Data analytics for the social sciences: Applications in R
Data Analytics for the Social Sciences is an introductory, graduate-level treatment of data analytics for social science. It features applications in the R language, arguably the fastest growing and leading statistical tool for researchers. The book starts with an ethics chapter on the uses and pote...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London ; New York
Routledge
2022
|
Schlagworte: | |
Zusammenfassung: | Data Analytics for the Social Sciences is an introductory, graduate-level treatment of data analytics for social science. It features applications in the R language, arguably the fastest growing and leading statistical tool for researchers. The book starts with an ethics chapter on the uses and potential abuses of data analytics. Chapters 2 and 3 show how to implement a broad range of statistical procedures in R. Chapters 4 and 5 deal with regression and classification trees and with random forests. Chapter 6 deals with machine learning models and the "caret" package, which makes available to the researcher hundreds of models. Chapter 7 deals with neural network analysis, and Chapter 8 deals with network analysis and visualization of network data. A final chapter treats text analysis, including web scraping, comparative word frequency tables, word clouds, word maps, sentiment analysis, topic analysis, and more. All empirical chapters have two "Quick Start" exercises designed to allow quick immersion in chapter topics, followed by "In Depth" coverage. Data are available for all examples and runnable R code is provided in a "Command Summary". An appendix provides an extended tutorial on R and RStudio. Almost 30 online supplements provide information for the complete book, "books within the book" on a variety of topics, such as agent-based modeling. Rather than focusing on equations, derivations, and proofs, this book emphasizes hands-on obtaining of output for various social science models and how to interpret the output. It is suitable for all advanced level undergraduate and graduate students learning statistical data analysis |
Beschreibung: | xviii, 686 Seiten Illustrationen, Diagramme Breite 210 mm, Hoehe 280 mm |
ISBN: | 9780367624279 9780367624293 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047627401 | ||
003 | DE-604 | ||
005 | 20220119 | ||
007 | t | ||
008 | 211206s2022 a||| |||| 00||| eng d | ||
020 | |a 9780367624279 |c Kartoniert, Paperback : EUR 94,35 |9 978-0-367-62427-9 | ||
020 | |a 9780367624293 |c Hb. |9 978-0-367-62429-3 | ||
035 | |a (DE-599)BVBBV047627401 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
100 | 1 | |a Garson, G. David |d 1943- |e Verfasser |0 (DE-588)124964753 |4 aut | |
245 | 1 | 0 | |a Data analytics for the social sciences |b Applications in R |c G. David Garson |
264 | 1 | |a London ; New York |b Routledge |c 2022 | |
300 | |a xviii, 686 Seiten |b Illustrationen, Diagramme |c Breite 210 mm, Hoehe 280 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | |a Data Analytics for the Social Sciences is an introductory, graduate-level treatment of data analytics for social science. It features applications in the R language, arguably the fastest growing and leading statistical tool for researchers. The book starts with an ethics chapter on the uses and potential abuses of data analytics. Chapters 2 and 3 show how to implement a broad range of statistical procedures in R. Chapters 4 and 5 deal with regression and classification trees and with random forests. Chapter 6 deals with machine learning models and the "caret" package, which makes available to the researcher hundreds of models. Chapter 7 deals with neural network analysis, and Chapter 8 deals with network analysis and visualization of network data. A final chapter treats text analysis, including web scraping, comparative word frequency tables, word clouds, word maps, sentiment analysis, topic analysis, and more. All empirical chapters have two "Quick Start" exercises designed to allow quick immersion in chapter topics, followed by "In Depth" coverage. Data are available for all examples and runnable R code is provided in a "Command Summary". An appendix provides an extended tutorial on R and RStudio. Almost 30 online supplements provide information for the complete book, "books within the book" on a variety of topics, such as agent-based modeling. Rather than focusing on equations, derivations, and proofs, this book emphasizes hands-on obtaining of output for various social science models and how to interpret the output. It is suitable for all advanced level undergraduate and graduate students learning statistical data analysis | ||
650 | 0 | 7 | |a Sozialwissenschaften |0 (DE-588)4055916-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a R |g Programm |0 (DE-588)4705956-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sozialwissenschaften |0 (DE-588)4055916-6 |D s |
689 | 0 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 2 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-003-10939-6 |
999 | |a oai:aleph.bib-bvb.de:BVB01-033011884 |
Datensatz im Suchindex
_version_ | 1804183070516969472 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Garson, G. David 1943- |
author_GND | (DE-588)124964753 |
author_facet | Garson, G. David 1943- |
author_role | aut |
author_sort | Garson, G. David 1943- |
author_variant | g d g gd gdg |
building | Verbundindex |
bvnumber | BV047627401 |
ctrlnum | (DE-599)BVBBV047627401 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02989nam a2200361 c 4500</leader><controlfield tag="001">BV047627401</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220119 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">211206s2022 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780367624279</subfield><subfield code="c">Kartoniert, Paperback : EUR 94,35</subfield><subfield code="9">978-0-367-62427-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780367624293</subfield><subfield code="c">Hb.</subfield><subfield code="9">978-0-367-62429-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047627401</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Garson, G. David</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124964753</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data analytics for the social sciences</subfield><subfield code="b">Applications in R</subfield><subfield code="c">G. David Garson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London ; New York</subfield><subfield code="b">Routledge</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 686 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">Breite 210 mm, Hoehe 280 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Data Analytics for the Social Sciences is an introductory, graduate-level treatment of data analytics for social science. It features applications in the R language, arguably the fastest growing and leading statistical tool for researchers. The book starts with an ethics chapter on the uses and potential abuses of data analytics. Chapters 2 and 3 show how to implement a broad range of statistical procedures in R. Chapters 4 and 5 deal with regression and classification trees and with random forests. Chapter 6 deals with machine learning models and the "caret" package, which makes available to the researcher hundreds of models. Chapter 7 deals with neural network analysis, and Chapter 8 deals with network analysis and visualization of network data. A final chapter treats text analysis, including web scraping, comparative word frequency tables, word clouds, word maps, sentiment analysis, topic analysis, and more. All empirical chapters have two "Quick Start" exercises designed to allow quick immersion in chapter topics, followed by "In Depth" coverage. Data are available for all examples and runnable R code is provided in a "Command Summary". An appendix provides an extended tutorial on R and RStudio. Almost 30 online supplements provide information for the complete book, "books within the book" on a variety of topics, such as agent-based modeling. Rather than focusing on equations, derivations, and proofs, this book emphasizes hands-on obtaining of output for various social science models and how to interpret the output. It is suitable for all advanced level undergraduate and graduate students learning statistical data analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sozialwissenschaften</subfield><subfield code="0">(DE-588)4055916-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sozialwissenschaften</subfield><subfield code="0">(DE-588)4055916-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-003-10939-6</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033011884</subfield></datafield></record></collection> |
id | DE-604.BV047627401 |
illustrated | Illustrated |
index_date | 2024-07-03T18:44:38Z |
indexdate | 2024-07-10T09:17:36Z |
institution | BVB |
isbn | 9780367624279 9780367624293 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033011884 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | xviii, 686 Seiten Illustrationen, Diagramme Breite 210 mm, Hoehe 280 mm |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Routledge |
record_format | marc |
spelling | Garson, G. David 1943- Verfasser (DE-588)124964753 aut Data analytics for the social sciences Applications in R G. David Garson London ; New York Routledge 2022 xviii, 686 Seiten Illustrationen, Diagramme Breite 210 mm, Hoehe 280 mm txt rdacontent n rdamedia nc rdacarrier Data Analytics for the Social Sciences is an introductory, graduate-level treatment of data analytics for social science. It features applications in the R language, arguably the fastest growing and leading statistical tool for researchers. The book starts with an ethics chapter on the uses and potential abuses of data analytics. Chapters 2 and 3 show how to implement a broad range of statistical procedures in R. Chapters 4 and 5 deal with regression and classification trees and with random forests. Chapter 6 deals with machine learning models and the "caret" package, which makes available to the researcher hundreds of models. Chapter 7 deals with neural network analysis, and Chapter 8 deals with network analysis and visualization of network data. A final chapter treats text analysis, including web scraping, comparative word frequency tables, word clouds, word maps, sentiment analysis, topic analysis, and more. All empirical chapters have two "Quick Start" exercises designed to allow quick immersion in chapter topics, followed by "In Depth" coverage. Data are available for all examples and runnable R code is provided in a "Command Summary". An appendix provides an extended tutorial on R and RStudio. Almost 30 online supplements provide information for the complete book, "books within the book" on a variety of topics, such as agent-based modeling. Rather than focusing on equations, derivations, and proofs, this book emphasizes hands-on obtaining of output for various social science models and how to interpret the output. It is suitable for all advanced level undergraduate and graduate students learning statistical data analysis Sozialwissenschaften (DE-588)4055916-6 gnd rswk-swf R Programm (DE-588)4705956-4 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Sozialwissenschaften (DE-588)4055916-6 s Datenanalyse (DE-588)4123037-1 s R Programm (DE-588)4705956-4 s DE-604 Erscheint auch als Online-Ausgabe 978-1-003-10939-6 |
spellingShingle | Garson, G. David 1943- Data analytics for the social sciences Applications in R Sozialwissenschaften (DE-588)4055916-6 gnd R Programm (DE-588)4705956-4 gnd Datenanalyse (DE-588)4123037-1 gnd |
subject_GND | (DE-588)4055916-6 (DE-588)4705956-4 (DE-588)4123037-1 |
title | Data analytics for the social sciences Applications in R |
title_auth | Data analytics for the social sciences Applications in R |
title_exact_search | Data analytics for the social sciences Applications in R |
title_exact_search_txtP | Data analytics for the social sciences Applications in R |
title_full | Data analytics for the social sciences Applications in R G. David Garson |
title_fullStr | Data analytics for the social sciences Applications in R G. David Garson |
title_full_unstemmed | Data analytics for the social sciences Applications in R G. David Garson |
title_short | Data analytics for the social sciences |
title_sort | data analytics for the social sciences applications in r |
title_sub | Applications in R |
topic | Sozialwissenschaften (DE-588)4055916-6 gnd R Programm (DE-588)4705956-4 gnd Datenanalyse (DE-588)4123037-1 gnd |
topic_facet | Sozialwissenschaften R Programm Datenanalyse |
work_keys_str_mv | AT garsongdavid dataanalyticsforthesocialsciencesapplicationsinr |