Gene regulatory networks: methods and protocols
This volume explores recent techniques for the computational inference of gene regulatory networks (GRNs). The chapters in this book cover topics such as methods to infer GRNs from time-varying data; the extraction of causal information from biological data; GRN inference from multiple heterogeneous...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2019
|
Ausgabe: | 1st ed. 2019 |
Schriftenreihe: | Methods in Molecular Biology
1883 |
Schlagworte: | |
Online-Zugang: | UBR01 TUM01 Volltext |
Zusammenfassung: | This volume explores recent techniques for the computational inference of gene regulatory networks (GRNs). The chapters in this book cover topics such as methods to infer GRNs from time-varying data; the extraction of causal information from biological data; GRN inference from multiple heterogeneous data sets; non-parametric and hybrid statistical methods; the joint inference of differential networks; and mechanistic models of gene regulation dynamics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, descriptions of recently developed methods for GRN inference, applications of these methods on real and/ or simulated biological data, and step-by-step tutorials on the usage of associated software tools. Cutting-edge and thorough, Gene Regulatory Networks: Methods and Protocols is an essential tool for evaluating the current research needed to further address the common challenges faced by specialists in this field |
Beschreibung: | Gene Regulatory Network Inference: An Introductory Survey -- Statistical Network Inference for Time-Varying Molecular Data with Dynamic Bayesian Networks -- Overview and Evaluation of Recent Methods for Statistical Inference of Gene Regulatory Networks from Time Series Data -- Whole-Transcriptome Causal Network Inference with Genomic and Transcriptomic Data -- Causal Queries from Observational Data in Biological Systems via Bayesian Networks: An Empirical Study in Small Networks -- A Multiattribute Gaussian Graphical Model for Inferring Multiscale Regulatory Networks: An Application in Breast Cancer -- Integrative Approaches for Inference of Genome-Scale Gene Regulatory Networks -- Unsupervised Gene Network Inference with Decision Trees and Random Forests -- Tree-Based Learning of Regulatory Network Topologies and Dynamics with Jump3 -- Network Inference from Single-Cell Transcriptomic Data -- Inferring Gene Regulatory Networks from Multiple Datasets -- Unsupervised GRN Ensemble -- Learning Differential Module Networks across Multiple Experimental Conditions -- Stability in GRN Inference -- Gene Regulatory Networks: A Primer in Biological Processes and Statistical Modelling -- Scalable Inference of Ordinary Differential Equation Models of Biochemical Processes |
Beschreibung: | 1 Online-Ressource (XI, 430 Seiten) Illustrationen |
ISBN: | 9781493988822 |
DOI: | 10.1007/978-1-4939-8882-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047638773 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 211214s2019 |||| o||u| ||||||eng d | ||
020 | |a 9781493988822 |c Online |9 978-1-4939-8882-2 | ||
024 | 7 | |a 10.1007/978-1-4939-8882-2 |2 doi | |
035 | |a (ZDB-2-PRO)978-1-4939-8882-2 | ||
035 | |a (OCoLC)1289761335 | ||
035 | |a (DE-599)BVBBV047638773 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-91 | ||
082 | 0 | |a 660.6 | |
245 | 1 | 0 | |a Gene regulatory networks |b methods and protocols |c edited by Guido Sanguinetti, Vân Anh Huynh-Thu |
250 | |a 1st ed. 2019 | ||
264 | 1 | |a New York, NY |b Springer New York |c 2019 | |
300 | |a 1 Online-Ressource (XI, 430 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Methods in Molecular Biology | |
490 | 0 | |a 1883 | |
500 | |a Gene Regulatory Network Inference: An Introductory Survey -- Statistical Network Inference for Time-Varying Molecular Data with Dynamic Bayesian Networks -- Overview and Evaluation of Recent Methods for Statistical Inference of Gene Regulatory Networks from Time Series Data -- Whole-Transcriptome Causal Network Inference with Genomic and Transcriptomic Data -- Causal Queries from Observational Data in Biological Systems via Bayesian Networks: An Empirical Study in Small Networks -- A Multiattribute Gaussian Graphical Model for Inferring Multiscale Regulatory Networks: An Application in Breast Cancer -- Integrative Approaches for Inference of Genome-Scale Gene Regulatory Networks -- Unsupervised Gene Network Inference with Decision Trees and Random Forests -- Tree-Based Learning of Regulatory Network Topologies and Dynamics with Jump3 -- Network Inference from Single-Cell Transcriptomic Data -- Inferring Gene Regulatory Networks from Multiple Datasets -- Unsupervised GRN Ensemble -- Learning Differential Module Networks across Multiple Experimental Conditions -- Stability in GRN Inference -- Gene Regulatory Networks: A Primer in Biological Processes and Statistical Modelling -- Scalable Inference of Ordinary Differential Equation Models of Biochemical Processes | ||
520 | |a This volume explores recent techniques for the computational inference of gene regulatory networks (GRNs). The chapters in this book cover topics such as methods to infer GRNs from time-varying data; the extraction of causal information from biological data; GRN inference from multiple heterogeneous data sets; non-parametric and hybrid statistical methods; the joint inference of differential networks; and mechanistic models of gene regulation dynamics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, descriptions of recently developed methods for GRN inference, applications of these methods on real and/ or simulated biological data, and step-by-step tutorials on the usage of associated software tools. Cutting-edge and thorough, Gene Regulatory Networks: Methods and Protocols is an essential tool for evaluating the current research needed to further address the common challenges faced by specialists in this field | ||
650 | 4 | |a Biotechnology | |
700 | 1 | |a Sanguinetti, Guido |d 1974- |0 (DE-588)1247564487 |4 edt | |
700 | 1 | |a Huynh-Thu, Vân Anh |d ca. 20./21. Jh. |0 (DE-588)1247564983 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4939-8883-9 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4939-8882-2 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-PRO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033023012 | ||
966 | e | |u https://doi.org/10.1007/978-1-4939-8882-2 |l UBR01 |p ZDB-2-PRO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-8882-2 |l TUM01 |p ZDB-2-PRO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804183090669551616 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Sanguinetti, Guido 1974- Huynh-Thu, Vân Anh ca. 20./21. Jh |
author2_role | edt edt |
author2_variant | g s gs v a h t vah vaht |
author_GND | (DE-588)1247564487 (DE-588)1247564983 |
author_facet | Sanguinetti, Guido 1974- Huynh-Thu, Vân Anh ca. 20./21. Jh |
building | Verbundindex |
bvnumber | BV047638773 |
collection | ZDB-2-PRO |
ctrlnum | (ZDB-2-PRO)978-1-4939-8882-2 (OCoLC)1289761335 (DE-599)BVBBV047638773 |
dewey-full | 660.6 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 660 - Chemical engineering |
dewey-raw | 660.6 |
dewey-search | 660.6 |
dewey-sort | 3660.6 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie |
discipline_str_mv | Chemie / Pharmazie |
doi_str_mv | 10.1007/978-1-4939-8882-2 |
edition | 1st ed. 2019 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03870nmm a2200433zc 4500</leader><controlfield tag="001">BV047638773</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">211214s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781493988822</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4939-8882-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4939-8882-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-PRO)978-1-4939-8882-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1289761335</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047638773</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.6</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gene regulatory networks</subfield><subfield code="b">methods and protocols</subfield><subfield code="c">edited by Guido Sanguinetti, Vân Anh Huynh-Thu</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2019</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 430 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Methods in Molecular Biology</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">1883</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Gene Regulatory Network Inference: An Introductory Survey -- Statistical Network Inference for Time-Varying Molecular Data with Dynamic Bayesian Networks -- Overview and Evaluation of Recent Methods for Statistical Inference of Gene Regulatory Networks from Time Series Data -- Whole-Transcriptome Causal Network Inference with Genomic and Transcriptomic Data -- Causal Queries from Observational Data in Biological Systems via Bayesian Networks: An Empirical Study in Small Networks -- A Multiattribute Gaussian Graphical Model for Inferring Multiscale Regulatory Networks: An Application in Breast Cancer -- Integrative Approaches for Inference of Genome-Scale Gene Regulatory Networks -- Unsupervised Gene Network Inference with Decision Trees and Random Forests -- Tree-Based Learning of Regulatory Network Topologies and Dynamics with Jump3 -- Network Inference from Single-Cell Transcriptomic Data -- Inferring Gene Regulatory Networks from Multiple Datasets -- Unsupervised GRN Ensemble -- Learning Differential Module Networks across Multiple Experimental Conditions -- Stability in GRN Inference -- Gene Regulatory Networks: A Primer in Biological Processes and Statistical Modelling -- Scalable Inference of Ordinary Differential Equation Models of Biochemical Processes</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This volume explores recent techniques for the computational inference of gene regulatory networks (GRNs). The chapters in this book cover topics such as methods to infer GRNs from time-varying data; the extraction of causal information from biological data; GRN inference from multiple heterogeneous data sets; non-parametric and hybrid statistical methods; the joint inference of differential networks; and mechanistic models of gene regulation dynamics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, descriptions of recently developed methods for GRN inference, applications of these methods on real and/ or simulated biological data, and step-by-step tutorials on the usage of associated software tools. Cutting-edge and thorough, Gene Regulatory Networks: Methods and Protocols is an essential tool for evaluating the current research needed to further address the common challenges faced by specialists in this field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanguinetti, Guido</subfield><subfield code="d">1974-</subfield><subfield code="0">(DE-588)1247564487</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huynh-Thu, Vân Anh</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1247564983</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4939-8883-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4939-8882-2</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PRO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033023012</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-8882-2</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-2-PRO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-8882-2</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-PRO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047638773 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:47:20Z |
indexdate | 2024-07-10T09:17:55Z |
institution | BVB |
isbn | 9781493988822 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033023012 |
oclc_num | 1289761335 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-91 DE-BY-TUM |
owner_facet | DE-355 DE-BY-UBR DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (XI, 430 Seiten) Illustrationen |
psigel | ZDB-2-PRO |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Springer New York |
record_format | marc |
series2 | Methods in Molecular Biology 1883 |
spelling | Gene regulatory networks methods and protocols edited by Guido Sanguinetti, Vân Anh Huynh-Thu 1st ed. 2019 New York, NY Springer New York 2019 1 Online-Ressource (XI, 430 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Methods in Molecular Biology 1883 Gene Regulatory Network Inference: An Introductory Survey -- Statistical Network Inference for Time-Varying Molecular Data with Dynamic Bayesian Networks -- Overview and Evaluation of Recent Methods for Statistical Inference of Gene Regulatory Networks from Time Series Data -- Whole-Transcriptome Causal Network Inference with Genomic and Transcriptomic Data -- Causal Queries from Observational Data in Biological Systems via Bayesian Networks: An Empirical Study in Small Networks -- A Multiattribute Gaussian Graphical Model for Inferring Multiscale Regulatory Networks: An Application in Breast Cancer -- Integrative Approaches for Inference of Genome-Scale Gene Regulatory Networks -- Unsupervised Gene Network Inference with Decision Trees and Random Forests -- Tree-Based Learning of Regulatory Network Topologies and Dynamics with Jump3 -- Network Inference from Single-Cell Transcriptomic Data -- Inferring Gene Regulatory Networks from Multiple Datasets -- Unsupervised GRN Ensemble -- Learning Differential Module Networks across Multiple Experimental Conditions -- Stability in GRN Inference -- Gene Regulatory Networks: A Primer in Biological Processes and Statistical Modelling -- Scalable Inference of Ordinary Differential Equation Models of Biochemical Processes This volume explores recent techniques for the computational inference of gene regulatory networks (GRNs). The chapters in this book cover topics such as methods to infer GRNs from time-varying data; the extraction of causal information from biological data; GRN inference from multiple heterogeneous data sets; non-parametric and hybrid statistical methods; the joint inference of differential networks; and mechanistic models of gene regulation dynamics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, descriptions of recently developed methods for GRN inference, applications of these methods on real and/ or simulated biological data, and step-by-step tutorials on the usage of associated software tools. Cutting-edge and thorough, Gene Regulatory Networks: Methods and Protocols is an essential tool for evaluating the current research needed to further address the common challenges faced by specialists in this field Biotechnology Sanguinetti, Guido 1974- (DE-588)1247564487 edt Huynh-Thu, Vân Anh ca. 20./21. Jh. (DE-588)1247564983 edt Erscheint auch als Druck-Ausgabe 978-1-4939-8883-9 https://doi.org/10.1007/978-1-4939-8882-2 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Gene regulatory networks methods and protocols Biotechnology |
title | Gene regulatory networks methods and protocols |
title_auth | Gene regulatory networks methods and protocols |
title_exact_search | Gene regulatory networks methods and protocols |
title_exact_search_txtP | Gene regulatory networks methods and protocols |
title_full | Gene regulatory networks methods and protocols edited by Guido Sanguinetti, Vân Anh Huynh-Thu |
title_fullStr | Gene regulatory networks methods and protocols edited by Guido Sanguinetti, Vân Anh Huynh-Thu |
title_full_unstemmed | Gene regulatory networks methods and protocols edited by Guido Sanguinetti, Vân Anh Huynh-Thu |
title_short | Gene regulatory networks |
title_sort | gene regulatory networks methods and protocols |
title_sub | methods and protocols |
topic | Biotechnology |
topic_facet | Biotechnology |
url | https://doi.org/10.1007/978-1-4939-8882-2 |
work_keys_str_mv | AT sanguinettiguido generegulatorynetworksmethodsandprotocols AT huynhthuvananh generegulatorynetworksmethodsandprotocols |