Reinforcement learning: an introduction
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning wher...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, Massachusetts ; London, England
The MIT Press
[2018]
|
Ausgabe: | Second edition |
Schriftenreihe: | Adaptive computation and machine learning
|
Schlagworte: | |
Online-Zugang: | DE-861 DE-2070s DE-706 DE-29 Volltext |
Zusammenfassung: | The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning. |
Beschreibung: | 1 Online-Ressource (xxii, 526 Seiten) Diagramme |
ISBN: | 9780262352703 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV047635278 | ||
003 | DE-604 | ||
005 | 20241104 | ||
007 | cr|uuu---uuuuu | ||
008 | 211213s2018 xxu|||| o||u| ||||||eng d | ||
020 | |a 9780262352703 |9 978-0-262-35270-3 | ||
035 | |a (ZDB-30-PQE)6260249 | ||
035 | |a (OCoLC)1289776288 | ||
035 | |a (DE-599)BVBBV047635278 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-861 |a DE-2070s |a DE-706 |a DE-29 |a DE-83 | ||
050 | 0 | |a Q325.6 | |
082 | 0 | |a 006.3/1 |2 23 | |
084 | |a ST 285 |0 (DE-625)143648: |2 rvk | ||
084 | |a QH 740 |0 (DE-625)141614: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
084 | |a DAT 708f |2 stub | ||
100 | 1 | |a Sutton, Richard S. |e Verfasser |0 (DE-588)1099442435 |4 aut | |
245 | 1 | 0 | |a Reinforcement learning |b an introduction |c Richard S. Sutton and Andrew G. Barto |
250 | |a Second edition | ||
264 | 1 | |a Cambridge, Massachusetts ; London, England |b The MIT Press |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a 1 Online-Ressource (xxii, 526 Seiten) |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Adaptive computation and machine learning | |
520 | |a The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning. | ||
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Barto, Andrew |e Verfasser |0 (DE-588)1099442664 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-262-03924-6 |
856 | 4 | 0 | |u https://www.dbooks.org/reinforcement-learning-0262039249/read/ |x Aggregator |z kostenfrei |3 Volltext |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033019579 | |
966 | e | |u https://ebookcentral.proquest.com/lib/fh-rosenheim/detail.action?docID=6260249 |l DE-861 |p ZDB-30-PQE |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6260249 |l DE-2070s |p ZDB-30-PQE |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=6260249 |l DE-706 |p ZDB-30-PQE |q UBY01_Einzelkauf22 |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/erlangen/detail.action?docID=6260249 |l DE-29 |p ZDB-30-PQE |q UER_Einzelkauf_2023 |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1814812037928189952 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Sutton, Richard S. Barto, Andrew |
author_GND | (DE-588)1099442435 (DE-588)1099442664 |
author_facet | Sutton, Richard S. Barto, Andrew |
author_role | aut aut |
author_sort | Sutton, Richard S. |
author_variant | r s s rs rss a b ab |
building | Verbundindex |
bvnumber | BV047635278 |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.6 |
callnumber-search | Q325.6 |
callnumber-sort | Q 3325.6 |
callnumber-subject | Q - General Science |
classification_rvk | ST 285 QH 740 ST 300 ST 302 |
classification_tum | DAT 708f |
collection | ZDB-30-PQE |
ctrlnum | (ZDB-30-PQE)6260249 (OCoLC)1289776288 (DE-599)BVBBV047635278 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Wirtschaftswissenschaften |
discipline_str_mv | Informatik Wirtschaftswissenschaften |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000 c 4500</leader><controlfield tag="001">BV047635278</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241104</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">211213s2018 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262352703</subfield><subfield code="9">978-0-262-35270-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)6260249</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1289776288</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047635278</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-861</subfield><subfield code="a">DE-2070s</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q325.6</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 285</subfield><subfield code="0">(DE-625)143648:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 740</subfield><subfield code="0">(DE-625)141614:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sutton, Richard S.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1099442435</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reinforcement learning</subfield><subfield code="b">an introduction</subfield><subfield code="c">Richard S. Sutton and Andrew G. Barto</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Massachusetts ; London, England</subfield><subfield code="b">The MIT Press</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxii, 526 Seiten)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Adaptive computation and machine learning</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barto, Andrew</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1099442664</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-262-03924-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.dbooks.org/reinforcement-learning-0262039249/read/</subfield><subfield code="x">Aggregator</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033019579</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/fh-rosenheim/detail.action?docID=6260249</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6260249</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=6260249</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBY01_Einzelkauf22</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/erlangen/detail.action?docID=6260249</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UER_Einzelkauf_2023</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047635278 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:46:35Z |
indexdate | 2024-11-04T17:00:29Z |
institution | BVB |
isbn | 9780262352703 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033019579 |
oclc_num | 1289776288 |
open_access_boolean | 1 |
owner | DE-861 DE-2070s DE-706 DE-29 DE-83 |
owner_facet | DE-861 DE-2070s DE-706 DE-29 DE-83 |
physical | 1 Online-Ressource (xxii, 526 Seiten) Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE UBY01_Einzelkauf22 ZDB-30-PQE UER_Einzelkauf_2023 |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | The MIT Press |
record_format | marc |
series2 | Adaptive computation and machine learning |
spelling | Sutton, Richard S. Verfasser (DE-588)1099442435 aut Reinforcement learning an introduction Richard S. Sutton and Andrew G. Barto Second edition Cambridge, Massachusetts ; London, England The MIT Press [2018] © 2018 1 Online-Ressource (xxii, 526 Seiten) Diagramme txt rdacontent c rdamedia cr rdacarrier Adaptive computation and machine learning The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning. Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 s Maschinelles Lernen (DE-588)4193754-5 s DE-604 Barto, Andrew Verfasser (DE-588)1099442664 aut Erscheint auch als Druck-Ausgabe 978-0-262-03924-6 https://www.dbooks.org/reinforcement-learning-0262039249/read/ Aggregator kostenfrei Volltext |
spellingShingle | Sutton, Richard S. Barto, Andrew Reinforcement learning an introduction Künstliche Intelligenz (DE-588)4033447-8 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4033447-8 (DE-588)4193754-5 |
title | Reinforcement learning an introduction |
title_auth | Reinforcement learning an introduction |
title_exact_search | Reinforcement learning an introduction |
title_exact_search_txtP | Reinforcement learning an introduction |
title_full | Reinforcement learning an introduction Richard S. Sutton and Andrew G. Barto |
title_fullStr | Reinforcement learning an introduction Richard S. Sutton and Andrew G. Barto |
title_full_unstemmed | Reinforcement learning an introduction Richard S. Sutton and Andrew G. Barto |
title_short | Reinforcement learning |
title_sort | reinforcement learning an introduction |
title_sub | an introduction |
topic | Künstliche Intelligenz (DE-588)4033447-8 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Künstliche Intelligenz Maschinelles Lernen |
url | https://www.dbooks.org/reinforcement-learning-0262039249/read/ |
work_keys_str_mv | AT suttonrichards reinforcementlearninganintroduction AT bartoandrew reinforcementlearninganintroduction |