Engineering analytics: advances in research and applications
"Engineering analytics is becoming a necessary skill for every engineer. Areas such as Operations Research, Simulation, and Machine Learning can be totally transformed through massive volumes of data. This book is intended to be an introduction to Engineering Analytics that can be used to impro...
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Boca Raton
CRC Press
2022
|
Ausgabe: | First edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "Engineering analytics is becoming a necessary skill for every engineer. Areas such as Operations Research, Simulation, and Machine Learning can be totally transformed through massive volumes of data. This book is intended to be an introduction to Engineering Analytics that can be used to improve performance tracking, customer segmentation for resource optimization, patterns and classification strategies, and logistics control towers. Basic methods in the areas of visual, descriptive, predictive, and prescriptive analytics and Big Data are introduced. Industrial case studies and example problem demonstrations are used throughout the book to reinforce the concepts and applications. The book goes on to cover visual analytics and its relationships, simulation from the respective dimensions and Machine Learning and Artificial Intelligence from different paradigms viewpoints. The book is intended for professionals wanting to work on analytical problems, for Engineering students, Researchers, Chief-Technology Officers, and Directors that work within the areas and fields of Industrial Engineering, Computer Science, Statistics, Electrical Engineering Operations Research, and Big Data"-- |
Beschreibung: | xiv,268 Seiten Illustrationen, Diagramme |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047657299 | ||
003 | DE-604 | ||
005 | 20220221 | ||
007 | t | ||
008 | 220103s2022 a||| |||| 00||| eng d | ||
020 | |z 9780367685348 |9 978-0-367-68534-8 | ||
020 | |z 0367685345 |9 0-367-68534-5 | ||
020 | |z 9780367685379 |9 978-0-367-68537-9 | ||
020 | |z 036768537X |9 0-367-68537-X | ||
035 | |a (OCoLC)1298745311 | ||
035 | |a (DE-599)BVBBV047657299 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-739 | ||
084 | |a ST 620 |0 (DE-625)143684: |2 rvk | ||
245 | 1 | 0 | |a Engineering analytics |b advances in research and applications |c edited by Luis Rabelo, Edgar Gutierrez-Franco, Alfonso Sarmiento, and Christopher Mejía-Argueta |
250 | |a First edition | ||
264 | 1 | |a Boca Raton |b CRC Press |c 2022 | |
300 | |a xiv,268 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
505 | 8 | |a Interactive visualization to support data and analytics-driven supply chain design decisions / Milena Janjevic and Matthias Winkenbach -- Analysis of IoT implementations using agent-based modeling : two case studies / Mohammed Basingab, Khalid Nagadi, Atif Shahzad, and Ghada Elnaggar | |
520 | |a "Engineering analytics is becoming a necessary skill for every engineer. Areas such as Operations Research, Simulation, and Machine Learning can be totally transformed through massive volumes of data. This book is intended to be an introduction to Engineering Analytics that can be used to improve performance tracking, customer segmentation for resource optimization, patterns and classification strategies, and logistics control towers. Basic methods in the areas of visual, descriptive, predictive, and prescriptive analytics and Big Data are introduced. Industrial case studies and example problem demonstrations are used throughout the book to reinforce the concepts and applications. The book goes on to cover visual analytics and its relationships, simulation from the respective dimensions and Machine Learning and Artificial Intelligence from different paradigms viewpoints. The book is intended for professionals wanting to work on analytical problems, for Engineering students, Researchers, Chief-Technology Officers, and Directors that work within the areas and fields of Industrial Engineering, Computer Science, Statistics, Electrical Engineering Operations Research, and Big Data"-- | ||
650 | 4 | |a Industrial engineering / Data processing | |
650 | 4 | |a System analysis / Data processing | |
650 | 4 | |a Big data | |
650 | 4 | |a Engineering mathematics | |
650 | 7 | |a Big data |2 fast | |
650 | 7 | |a Engineering mathematics |2 fast | |
650 | 7 | |a Industrial engineering / Data processing |2 fast | |
650 | 7 | |a System analysis / Data processing |2 fast | |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 1 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | 2 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Rabelo, Luis |d 1960- |e Sonstige |0 (DE-588)1252279272 |4 oth | |
700 | 1 | |a Gutierrez-Franco, Edgar |d ca. 20./21. Jh. |e Sonstige |0 (DE-588)1252279841 |4 oth | |
700 | 1 | |a Sarmiento, Alfonso |d ca. 20./21. jh. |e Sonstige |0 (DE-588)1252280904 |4 oth | |
700 | 1 | |a Mejía-Argueta, Christopher |d ca. 20./21. Jh. |e Sonstige |0 (DE-588)1252353928 |4 oth | |
776 | 0 | 8 | |i Online version |t Engineering analytics |d Boca Raton : CRC Press, 2022 |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033042200&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033042200 |
Datensatz im Suchindex
_version_ | 1804183125825159168 |
---|---|
adam_text | Contents Preface...................................................................................................................... ix Editor Biographies.................................................................................................xiii Introduction..........................................................................................1 Chapter 1 Interactive Visualization to Support Data and Analytics-driven Supply Chain Design Decisions...............................7 Milena Janjevie and Matthias Winkenbach Chapter 2 Resilience-based Analysis of Road Closures in Colombia: An Unsupervised Learning Approach............................................... 21 Nicolas Clavijo-Buritica, Mastoor M. Abushaega, Andrés D. Gonzalez, Pedro Amorim, and Andrés Polo Chapter 3 Characterization of Freight Transportation in Colombia Using the National Registry of Cargo Dispatches (RNDC).............. 43 Daniel Prato, Nury Rodriguez, Juan Carlos Martinez, Camilo Sarmiento, and Sebastian Talero Chapter 4 Data and Its Implications in Engineering Analytics.......................... 61 Camilo Torres Chapter 5 Assessing the Potential of Implementing Blockchain in Supply Chains Using Agent-based Simulation and Deep Learning................................................................................... 73 Mohammad Obeidat and Luis Rabelo Chapter 6 Market Behavior Analysis and Product Demand Prediction Using Hybrid Simulation Modeling.................................................. 89 Adalberto Prada and Daniel Ortiz v
Contents VI Chapter 7 Beyond the Seaport: Assessing the Impact of Policies and Investments on the Transport Chain........................................... 109 Mamoun Toukan, Hoi Ling Chan, Christopher Mejia-Argueta, and Nima Kazem։ Chapter 8 Challenges and Approaches of Data Transformation: Big Data in Pandemic Times, an Example from Colombia.............133 Luis Carlos Manrique Ruiz and Sandra Puentes Chapter 9 An Agent-based Methodology for Seaport Decision Making..........149 Ana X Halabi-Echeverry, Nelson Obregón-Neira, Hugo L. Niño-Vergara, Juan C. Aldana-Bernal, and Milton Baron-Perico Chapter 10 Simulation and Reinforcement Learning Framework to Find Scheduling Policies in Manufacturing...............................................163 Edgar Gutierrez, Nicolas Clavijo-Buritica, and Luis Rabelo Chapter 11 An Advanced Analytical Proposal for Sales and Operations Planning............................................................................. 175 Julio A. Padilla Chapter 12 Deep Neural Networks Applied in Autonomous Vehicle Software Architecture........................................................................... 197 Olmer Garcia-Bedoya, Janito Vaqueiro Ferreira, Nicolas Clavijo-Buritica, Edgar Gutierrez-Franco, and Larry Lowe Chapter 13 Optimizing Supply Chain Networks for Specialty Coffee................217 Santiago Botero López, Muhammad Salman Chaudhry, and Cansu Tayaksi Chapter 14 Spatial Analysis of Fresh Food Retailers in Sabana Centro, Colombia................................................................................ 235 Agatha da Silva,
Daniela Granados-Rivera, Gonzalo Mejia, Christopher Mejία-Argueta, and Jairo Jarrin
Contents vii Chapter 15 Analysis of Internet of Things Implementations Using Agent-based Modeling: Two Case Studies......................................255 Mohammed Basingab, Khalid Nagadi, AtifShahzad, and Ghada Elnaggar Index.................................................................................................................... 267
|
adam_txt |
Contents Preface. ix Editor Biographies.xiii Introduction.1 Chapter 1 Interactive Visualization to Support Data and Analytics-driven Supply Chain Design Decisions.7 Milena Janjevie and Matthias Winkenbach Chapter 2 Resilience-based Analysis of Road Closures in Colombia: An Unsupervised Learning Approach. 21 Nicolas Clavijo-Buritica, Mastoor M. Abushaega, Andrés D. Gonzalez, Pedro Amorim, and Andrés Polo Chapter 3 Characterization of Freight Transportation in Colombia Using the National Registry of Cargo Dispatches (RNDC). 43 Daniel Prato, Nury Rodriguez, Juan Carlos Martinez, Camilo Sarmiento, and Sebastian Talero Chapter 4 Data and Its Implications in Engineering Analytics. 61 Camilo Torres Chapter 5 Assessing the Potential of Implementing Blockchain in Supply Chains Using Agent-based Simulation and Deep Learning. 73 Mohammad Obeidat and Luis Rabelo Chapter 6 Market Behavior Analysis and Product Demand Prediction Using Hybrid Simulation Modeling. 89 Adalberto Prada and Daniel Ortiz v
Contents VI Chapter 7 Beyond the Seaport: Assessing the Impact of Policies and Investments on the Transport Chain. 109 Mamoun Toukan, Hoi Ling Chan, Christopher Mejia-Argueta, and Nima Kazem։ Chapter 8 Challenges and Approaches of Data Transformation: Big Data in Pandemic Times, an Example from Colombia.133 Luis Carlos Manrique Ruiz and Sandra Puentes Chapter 9 An Agent-based Methodology for Seaport Decision Making.149 Ana X Halabi-Echeverry, Nelson Obregón-Neira, Hugo L. Niño-Vergara, Juan C. Aldana-Bernal, and Milton Baron-Perico Chapter 10 Simulation and Reinforcement Learning Framework to Find Scheduling Policies in Manufacturing.163 Edgar Gutierrez, Nicolas Clavijo-Buritica, and Luis Rabelo Chapter 11 An Advanced Analytical Proposal for Sales and Operations Planning. 175 Julio A. Padilla Chapter 12 Deep Neural Networks Applied in Autonomous Vehicle Software Architecture. 197 Olmer Garcia-Bedoya, Janito Vaqueiro Ferreira, Nicolas Clavijo-Buritica, Edgar Gutierrez-Franco, and Larry Lowe Chapter 13 Optimizing Supply Chain Networks for Specialty Coffee.217 Santiago Botero López, Muhammad Salman Chaudhry, and Cansu Tayaksi Chapter 14 Spatial Analysis of Fresh Food Retailers in Sabana Centro, Colombia. 235 Agatha da Silva,
Daniela Granados-Rivera, Gonzalo Mejia, Christopher Mejία-Argueta, and Jairo Jarrin
Contents vii Chapter 15 Analysis of Internet of Things Implementations Using Agent-based Modeling: Two Case Studies.255 Mohammed Basingab, Khalid Nagadi, AtifShahzad, and Ghada Elnaggar Index. 267 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)1252279272 (DE-588)1252279841 (DE-588)1252280904 (DE-588)1252353928 |
building | Verbundindex |
bvnumber | BV047657299 |
classification_rvk | ST 620 |
contents | Interactive visualization to support data and analytics-driven supply chain design decisions / Milena Janjevic and Matthias Winkenbach -- Analysis of IoT implementations using agent-based modeling : two case studies / Mohammed Basingab, Khalid Nagadi, Atif Shahzad, and Ghada Elnaggar |
ctrlnum | (OCoLC)1298745311 (DE-599)BVBBV047657299 |
discipline | Informatik |
discipline_str_mv | Informatik |
edition | First edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03956nam a2200577 c 4500</leader><controlfield tag="001">BV047657299</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220221 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220103s2022 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780367685348</subfield><subfield code="9">978-0-367-68534-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0367685345</subfield><subfield code="9">0-367-68534-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780367685379</subfield><subfield code="9">978-0-367-68537-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">036768537X</subfield><subfield code="9">0-367-68537-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1298745311</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047657299</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 620</subfield><subfield code="0">(DE-625)143684:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Engineering analytics</subfield><subfield code="b">advances in research and applications</subfield><subfield code="c">edited by Luis Rabelo, Edgar Gutierrez-Franco, Alfonso Sarmiento, and Christopher Mejía-Argueta</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv,268 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Interactive visualization to support data and analytics-driven supply chain design decisions / Milena Janjevic and Matthias Winkenbach -- Analysis of IoT implementations using agent-based modeling : two case studies / Mohammed Basingab, Khalid Nagadi, Atif Shahzad, and Ghada Elnaggar</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Engineering analytics is becoming a necessary skill for every engineer. Areas such as Operations Research, Simulation, and Machine Learning can be totally transformed through massive volumes of data. This book is intended to be an introduction to Engineering Analytics that can be used to improve performance tracking, customer segmentation for resource optimization, patterns and classification strategies, and logistics control towers. Basic methods in the areas of visual, descriptive, predictive, and prescriptive analytics and Big Data are introduced. Industrial case studies and example problem demonstrations are used throughout the book to reinforce the concepts and applications. The book goes on to cover visual analytics and its relationships, simulation from the respective dimensions and Machine Learning and Artificial Intelligence from different paradigms viewpoints. The book is intended for professionals wanting to work on analytical problems, for Engineering students, Researchers, Chief-Technology Officers, and Directors that work within the areas and fields of Industrial Engineering, Computer Science, Statistics, Electrical Engineering Operations Research, and Big Data"--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industrial engineering / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System analysis / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Big data</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Engineering mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Industrial engineering / Data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">System analysis / Data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rabelo, Luis</subfield><subfield code="d">1960-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1252279272</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gutierrez-Franco, Edgar</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1252279841</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sarmiento, Alfonso</subfield><subfield code="d">ca. 20./21. jh.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1252280904</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mejía-Argueta, Christopher</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1252353928</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Online version</subfield><subfield code="t">Engineering analytics</subfield><subfield code="d">Boca Raton : CRC Press, 2022</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033042200&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033042200</subfield></datafield></record></collection> |
id | DE-604.BV047657299 |
illustrated | Illustrated |
index_date | 2024-07-03T18:51:28Z |
indexdate | 2024-07-10T09:18:29Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033042200 |
oclc_num | 1298745311 |
open_access_boolean | |
owner | DE-739 |
owner_facet | DE-739 |
physical | xiv,268 Seiten Illustrationen, Diagramme |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | CRC Press |
record_format | marc |
spelling | Engineering analytics advances in research and applications edited by Luis Rabelo, Edgar Gutierrez-Franco, Alfonso Sarmiento, and Christopher Mejía-Argueta First edition Boca Raton CRC Press 2022 xiv,268 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Interactive visualization to support data and analytics-driven supply chain design decisions / Milena Janjevic and Matthias Winkenbach -- Analysis of IoT implementations using agent-based modeling : two case studies / Mohammed Basingab, Khalid Nagadi, Atif Shahzad, and Ghada Elnaggar "Engineering analytics is becoming a necessary skill for every engineer. Areas such as Operations Research, Simulation, and Machine Learning can be totally transformed through massive volumes of data. This book is intended to be an introduction to Engineering Analytics that can be used to improve performance tracking, customer segmentation for resource optimization, patterns and classification strategies, and logistics control towers. Basic methods in the areas of visual, descriptive, predictive, and prescriptive analytics and Big Data are introduced. Industrial case studies and example problem demonstrations are used throughout the book to reinforce the concepts and applications. The book goes on to cover visual analytics and its relationships, simulation from the respective dimensions and Machine Learning and Artificial Intelligence from different paradigms viewpoints. The book is intended for professionals wanting to work on analytical problems, for Engineering students, Researchers, Chief-Technology Officers, and Directors that work within the areas and fields of Industrial Engineering, Computer Science, Statistics, Electrical Engineering Operations Research, and Big Data"-- Industrial engineering / Data processing System analysis / Data processing Big data Engineering mathematics Big data fast Engineering mathematics fast Industrial engineering / Data processing fast System analysis / Data processing fast Big Data (DE-588)4802620-7 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Datenanalyse (DE-588)4123037-1 s Big Data (DE-588)4802620-7 s Maschinelles Lernen (DE-588)4193754-5 s DE-604 Rabelo, Luis 1960- Sonstige (DE-588)1252279272 oth Gutierrez-Franco, Edgar ca. 20./21. Jh. Sonstige (DE-588)1252279841 oth Sarmiento, Alfonso ca. 20./21. jh. Sonstige (DE-588)1252280904 oth Mejía-Argueta, Christopher ca. 20./21. Jh. Sonstige (DE-588)1252353928 oth Online version Engineering analytics Boca Raton : CRC Press, 2022 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033042200&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Engineering analytics advances in research and applications Interactive visualization to support data and analytics-driven supply chain design decisions / Milena Janjevic and Matthias Winkenbach -- Analysis of IoT implementations using agent-based modeling : two case studies / Mohammed Basingab, Khalid Nagadi, Atif Shahzad, and Ghada Elnaggar Industrial engineering / Data processing System analysis / Data processing Big data Engineering mathematics Big data fast Engineering mathematics fast Industrial engineering / Data processing fast System analysis / Data processing fast Big Data (DE-588)4802620-7 gnd Datenanalyse (DE-588)4123037-1 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4802620-7 (DE-588)4123037-1 (DE-588)4193754-5 |
title | Engineering analytics advances in research and applications |
title_auth | Engineering analytics advances in research and applications |
title_exact_search | Engineering analytics advances in research and applications |
title_exact_search_txtP | Engineering analytics advances in research and applications |
title_full | Engineering analytics advances in research and applications edited by Luis Rabelo, Edgar Gutierrez-Franco, Alfonso Sarmiento, and Christopher Mejía-Argueta |
title_fullStr | Engineering analytics advances in research and applications edited by Luis Rabelo, Edgar Gutierrez-Franco, Alfonso Sarmiento, and Christopher Mejía-Argueta |
title_full_unstemmed | Engineering analytics advances in research and applications edited by Luis Rabelo, Edgar Gutierrez-Franco, Alfonso Sarmiento, and Christopher Mejía-Argueta |
title_short | Engineering analytics |
title_sort | engineering analytics advances in research and applications |
title_sub | advances in research and applications |
topic | Industrial engineering / Data processing System analysis / Data processing Big data Engineering mathematics Big data fast Engineering mathematics fast Industrial engineering / Data processing fast System analysis / Data processing fast Big Data (DE-588)4802620-7 gnd Datenanalyse (DE-588)4123037-1 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Industrial engineering / Data processing System analysis / Data processing Big data Engineering mathematics Big Data Datenanalyse Maschinelles Lernen |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033042200&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT rabeloluis engineeringanalyticsadvancesinresearchandapplications AT gutierrezfrancoedgar engineeringanalyticsadvancesinresearchandapplications AT sarmientoalfonso engineeringanalyticsadvancesinresearchandapplications AT mejiaarguetachristopher engineeringanalyticsadvancesinresearchandapplications |