3
WEIGHTS
.....................................................................................................
215
6.8.4
ENCORPORATING
STRUCTURAL
CONSTRAINTS
..................................................
215
6.8.5
RELATED
WORK
ON
AUTOMATED
DEPLOYMENT
............................................
216
6.9
CONCLUSION
AND
FUTURE
WORK
............................................................................
218
7
CONCLUSION
219
BIBLIOGRAPHY
223
A
DIAGRAMS
AND
LISTINGS
251
B
FURTHER
DOCUMENTATION
261
B.L
CNNARC
LAYER
CLASSES
.........................................................................................
261
B.2
CNNTRAIN
EVALUATION
METRICS
............................................................................
265
B.3
CNNTRAIN
FOR
REINFORCEMENT
LEARNING
.............................................................
266
B.3.1
GENERAL
REINFORCEMENT
LEARNING
PARAMETERS
....................................
266
B.3.
2
DQN
EXCLUSIVE
PARAMETERS
...................................................................
268
B.3.
3
TD3
EXCLUSIVE
PARAMETERS
...................................................................
269
B.3.
4
TRAINING
RESULTS
......................................................................................
270
B.4
MONTICORE
5
GRAMMARS
......................................................................................
271
LIST
OF
FIGURES
291
LIST
OF
TABLES
297
|
adam_txt |
CONTENTS
1
INTRODUCTION
1
1.1
MOTIVATION
.
1
1.2
RESEARCH
QUESTIONS
.
2
1.3
CPS
BASICS
.
2
1.3.1
AUTONOMOUS
DRIVING
ARCHITECTURES
.
2
1.3.2
CONTROL
.
4
1.3.3
MACHINE
LEARNING
IN
AUTONOMOUS
DRIVING
.
4
1.4
REQUIREMENTS
.
5
1.5
THESIS
STRUCTURE
.
6
1.6
PUBLICATIONS
.
7
1.7
PRELIMINARIES
.
10
1.7.1
NOTATION
.
10
1.7.2
MODEL-DRIVEN
ENGINEERING
AND
DOMAIN
SPECIFIC
LANGUAGES
.
12
1.7.3
THE
MONTICORE
LANGUAGE
WORKBENCH
.
13
1.7.4
SI
UNITS
.
15
1.7.5
MODEL-DRIVEN
ENGINEERING
PROCESSES
IN
THE
AUTOMOTIVE
DOMAIN
.
17
1.7.6
COMPONENT
&
CONNECTOR
MODELING
.
19
2
EMBEDDEDMONTIARC
23
2.1
REQUIREMENTS
.
23
2.2
THE
DATA
TYPE
SYSTEM
.
24
2.2.1
PRIMITIVE
DATA
TYPES
.
24
2.2.2
VECTORS,
MATRICES
AND
CUBES
.
26
2.2.3
MATRIX
PROPERTIES
.
26
2.2.4
SI
UNITS
IN
EMBEDDEDMONTIARC
.
29
2.2.5
STRUCTS
AND
ENUMS
.
29
2.3
STATIC
ARCHITECTURE
DESCRIPTION
.
31
2.3.1
COMPONENTS,
PORTS
AND
CONNECTORS
.
31
2.3.2
ARRAYS
AND
CONNECTION
PATTERNS
.
33
2.3.3
EXECUTION
SEMANTICS
.
35
2.4
MONTIMATH
.
40
2.4.1
BASIC
SYNTAX
.
40
2.4.2
DERIVING
MATRIX
PROPERTIES
FOR
CONCRETE
MATRICES
.
42
2.4.3
DERIVING
MATRIX
PROPERTIES
FOR
OPERATIONS
.
45
XIII
2.4.4
EMBEDDEDMONTIARCMATH
.
46
2.4.5
OPTIMIZATION
IN
MONTIMATH
.
47
2.4.6
COMPONENT
VARIABILTY
FOR
SELF-ADAPTABLE
SYSTEMS
.
49
2.5
CODE
GENERATOR
.
53
2.6
MODEL-DRIVEN
UNIT-TESTING
.
56
2.6.1
THE
STREAM
LANGUAGE
.
56
2.6.2
THE
MAVEN
STREAMTEST
PLUGIN
.
58
2.6.3
SIMULATION
.
59
3
DYNAMICS
ASPECTS
OF
EMBEDDEDMONTIARC
63
3.1
COOPERATIVE
AGENTS
.
63
3.2
BACKGROUND
&
REQUIREMENTS
.
65
3.3
DYNAMIC
ADLS
.
68
3.3.1
BRIEF
OVERVIEW
.
68
3.3.2
REQUIREMENTS
ASSESSMENT
.
72
3.4
EMBEDDEDMONTIARC
DYNAMICS
.
73
3.4.1
EMAD
EXECUTION
SEMANTICS
.
74
3.4.2
DATA-TRIGGERED
INTERNAL
RECONFIGURATION
.
74
3.4.3
SERVICE-BASED
EXTERNAL
RECONFIGURATION
.
79
3.4.4
MODELING
COMPONENT
PIPELINES
.
86
3.4.5
RECONFIGURATION
VIEWS
AND
GRAPHICAL
NOTATION
.
89
3.4.6
REMARKS
ON
ARCHITECTURAL
CONSISTENCY
.
90
3.5
CONCLUSION
.
93
4
MODELING
ARTIFICIAL
NEURAL
NETWORKS
WITH
MONTIANNA
95
4.1
DEEP
LEARNING
FOR
AUTONOMOUS
SYSTEMS
.
95
4.1.1
SUPERVISED
MACHINE
LEARNING
FOUNDATIONS
.
95
4.1.2
NEURAL
NETWORKS
.
96
4.1.3
TRAINING
OF
LAYERED
NEURAL
NETWORKS
.
99
4.1.4
DEEP
NETWORK
ARCHITECTURES
.
101
4.2
REQUIREMENTS
OF
A
DEEP
LEARNING
MODELING
FRAMEWORK
FOR
CYBER-PHYSICAL
SYSTEMS
.
106
4.3
OVERVIEW
OF
DEEP
LEARNING
FRAMEWORKS
.
108
4.4
MACHINE
LEARNING
MODELING
FRAMEWORKS
.
112
4.5
THE
MONTIANNA
FRAMEWORK
.
116
4.6
AN
OVERVIEW
OF
MODELING
LANGUAGES
.
117
4.6.1
THE
COMPILER
TOOLCHAIN
.
119
4.6.2
THE
GENERATED
ARTIFACTS
.
120
4.7
MODELING
FEEDFORWARD
NEURAL
ARCHITECTURES
WITH
CNNARC
.
121
4.7.1
DEFINING
A
STAND-ALONE
NETWORK
.
121
4.7.2
MODELING
LAYERS
AND
NETWORKS
.
122
4.7.3
CODE
REUSE
IN
CNNARC
.
128
4.8
MODELING
RECURRENT
NEURAL
NETWORKS
.
134
4.8.1
BASIC
CONCEPTS
.
134
4.8.2
MODELING
AN
ENCODER-DECODER
NETWORK
.
135
4.9
MODELING
TRAINING
.
140
4.9.1
THE
COMPOSED
MODEL
.
143
4.10
EMBEDDEDMONTIARCDL
.
144
4.10.1
CNNARC
AS
IMPLEMENTATION
LANGUAGE
FOR
EMBEDDEDMONTIARC
COM
PONENTS
.
145
4.10.2
MODELING
THE
DATASET
.
146
4.10.3
THE
MNISTCALCULATOR
EXAMPLE
.
147
4.10.4
MODELING
A
DIRECT
PERCEPTION
AUTONOMOUS
VEHICLE
CONTROLLER
.
.
.
151
5
MODELING
DEEP
REINFORCEMENT
LEARNING
ARCHITECTURES
157
5.1
FOUNDATIONS
OF
DEEP
REINFORCEMENT
LEARNING
.
157
5.2
REQUIREMENTS
.
159
5.3
RELATED
WORK
.
160
5.4
MODELING
REINFORCEMENT
LEARNING
.
164
5.5
MODELING
THE
FUNCTION
APPROXIMATORS
.
164
5.6
MODELING
THE
TRAINING
.
168
5.6.1
GENERAL
REINFORCEMENT
LEARNING
PARAMETERS
.
168
5.6.2
THE
TORCS
TRAINING
MODEL
.
171
5.6.3
REWARD
FUNCTION
.
173
5.7
ENVIRONMENT
.
175
5.8
CODE
GENERATION
.
177
5.9
MODELING
GENERATIVE
ADVERSARIAL
NETWORKS
.
179
5.10
EVALUATION
.
180
5.10.1
TORCS
AND
OPEN
AL
GYM
.
180
5.10.2
DECISION
MAKING
IN
FORESTRY
5.0
.
183
5.11
CONCLUSION
AND
FUTURE
WORK
.
188
6
MODELING
DISTRIBUTED
ARCHITECTURES
191
6.1
THE
NEED
FOR
DISTRIBUTED
SYSTEMS
.
191
6.2
EXISTING
APPROACHES
FOR
MIDDLEWARE
INTEGRATION
.
192
6.3
RUNNING
EXAMPLE
AND
USE
CASES
.
194
6.4
REQUIREMENTS
.
196
6.5
TAGGING-BASED
MIDDLEWARE
MODELING
.
197
6.6
CODE
GENERATOR
COMPOSITION
.
202
6.7
EVALUATION
.
210
6.8
AUTOMATING
MODEL
SLICING
FOR
DISTRIBUTED
DEPLOYMENT
.
211
6.8.1
MOTIVATION
.
211
6.8.2
COMPONENT
CLUSTERING
.
212
6.8.3
WEIGHTS
.
215
6.8.4
ENCORPORATING
STRUCTURAL
CONSTRAINTS
.
215
6.8.5
RELATED
WORK
ON
AUTOMATED
DEPLOYMENT
.
216
6.9
CONCLUSION
AND
FUTURE
WORK
.
218
7
CONCLUSION
219
BIBLIOGRAPHY
223
A
DIAGRAMS
AND
LISTINGS
251
B
FURTHER
DOCUMENTATION
261
B.L
CNNARC
LAYER
CLASSES
.
261
B.2
CNNTRAIN
EVALUATION
METRICS
.
265
B.3
CNNTRAIN
FOR
REINFORCEMENT
LEARNING
.
266
B.3.1
GENERAL
REINFORCEMENT
LEARNING
PARAMETERS
.
266
B.3.
2
DQN
EXCLUSIVE
PARAMETERS
.
268
B.3.
3
TD3
EXCLUSIVE
PARAMETERS
.
269
B.3.
4
TRAINING
RESULTS
.
270
B.4
MONTICORE
5
GRAMMARS
.
271
LIST
OF
FIGURES
291
LIST
OF
TABLES
297 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Kusmenko, Evgeny |
author_GND | (DE-588)1247121062 |
author_facet | Kusmenko, Evgeny |
author_role | aut |
author_sort | Kusmenko, Evgeny |
author_variant | e k ek |
building | Verbundindex |
bvnumber | BV047664139 |
classification_rvk | ST 240 |
ctrlnum | (OCoLC)1302325108 (DE-599)DNB1244430013 |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02560nam a22005778cb4500</leader><controlfield tag="001">BV047664139</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220330 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220111s2021 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">21,N44</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1244430013</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783844082869</subfield><subfield code="c">: EUR 39.80 (DE), EUR 39.80 (AT), CHF 49.80 (freier Preis)</subfield><subfield code="9">978-3-8440-8286-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3844082867</subfield><subfield code="9">3-8440-8286-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783844082869</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1302325108</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1244430013</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-NW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 240</subfield><subfield code="0">(DE-625)143625:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">004</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kusmenko, Evgeny</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1247121062</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Model-driven development methodology and domain-specific languages for the design of artificial intelligence in cyber-physical systems</subfield><subfield code="c">vorgelegt von Evgeny Kusmenko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Düren</subfield><subfield code="b">Shaker</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 324 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">24 cm x 17 cm, 510 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Aachener Informatik-Berichte, Software-Engineering</subfield><subfield code="v">Band 49</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">RWTH Aachen University</subfield><subfield code="d">2021</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modellgetriebene Entwicklung</subfield><subfield code="0">(DE-588)4832365-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Domänenspezifische Programmiersprache</subfield><subfield code="0">(DE-588)7585264-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cyber-physisches System</subfield><subfield code="0">(DE-588)1069505412</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">DSLs</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">AI</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MDSE</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine Learning</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Modellgetriebene Entwicklung</subfield><subfield code="0">(DE-588)4832365-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Domänenspezifische Programmiersprache</subfield><subfield code="0">(DE-588)7585264-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Cyber-physisches System</subfield><subfield code="0">(DE-588)1069505412</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Shaker Verlag</subfield><subfield code="0">(DE-588)1064118135</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Aachener Informatik-Berichte, Software-Engineering</subfield><subfield code="v">Band 49</subfield><subfield code="w">(DE-604)BV040516036</subfield><subfield code="9">49</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033048904&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033048904</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20211021</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV047664139 |
illustrated | Illustrated |
index_date | 2024-07-03T18:53:24Z |
indexdate | 2024-07-10T09:18:40Z |
institution | BVB |
institution_GND | (DE-588)1064118135 |
isbn | 9783844082869 3844082867 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033048904 |
oclc_num | 1302325108 |
open_access_boolean | |
owner | DE-83 DE-355 DE-BY-UBR |
owner_facet | DE-83 DE-355 DE-BY-UBR |
physical | xiii, 324 Seiten Illustrationen 24 cm x 17 cm, 510 g |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Shaker |
record_format | marc |
series | Aachener Informatik-Berichte, Software-Engineering |
series2 | Aachener Informatik-Berichte, Software-Engineering |
spelling | Kusmenko, Evgeny Verfasser (DE-588)1247121062 aut Model-driven development methodology and domain-specific languages for the design of artificial intelligence in cyber-physical systems vorgelegt von Evgeny Kusmenko Düren Shaker 2021 xiii, 324 Seiten Illustrationen 24 cm x 17 cm, 510 g txt rdacontent n rdamedia nc rdacarrier Aachener Informatik-Berichte, Software-Engineering Band 49 Dissertation RWTH Aachen University 2021 Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Modellgetriebene Entwicklung (DE-588)4832365-2 gnd rswk-swf Domänenspezifische Programmiersprache (DE-588)7585264-0 gnd rswk-swf Cyber-physisches System (DE-588)1069505412 gnd rswk-swf DSLs AI MDSE Machine Learning (DE-588)4113937-9 Hochschulschrift gnd-content Modellgetriebene Entwicklung (DE-588)4832365-2 s Domänenspezifische Programmiersprache (DE-588)7585264-0 s Künstliche Intelligenz (DE-588)4033447-8 s Cyber-physisches System (DE-588)1069505412 s DE-604 Shaker Verlag (DE-588)1064118135 pbl Aachener Informatik-Berichte, Software-Engineering Band 49 (DE-604)BV040516036 49 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033048904&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20211021 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Kusmenko, Evgeny Model-driven development methodology and domain-specific languages for the design of artificial intelligence in cyber-physical systems Aachener Informatik-Berichte, Software-Engineering Künstliche Intelligenz (DE-588)4033447-8 gnd Modellgetriebene Entwicklung (DE-588)4832365-2 gnd Domänenspezifische Programmiersprache (DE-588)7585264-0 gnd Cyber-physisches System (DE-588)1069505412 gnd |
subject_GND | (DE-588)4033447-8 (DE-588)4832365-2 (DE-588)7585264-0 (DE-588)1069505412 (DE-588)4113937-9 |
title | Model-driven development methodology and domain-specific languages for the design of artificial intelligence in cyber-physical systems |
title_auth | Model-driven development methodology and domain-specific languages for the design of artificial intelligence in cyber-physical systems |
title_exact_search | Model-driven development methodology and domain-specific languages for the design of artificial intelligence in cyber-physical systems |
title_exact_search_txtP | Model-driven development methodology and domain-specific languages for the design of artificial intelligence in cyber-physical systems |
title_full | Model-driven development methodology and domain-specific languages for the design of artificial intelligence in cyber-physical systems vorgelegt von Evgeny Kusmenko |
title_fullStr | Model-driven development methodology and domain-specific languages for the design of artificial intelligence in cyber-physical systems vorgelegt von Evgeny Kusmenko |
title_full_unstemmed | Model-driven development methodology and domain-specific languages for the design of artificial intelligence in cyber-physical systems vorgelegt von Evgeny Kusmenko |
title_short | Model-driven development methodology and domain-specific languages for the design of artificial intelligence in cyber-physical systems |
title_sort | model driven development methodology and domain specific languages for the design of artificial intelligence in cyber physical systems |
topic | Künstliche Intelligenz (DE-588)4033447-8 gnd Modellgetriebene Entwicklung (DE-588)4832365-2 gnd Domänenspezifische Programmiersprache (DE-588)7585264-0 gnd Cyber-physisches System (DE-588)1069505412 gnd |
topic_facet | Künstliche Intelligenz Modellgetriebene Entwicklung Domänenspezifische Programmiersprache Cyber-physisches System Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033048904&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV040516036 |
work_keys_str_mv | AT kusmenkoevgeny modeldrivendevelopmentmethodologyanddomainspecificlanguagesforthedesignofartificialintelligenceincyberphysicalsystems AT shakerverlag modeldrivendevelopmentmethodologyanddomainspecificlanguagesforthedesignofartificialintelligenceincyberphysicalsystems |