Stability of iron corrosion phases expected in a repository in lower cretaceous clay:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English German |
Veröffentlicht: |
Köln ; Garching b. München ; Berlin ; Braunschweig
Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH
September 2021
|
Schriftenreihe: | GRS
587 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | Literaturverzeichnis Seite 161-192 |
Beschreibung: | IV, 199 Seiten Illustrationen, Diagramme, Karten |
ISBN: | 9783947685738 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV047657106 | ||
003 | DE-604 | ||
005 | 20220822 | ||
007 | t | ||
008 | 220103s2021 gw a||| t||| 00||| eng d | ||
016 | 7 | |a 1244796050 |2 DE-101 | |
020 | |a 9783947685738 |c Broschur |9 978-3-947685-73-8 | ||
035 | |a (OCoLC)1291305944 | ||
035 | |a (DE-599)DNB1244796050 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng |a ger | |
044 | |a gw |c XA-DE | ||
049 | |a DE-91 |a DE-12 | ||
084 | |a NUC 853 |2 stub | ||
084 | |a NUC 860 |2 stub | ||
100 | 1 | |a Hagemann, Sven |d 1969- |e Verfasser |0 (DE-588)122054644 |4 aut | |
245 | 1 | 0 | |a Stability of iron corrosion phases expected in a repository in lower cretaceous clay |c Sven Hagemann, Heike Mönig ; Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH |
264 | 1 | |a Köln ; Garching b. München ; Berlin ; Braunschweig |b Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH |c September 2021 | |
300 | |a IV, 199 Seiten |b Illustrationen, Diagramme, Karten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a GRS |v 587 | |
500 | |a Literaturverzeichnis Seite 161-192 | ||
655 | 7 | |0 (DE-588)4155043-2 |a Forschungsbericht |2 gnd-content | |
700 | 1 | |a Mönig, Heike |e Verfasser |4 aut | |
710 | 2 | |a Gesellschaft für Anlagen- und Reaktorsicherheit |0 (DE-588)5073531-7 |4 isb | |
830 | 0 | |a GRS |v 587 |w (DE-604)BV008889593 |9 587 | |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1244796050/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033042013&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033042013 |
Datensatz im Suchindex
_version_ | 1804183125485420544 |
---|---|
adam_text | TABLE
OF
CONTENTS
ZUSAMMENFASSUNG
............................................................................................
1
1
INTRODUCTION
.........................................................................................................
7
2
FACTORS
INFLUENCING
THE
CORROSION
PROCESS
IN
A
REPOSITORY
IN
CLAY
....
11
2.1
REFERENCE
CONCEPT
FOR
THE
STORAGE
OF
HLW
IN
CLAY
FORMATION
IN
NORTHERN
GERMANY
.............................................................................................
11
2.2
TYPES
OF
IRON-BASED
MATERIALS
USED
OR
EMPLOYED
IN
A
REPOSITORY
................
13
2.2.1
LOWER
CRETACEOUS
DEPOSITS
IN
LOWER
SAXONY
...............................................
14
2.2.2
MINERALOGY
..........................................................................................................
19
2.2.3
CHANGE
OF
PREDOMINANT
CLAY
MINERALS
............................................................
23
2.2.4
ALTERATION
OF
MINERALS
DURING
EXCAVATION,
STORAGE
AND
REUSE
AS
BACKFILL
.................................................................................................................
26
2.2.5
GENERAL
CONSIDERATIONS
ON
THE
GENESIS
OF
THE
PORE
WATER
CHEMISTRY
OF
THE
LOWER
CRETACEOUS
CLAYS
IN
NORTHERN
GERMANY
.......................................
26
2.2.6
ASSUMPTIONS
REGARDING
THE
INITIAL
STATE
OF
POREWATERS
IN
A
REPOSITORY
IN
LOWER
CRETACEOUS
CLAY
FORMATIONS
.............................................................
36
2.2.7
ANALYTICAL
DATA
ON
DEEP
GROUNDWATER
SAMPLES
IN
NORTHERN
GERMANY
........
36
2.2.8
GEOLOGY,
MINERALOGY,
AND
GEOCHEMISTRY
OF
THE
HOST
ROCK
AT
THE
MODEL
SITE
NORD
..........................................................................................................
43
2.2.9
MODEL
PORE
WATER
COMPOSITION
OF
A
LOWER
CRETACEOUS
CLAY
.........................
47
2.3
TIME-DEPENDENT
VARIABLES
................................................................................
51
2.3.1
TEMPERATURE
.......................................................................................................
51
2.3.2
SATURATION
STATE
OF
CLAY
.....................................................................................
54
3
PREVIOUS
INVESTIGATIONS
OF
IRON
AND
STEEL
CORROSION
IN
CLAY
SYSTEMS
OR
IN
CONTACT
WITH
BRINES
...............................................................
57
3.1
OVERVIEW
.............................................................................................................
57
3.2
GERMANY
..............................................................................................................
58
3.3
USA:
WASTE
ISOLATION
PILOT
PLANT
(WIPP)
........................................................
60
3.4
SWITZERLAND
.........................................................................................................
64
3.4.1
DISPOSAL
CONCEPT
................................................................................................
64
3.4.2
EXPERIMENTAL
RESULTS
...........................................................................................
66
3.5
FRANCE
..................................................................................................................
72
3.5.1
REPOSITORY
CONCEPT
..............................................................................................
72
3.5.2
EXPERIMENTAL
AND
MODELLING
RESULTS
.....................................
73
3.6
SWEDEN
................................................................................................................
86
3.7
JAPAN
....................................................................................................................
87
3.8
CZECH
REPUBLIC
..................................................................................................
88
3.9
MISCELLANEOUS
STUDIES
ON
GEOCHEMICAL
PROCESSES
.......................................
88
3.9.1
CORROSION
IN
THE
PRESENCE
OF
H2S
.....................................................................
88
3.9.2
REDUCTION
OF
FE(LLL)
OXIDES
BY
H2S
...................................................................
89
3.9.3
REDUCTION
OF
PYRITE
BY
H2S
................................................................................
90
3.9.4
MICROBIAL
CONVERSION
OF
HYDROGEN
TO
METHANE
...
............................................
90
3.9.5
REDUCTION
OF
IRON(LLL)
IN
OXIDES
AND
CLAY
MINERALS
BY
H2
..............................
90
3.9.6
ANAEROBIC
REDUCTION
OF
SULPHATE
BY
ELEMENTAL
HYDROGEN
.............................
90
3.9.7
GREEN
RUEST
FORMATION
....................................................................................
91
3.9.8
CORROSION
IN
A
HUMID,
ANAEROBIC
ATMOSPHERE
................................................
91
3.9.9
CORROSION
IN
CONTACT
WITH
SAND
..........................................................................
91
3.9.10
CORROSION
IN
UNSATURATED
SYSTEMS
...........................................................
91
3.10
NATURAL
ANALOGUES
...............................................................................................
92
3.10.1
CORROSION
OF
ARCHAEOLOGICAL
ARTEFACTS
..............................................................
92
3.10.2
METEORITES
...............................................................................
96
3.11
SYNTHESIS:
GEOCHEMICAL
EVOLUTION
OF
THE
NEAR
FIELD
AND
CORROSION
...............
97
3.12
SYNTHESIS:
CORROSION
PRODUCTS
...........................
103
3.12.1
IRAN
(III)
OXIDES
AND
OXYHYDROXIDES
................................................................
103
3.12.2
IROEN(LL)
CARBONATES,
CHLORIDES,
AND
HYDROXIDES
............................................
103
3.12.3
MAGNETITE
............................................................................................................
104
3.12.4
GREEN
RUSTS
..............................................................
105
3.12.5
IRON
SULPHIDES
....................................................................................................106
3.12.6
IRON-CONTAINING
CLAY
MINERALS
..........................................................................
107
4
SYNTHESIS
AND
CHARACTERIZATION
OF
IRON
CORROSION
PHASES
...................
111
II
4.1
SELECTION
OF
SOLID
PHASES
FOR
THERMODYNAMIC
INVESTIGATION
.......................
111
4.2
FE-HIBBINGITE,
FE
2
(OH)
3
CI
...............................................................................
111
4.2.1
EXPERIMENTAL
PROCEDURES
................................................................................
111
4.2.2
EXPERIMENT
AT
40
C
.........................................................................................
115
4.3
HIBBINGITE
-
(FE,MG)(OH)
3
CI
...........................................................................
116
4.4
AMAKINITE
-
(FE,MG)(OH)
2
..............................................................................117
4.5
CHUKANOVITE
......................................................................................................
121
4.6
SOLID
SOLUTION
(FE,MG)
2
(OH)
2
CO
3
..................................................................123
4.7
AKAGANEITE
........................................................................................................
124
4.8
OTHER
FE(LL)
CONTAINING
SOLIDS
.......................................................................
126
4.8.1
FE(LL)
ANALOGUE
TO
KAMBALDAITE,
NANI
4
(CO
3
)
3
(OH)
3
-3H
2
0
..........................
127
4.8.2
OTHER
FE(LL)
HYDROXO
CHLORIDES
AND
FE(LL)
ANALOGUE
OF
NEPSKOITE
............
128
4.8.3
FE(LL)
ANALOGUE
TO
NORTHUPITE,
NA
3
MG(CO)
2
CI
.............................................128
5
PREDICTION
OF
LONG-TERM
REDOX
CONDITIONS
IN
THE
NEARFIELD
..................
129
5.1
PRELIMINARY
REMARKS
..........................................................................................
129
5.2
CALCULATION
OF
THE
REDOX
LEVEL
IN
THE
NEAR
FIELD
ASSUMING
DIFFERENT
CHEMICAL
BOUNDARY
CONDITIONS
........................................................................
130
5.2.1
PURPOSE
AND
BORDER
CONDITIONS
OF
THE
CALCULATIONS
.....................................
130
5.2.2
DIMENSIONS
OF
THE
BOREHOLE,
THE
LINER
AND
THE
CONTAINER
/REACTION
MASSES
..............................................................................................................
131
5.2.3
GEOCHEMICAL
MODELLING
OF
THE
CORROSION
PROCESS
INSIDE
THE
LINER
.............
132
5.2.4
CORROSION
REACTION
A
-
REDUCTION
OF
SULPHATE
SUPPRESSED,
CARBONATE
NOT
BUFFERED
......................................................................................................
134
5.2.5
CORROSION
REACTION
B
-
REDUCTION
OF
SULPHATE
SUPPRESSED,
CARBONATE
NOT
BUFFERED,
HYDROGEN
PRESSURE
FIXED
AT
100
BAR
.......................................136
5.2.6
CORROSION
REACTION
C:
REDUCTION
OF
SULPHATE
SUPPRESSED,
CARBONATE
BUFFERED
BY
FIXED
CO2
PARTIAL
PRESSURE
.........................................................
137
5.2.7
CORROSION
REACTION
D:
REDUCTION
OF
SULPHATE
SUPPRESSED,
CO
2
PARTIAL
PRESSURE
FIXED
AT
0.02574
BAR,
H
2
PRESSURE
FIXED
AT
100
BAR
......................
138
5.2.8
CORROSION
REACTION
E:
REDUCTION
OF
SULPHATE
ALLOWED,
CO
2
PARTIAL
PRESSURE
FIXED
AT
0.02574
BAR,
H
2
PARTIAL
PRESSURE
FIXED
AT
100
BAR
........
138
III
5.2.9
CORROSION
REACTION
F:
REDUCTION
OF
SULPHATE
SUPPRESSED,
CARBONATE
NOT
BUFFERED,
HYDROGEN
PRESSURE
FIXED
AT
100
BAR,
QUARTZ
LIMITED
TO
10
%,
SIDERITE
(AGED)
SUPPRESSED
..................................................................139
5.2.10
CORROSION
REACTION
G
:
REDUCTION
OF
SULPHATE
SUPPRESSED,
CARBONATE
NOT
BUFFERED,
HYDROGEN
PRESSURE
FIXED
AT
10
BAR,
QUARTZ
LIMITED
TO
10
%,
SIDERITE
(AGED)
SUPPRESSED
..................................................................
141
5.2.11
CORROSION
REACTION
H
:
REDUCTION
OF
SULPHATE
ALLOWED,
CARBONATE
NOT
BUFFERED,
QUARTZ
LIMITED
TO
10
%,
SIDERITE
(AGED)
SUPPRESSED,
UNLIMITED
SUPPLY
OF
PYRITE
................................................................................
142
5.2.12
SUMMARY
...........................................................................................................145
5.3
PREDOMINANT
SPECIATION
AND
SOLUBILITY
OF
SELECTED
RADIONUCLIDES
...............147
5.3.1
SELENIUM
...........................................................................................................147
5.3.2
URANIUM
..............................................................................................................
149
5.3.3
PLUTONIUM
..........................................................................................................
150
5.3.4
TECHNETIUM
........................................................................................................
151
5.3.5
SOLUBILITY
OFSE,
U,
PU
AND
TC
IN
MODEL
PORE
WATER
AT
PCH
6.4
TO
9.6
AND
PH2
0.008
TO
100
BAR
................................................................................152
6
SUMMARY
AND
CONCLUSIONS
..........................................................................
155
7
REFERENCES
.......................................................................................................
161
LIST
OF
TABLES
....................................................................................................
193
LIST
OF
FIGURES
........................................................
197
IV
|
adam_txt |
TABLE
OF
CONTENTS
ZUSAMMENFASSUNG
.
1
1
INTRODUCTION
.
7
2
FACTORS
INFLUENCING
THE
CORROSION
PROCESS
IN
A
REPOSITORY
IN
CLAY
.
11
2.1
REFERENCE
CONCEPT
FOR
THE
STORAGE
OF
HLW
IN
CLAY
FORMATION
IN
NORTHERN
GERMANY
.
11
2.2
TYPES
OF
IRON-BASED
MATERIALS
USED
OR
EMPLOYED
IN
A
REPOSITORY
.
13
2.2.1
LOWER
CRETACEOUS
DEPOSITS
IN
LOWER
SAXONY
.
14
2.2.2
MINERALOGY
.
19
2.2.3
CHANGE
OF
PREDOMINANT
CLAY
MINERALS
.
23
2.2.4
ALTERATION
OF
MINERALS
DURING
EXCAVATION,
STORAGE
AND
REUSE
AS
BACKFILL
.
26
2.2.5
GENERAL
CONSIDERATIONS
ON
THE
GENESIS
OF
THE
PORE
WATER
CHEMISTRY
OF
THE
LOWER
CRETACEOUS
CLAYS
IN
NORTHERN
GERMANY
.
26
2.2.6
ASSUMPTIONS
REGARDING
THE
INITIAL
STATE
OF
POREWATERS
IN
A
REPOSITORY
IN
LOWER
CRETACEOUS
CLAY
FORMATIONS
.
36
2.2.7
ANALYTICAL
DATA
ON
DEEP
GROUNDWATER
SAMPLES
IN
NORTHERN
GERMANY
.
36
2.2.8
GEOLOGY,
MINERALOGY,
AND
GEOCHEMISTRY
OF
THE
HOST
ROCK
AT
THE
MODEL
SITE
NORD
.
43
2.2.9
MODEL
PORE
WATER
COMPOSITION
OF
A
LOWER
CRETACEOUS
CLAY
.
47
2.3
TIME-DEPENDENT
VARIABLES
.
51
2.3.1
TEMPERATURE
.
51
2.3.2
SATURATION
STATE
OF
CLAY
.
54
3
PREVIOUS
INVESTIGATIONS
OF
IRON
AND
STEEL
CORROSION
IN
CLAY
SYSTEMS
OR
IN
CONTACT
WITH
BRINES
.
57
3.1
OVERVIEW
.
57
3.2
GERMANY
.
58
3.3
USA:
WASTE
ISOLATION
PILOT
PLANT
(WIPP)
.
60
3.4
SWITZERLAND
.
64
3.4.1
DISPOSAL
CONCEPT
.
64
3.4.2
EXPERIMENTAL
RESULTS
.
66
3.5
FRANCE
.
72
3.5.1
REPOSITORY
CONCEPT
.
72
3.5.2
EXPERIMENTAL
AND
MODELLING
RESULTS
.
73
3.6
SWEDEN
.
86
3.7
JAPAN
.
87
3.8
CZECH
REPUBLIC
.
88
3.9
MISCELLANEOUS
STUDIES
ON
GEOCHEMICAL
PROCESSES
.
88
3.9.1
CORROSION
IN
THE
PRESENCE
OF
H2S
.
88
3.9.2
REDUCTION
OF
FE(LLL)
OXIDES
BY
H2S
.
89
3.9.3
REDUCTION
OF
PYRITE
BY
H2S
.
90
3.9.4
MICROBIAL
CONVERSION
OF
HYDROGEN
TO
METHANE
.
.
90
3.9.5
REDUCTION
OF
IRON(LLL)
IN
OXIDES
AND
CLAY
MINERALS
BY
H2
.
90
3.9.6
ANAEROBIC
REDUCTION
OF
SULPHATE
BY
ELEMENTAL
HYDROGEN
.
90
3.9.7
GREEN
RUEST
FORMATION
.
91
3.9.8
CORROSION
IN
A
HUMID,
ANAEROBIC
ATMOSPHERE
.
91
3.9.9
CORROSION
IN
CONTACT
WITH
SAND
.
91
3.9.10
CORROSION
IN
UNSATURATED
SYSTEMS
.
91
3.10
NATURAL
ANALOGUES
.
92
3.10.1
CORROSION
OF
ARCHAEOLOGICAL
ARTEFACTS
.
92
3.10.2
METEORITES
.
96
3.11
SYNTHESIS:
GEOCHEMICAL
EVOLUTION
OF
THE
NEAR
FIELD
AND
CORROSION
.
97
3.12
SYNTHESIS:
CORROSION
PRODUCTS
.
103
3.12.1
IRAN
(III)
OXIDES
AND
OXYHYDROXIDES
.
103
3.12.2
IROEN(LL)
CARBONATES,
CHLORIDES,
AND
HYDROXIDES
.
103
3.12.3
MAGNETITE
.
104
3.12.4
GREEN
RUSTS
.
105
3.12.5
IRON
SULPHIDES
.106
3.12.6
IRON-CONTAINING
CLAY
MINERALS
.
107
4
SYNTHESIS
AND
CHARACTERIZATION
OF
IRON
CORROSION
PHASES
.
111
II
4.1
SELECTION
OF
SOLID
PHASES
FOR
THERMODYNAMIC
INVESTIGATION
.
111
4.2
FE-HIBBINGITE,
FE
2
(OH)
3
CI
.
111
4.2.1
EXPERIMENTAL
PROCEDURES
.
111
4.2.2
EXPERIMENT
AT
40
C
.
115
4.3
HIBBINGITE
-
(FE,MG)(OH)
3
CI
.
116
4.4
AMAKINITE
-
(FE,MG)(OH)
2
.117
4.5
CHUKANOVITE
.
121
4.6
SOLID
SOLUTION
(FE,MG)
2
(OH)
2
CO
3
.123
4.7
AKAGANEITE
.
124
4.8
OTHER
FE(LL)
CONTAINING
SOLIDS
.
126
4.8.1
FE(LL)
ANALOGUE
TO
KAMBALDAITE,
NANI
4
(CO
3
)
3
(OH)
3
-3H
2
0
.
127
4.8.2
OTHER
FE(LL)
HYDROXO
CHLORIDES
AND
FE(LL)
ANALOGUE
OF
NEPSKOITE
.
128
4.8.3
FE(LL)
ANALOGUE
TO
NORTHUPITE,
NA
3
MG(CO)
2
CI
.128
5
PREDICTION
OF
LONG-TERM
REDOX
CONDITIONS
IN
THE
NEARFIELD
.
129
5.1
PRELIMINARY
REMARKS
.
129
5.2
CALCULATION
OF
THE
REDOX
LEVEL
IN
THE
NEAR
FIELD
ASSUMING
DIFFERENT
CHEMICAL
BOUNDARY
CONDITIONS
.
130
5.2.1
PURPOSE
AND
BORDER
CONDITIONS
OF
THE
CALCULATIONS
.
130
5.2.2
DIMENSIONS
OF
THE
BOREHOLE,
THE
LINER
AND
THE
CONTAINER
/REACTION
MASSES
.
131
5.2.3
GEOCHEMICAL
MODELLING
OF
THE
CORROSION
PROCESS
INSIDE
THE
LINER
.
132
5.2.4
CORROSION
REACTION
A
-
REDUCTION
OF
SULPHATE
SUPPRESSED,
CARBONATE
NOT
BUFFERED
.
134
5.2.5
CORROSION
REACTION
B
-
REDUCTION
OF
SULPHATE
SUPPRESSED,
CARBONATE
NOT
BUFFERED,
HYDROGEN
PRESSURE
FIXED
AT
100
BAR
.136
5.2.6
CORROSION
REACTION
C:
REDUCTION
OF
SULPHATE
SUPPRESSED,
CARBONATE
BUFFERED
BY
FIXED
CO2
PARTIAL
PRESSURE
.
137
5.2.7
CORROSION
REACTION
D:
REDUCTION
OF
SULPHATE
SUPPRESSED,
CO
2
PARTIAL
PRESSURE
FIXED
AT
0.02574
BAR,
H
2
PRESSURE
FIXED
AT
100
BAR
.
138
5.2.8
CORROSION
REACTION
E:
REDUCTION
OF
SULPHATE
ALLOWED,
CO
2
PARTIAL
PRESSURE
FIXED
AT
0.02574
BAR,
H
2
PARTIAL
PRESSURE
FIXED
AT
100
BAR
.
138
III
5.2.9
CORROSION
REACTION
F:
REDUCTION
OF
SULPHATE
SUPPRESSED,
CARBONATE
NOT
BUFFERED,
HYDROGEN
PRESSURE
FIXED
AT
100
BAR,
QUARTZ
LIMITED
TO
10
%,
SIDERITE
(AGED)
SUPPRESSED
.139
5.2.10
CORROSION
REACTION
G
:
REDUCTION
OF
SULPHATE
SUPPRESSED,
CARBONATE
NOT
BUFFERED,
HYDROGEN
PRESSURE
FIXED
AT
10
BAR,
QUARTZ
LIMITED
TO
10
%,
SIDERITE
(AGED)
SUPPRESSED
.
141
5.2.11
CORROSION
REACTION
H
:
REDUCTION
OF
SULPHATE
ALLOWED,
CARBONATE
NOT
BUFFERED,
QUARTZ
LIMITED
TO
10
%,
SIDERITE
(AGED)
SUPPRESSED,
UNLIMITED
SUPPLY
OF
PYRITE
.
142
5.2.12
SUMMARY
.145
5.3
PREDOMINANT
SPECIATION
AND
SOLUBILITY
OF
SELECTED
RADIONUCLIDES
.147
5.3.1
SELENIUM
.147
5.3.2
URANIUM
.
149
5.3.3
PLUTONIUM
.
150
5.3.4
TECHNETIUM
.
151
5.3.5
SOLUBILITY
OFSE,
U,
PU
AND
TC
IN
MODEL
PORE
WATER
AT
PCH
6.4
TO
9.6
AND
PH2
0.008
TO
100
BAR
.152
6
SUMMARY
AND
CONCLUSIONS
.
155
7
REFERENCES
.
161
LIST
OF
TABLES
.
193
LIST
OF
FIGURES
.
197
IV |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Hagemann, Sven 1969- Mönig, Heike |
author_GND | (DE-588)122054644 |
author_facet | Hagemann, Sven 1969- Mönig, Heike |
author_role | aut aut |
author_sort | Hagemann, Sven 1969- |
author_variant | s h sh h m hm |
building | Verbundindex |
bvnumber | BV047657106 |
classification_tum | NUC 853 NUC 860 |
ctrlnum | (OCoLC)1291305944 (DE-599)DNB1244796050 |
discipline | Energietechnik, Energiewirtschaft |
discipline_str_mv | Energietechnik, Energiewirtschaft |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01795nam a2200397 cb4500</leader><controlfield tag="001">BV047657106</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220822 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220103s2021 gw a||| t||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1244796050</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783947685738</subfield><subfield code="c">Broschur</subfield><subfield code="9">978-3-947685-73-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1291305944</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1244796050</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-12</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NUC 853</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NUC 860</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hagemann, Sven</subfield><subfield code="d">1969-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122054644</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability of iron corrosion phases expected in a repository in lower cretaceous clay</subfield><subfield code="c">Sven Hagemann, Heike Mönig ; Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Köln ; Garching b. München ; Berlin ; Braunschweig</subfield><subfield code="b">Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH</subfield><subfield code="c">September 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IV, 199 Seiten</subfield><subfield code="b">Illustrationen, Diagramme, Karten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">GRS</subfield><subfield code="v">587</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis Seite 161-192</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4155043-2</subfield><subfield code="a">Forschungsbericht</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mönig, Heike</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Gesellschaft für Anlagen- und Reaktorsicherheit</subfield><subfield code="0">(DE-588)5073531-7</subfield><subfield code="4">isb</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">GRS</subfield><subfield code="v">587</subfield><subfield code="w">(DE-604)BV008889593</subfield><subfield code="9">587</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1244796050/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033042013&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033042013</subfield></datafield></record></collection> |
genre | (DE-588)4155043-2 Forschungsbericht gnd-content |
genre_facet | Forschungsbericht |
id | DE-604.BV047657106 |
illustrated | Illustrated |
index_date | 2024-07-03T18:51:24Z |
indexdate | 2024-07-10T09:18:28Z |
institution | BVB |
institution_GND | (DE-588)5073531-7 |
isbn | 9783947685738 |
language | English German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033042013 |
oclc_num | 1291305944 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-12 |
owner_facet | DE-91 DE-BY-TUM DE-12 |
physical | IV, 199 Seiten Illustrationen, Diagramme, Karten |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH |
record_format | marc |
series | GRS |
series2 | GRS |
spelling | Hagemann, Sven 1969- Verfasser (DE-588)122054644 aut Stability of iron corrosion phases expected in a repository in lower cretaceous clay Sven Hagemann, Heike Mönig ; Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH Köln ; Garching b. München ; Berlin ; Braunschweig Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH September 2021 IV, 199 Seiten Illustrationen, Diagramme, Karten txt rdacontent n rdamedia nc rdacarrier GRS 587 Literaturverzeichnis Seite 161-192 (DE-588)4155043-2 Forschungsbericht gnd-content Mönig, Heike Verfasser aut Gesellschaft für Anlagen- und Reaktorsicherheit (DE-588)5073531-7 isb GRS 587 (DE-604)BV008889593 587 B:DE-101 application/pdf https://d-nb.info/1244796050/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033042013&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hagemann, Sven 1969- Mönig, Heike Stability of iron corrosion phases expected in a repository in lower cretaceous clay GRS |
subject_GND | (DE-588)4155043-2 |
title | Stability of iron corrosion phases expected in a repository in lower cretaceous clay |
title_auth | Stability of iron corrosion phases expected in a repository in lower cretaceous clay |
title_exact_search | Stability of iron corrosion phases expected in a repository in lower cretaceous clay |
title_exact_search_txtP | Stability of iron corrosion phases expected in a repository in lower cretaceous clay |
title_full | Stability of iron corrosion phases expected in a repository in lower cretaceous clay Sven Hagemann, Heike Mönig ; Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH |
title_fullStr | Stability of iron corrosion phases expected in a repository in lower cretaceous clay Sven Hagemann, Heike Mönig ; Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH |
title_full_unstemmed | Stability of iron corrosion phases expected in a repository in lower cretaceous clay Sven Hagemann, Heike Mönig ; Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH |
title_short | Stability of iron corrosion phases expected in a repository in lower cretaceous clay |
title_sort | stability of iron corrosion phases expected in a repository in lower cretaceous clay |
topic_facet | Forschungsbericht |
url | https://d-nb.info/1244796050/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033042013&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008889593 |
work_keys_str_mv | AT hagemannsven stabilityofironcorrosionphasesexpectedinarepositoryinlowercretaceousclay AT monigheike stabilityofironcorrosionphasesexpectedinarepositoryinlowercretaceousclay AT gesellschaftfuranlagenundreaktorsicherheit stabilityofironcorrosionphasesexpectedinarepositoryinlowercretaceousclay |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis