Transcriptome data analysis: methods and protocols
This detailed volume provides comprehensive practical guidance on transcriptome data analysis for a variety of scientific purposes. Beginning with general protocols, the collection moves on to explore protocols for gene characterization analysis with RNA-seq data as well as protocols on several new...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2018
|
Ausgabe: | 1st ed. 2018 |
Schriftenreihe: | Methods in Molecular Biology
1751 |
Schlagworte: | |
Online-Zugang: | DE-355 DE-91 Volltext |
Zusammenfassung: | This detailed volume provides comprehensive practical guidance on transcriptome data analysis for a variety of scientific purposes. Beginning with general protocols, the collection moves on to explore protocols for gene characterization analysis with RNA-seq data as well as protocols on several new applications of transcriptome studies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and useful, Transcriptome Data Analysis: Methods and Protocols serves as an ideal guide to the expanding purposes of this field of study |
Beschreibung: | Comparison of Gene Expression Profiles in Non-Model Eukaryotic Organisms with RNA-Seq -- Microarray Data Analysis for Transcriptome Profiling -- Pathway and Network Analysis of Differentially Expressed Genes in Transcriptomes -- QuickRNASeq: Guide for Pipeline Implementation and for Interactive Results Visualization -- Tracking Alternatively Spliced Isoforms from Long Reads by SpliceHunter -- RNA-Seq-Based Transcript Structure Analysis with TrBorderExt -- Analysis of RNA Editing Sites from RNA-Seq Data Using GIREMI -- Bioinformatic Analysis of MicroRNA Sequencing Data -- Microarray-Based MicroRNA Expression Data Analysis with Bioconductor -- Identification and Expression Analysis of Long Intergenic Non-Coding RNAs -- Analysis of RNA-Seq Data Using TEtranscripts -- Computational Analysis of RNA-Protein Interactions via Deep Sequencing -- Predicting Gene Expression Noise from Gene Expression Variations -- A Protocol for Epigenetic Imprinting Analysis with RNA-Seq Data -- Single-Cell Transcriptome Analysis Using SINCERA Pipeline -- Mathematical Modeling and Deconvolution of Molecular Heterogeneity Identifies Novel Subpopulations in Complex Tissues |
Beschreibung: | 1 Online-Ressource (X, 238 Seiten) Illustrationen |
ISBN: | 9781493977109 |
DOI: | 10.1007/978-1-4939-7710-9 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047626807 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 211206s2018 xx a||| o|||| 00||| eng d | ||
020 | |a 9781493977109 |c Online |9 978-1-4939-7710-9 | ||
024 | 7 | |a 10.1007/978-1-4939-7710-9 |2 doi | |
035 | |a (ZDB-2-PRO)978-1-4939-7710-9 | ||
035 | |a (OCoLC)1289779107 | ||
035 | |a (DE-599)BVBBV047626807 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-91 | ||
082 | 0 | |a 611.01816 | |
082 | 0 | |a 599.935 | |
084 | |a WC 7700 |0 (DE-625)148144: |2 rvk | ||
245 | 1 | 0 | |a Transcriptome data analysis |b methods and protocols |c edited by Yejun Wang, Ming-an Sun |
250 | |a 1st ed. 2018 | ||
264 | 1 | |a New York, NY |b Springer New York |c 2018 | |
300 | |a 1 Online-Ressource (X, 238 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Methods in Molecular Biology | |
490 | 0 | |a 1751 | |
500 | |a Comparison of Gene Expression Profiles in Non-Model Eukaryotic Organisms with RNA-Seq -- Microarray Data Analysis for Transcriptome Profiling -- Pathway and Network Analysis of Differentially Expressed Genes in Transcriptomes -- QuickRNASeq: Guide for Pipeline Implementation and for Interactive Results Visualization -- Tracking Alternatively Spliced Isoforms from Long Reads by SpliceHunter -- RNA-Seq-Based Transcript Structure Analysis with TrBorderExt -- Analysis of RNA Editing Sites from RNA-Seq Data Using GIREMI -- Bioinformatic Analysis of MicroRNA Sequencing Data -- Microarray-Based MicroRNA Expression Data Analysis with Bioconductor -- Identification and Expression Analysis of Long Intergenic Non-Coding RNAs -- Analysis of RNA-Seq Data Using TEtranscripts -- Computational Analysis of RNA-Protein Interactions via Deep Sequencing -- Predicting Gene Expression Noise from Gene Expression Variations -- A Protocol for Epigenetic Imprinting Analysis with RNA-Seq Data -- Single-Cell Transcriptome Analysis Using SINCERA Pipeline -- Mathematical Modeling and Deconvolution of Molecular Heterogeneity Identifies Novel Subpopulations in Complex Tissues | ||
520 | |a This detailed volume provides comprehensive practical guidance on transcriptome data analysis for a variety of scientific purposes. Beginning with general protocols, the collection moves on to explore protocols for gene characterization analysis with RNA-seq data as well as protocols on several new applications of transcriptome studies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and useful, Transcriptome Data Analysis: Methods and Protocols serves as an ideal guide to the expanding purposes of this field of study | ||
650 | 4 | |a Human genetics | |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Transkriptom |0 (DE-588)4775955-0 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Transkriptom |0 (DE-588)4775955-0 |D s |
689 | 0 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Wang, Yejun |0 (DE-588)1182583512 |4 edt | |
700 | 1 | |a Sun, Ming-an |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781493977093 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781493977116 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781493992645 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4939-7710-9 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-PRO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033011298 | |
966 | e | |u https://doi.org/10.1007/978-1-4939-7710-9 |l DE-355 |p ZDB-2-PRO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-7710-9 |l DE-91 |p ZDB-2-PRO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1826000768188022784 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Wang, Yejun Sun, Ming-an |
author2_role | edt edt |
author2_variant | y w yw m a s mas |
author_GND | (DE-588)1182583512 |
author_facet | Wang, Yejun Sun, Ming-an |
building | Verbundindex |
bvnumber | BV047626807 |
classification_rvk | WC 7700 |
collection | ZDB-2-PRO |
ctrlnum | (ZDB-2-PRO)978-1-4939-7710-9 (OCoLC)1289779107 (DE-599)BVBBV047626807 |
dewey-full | 611.01816 599.935 |
dewey-hundreds | 600 - Technology (Applied sciences) 500 - Natural sciences and mathematics |
dewey-ones | 611 - Human anatomy, cytology, histology 599 - Mammalia |
dewey-raw | 611.01816 599.935 |
dewey-search | 611.01816 599.935 |
dewey-sort | 3611.01816 |
dewey-tens | 610 - Medicine and health 590 - Animals |
discipline | Biologie Medizin |
discipline_str_mv | Biologie Medizin |
doi_str_mv | 10.1007/978-1-4939-7710-9 |
edition | 1st ed. 2018 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV047626807</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">211206s2018 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781493977109</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4939-7710-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4939-7710-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-PRO)978-1-4939-7710-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1289779107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047626807</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">611.01816</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">599.935</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 7700</subfield><subfield code="0">(DE-625)148144:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transcriptome data analysis</subfield><subfield code="b">methods and protocols</subfield><subfield code="c">edited by Yejun Wang, Ming-an Sun</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2018</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 238 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Methods in Molecular Biology</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">1751</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Comparison of Gene Expression Profiles in Non-Model Eukaryotic Organisms with RNA-Seq -- Microarray Data Analysis for Transcriptome Profiling -- Pathway and Network Analysis of Differentially Expressed Genes in Transcriptomes -- QuickRNASeq: Guide for Pipeline Implementation and for Interactive Results Visualization -- Tracking Alternatively Spliced Isoforms from Long Reads by SpliceHunter -- RNA-Seq-Based Transcript Structure Analysis with TrBorderExt -- Analysis of RNA Editing Sites from RNA-Seq Data Using GIREMI -- Bioinformatic Analysis of MicroRNA Sequencing Data -- Microarray-Based MicroRNA Expression Data Analysis with Bioconductor -- Identification and Expression Analysis of Long Intergenic Non-Coding RNAs -- Analysis of RNA-Seq Data Using TEtranscripts -- Computational Analysis of RNA-Protein Interactions via Deep Sequencing -- Predicting Gene Expression Noise from Gene Expression Variations -- A Protocol for Epigenetic Imprinting Analysis with RNA-Seq Data -- Single-Cell Transcriptome Analysis Using SINCERA Pipeline -- Mathematical Modeling and Deconvolution of Molecular Heterogeneity Identifies Novel Subpopulations in Complex Tissues</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This detailed volume provides comprehensive practical guidance on transcriptome data analysis for a variety of scientific purposes. Beginning with general protocols, the collection moves on to explore protocols for gene characterization analysis with RNA-seq data as well as protocols on several new applications of transcriptome studies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and useful, Transcriptome Data Analysis: Methods and Protocols serves as an ideal guide to the expanding purposes of this field of study</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Human genetics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transkriptom</subfield><subfield code="0">(DE-588)4775955-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Transkriptom</subfield><subfield code="0">(DE-588)4775955-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yejun</subfield><subfield code="0">(DE-588)1182583512</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Ming-an</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781493977093</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781493977116</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781493992645</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4939-7710-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PRO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033011298</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-7710-9</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-2-PRO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-7710-9</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-PRO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV047626807 |
illustrated | Illustrated |
index_date | 2024-07-03T18:44:30Z |
indexdate | 2025-03-08T05:00:34Z |
institution | BVB |
isbn | 9781493977109 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033011298 |
oclc_num | 1289779107 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-91 DE-BY-TUM |
owner_facet | DE-355 DE-BY-UBR DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (X, 238 Seiten) Illustrationen |
psigel | ZDB-2-PRO |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Springer New York |
record_format | marc |
series2 | Methods in Molecular Biology 1751 |
spelling | Transcriptome data analysis methods and protocols edited by Yejun Wang, Ming-an Sun 1st ed. 2018 New York, NY Springer New York 2018 1 Online-Ressource (X, 238 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Methods in Molecular Biology 1751 Comparison of Gene Expression Profiles in Non-Model Eukaryotic Organisms with RNA-Seq -- Microarray Data Analysis for Transcriptome Profiling -- Pathway and Network Analysis of Differentially Expressed Genes in Transcriptomes -- QuickRNASeq: Guide for Pipeline Implementation and for Interactive Results Visualization -- Tracking Alternatively Spliced Isoforms from Long Reads by SpliceHunter -- RNA-Seq-Based Transcript Structure Analysis with TrBorderExt -- Analysis of RNA Editing Sites from RNA-Seq Data Using GIREMI -- Bioinformatic Analysis of MicroRNA Sequencing Data -- Microarray-Based MicroRNA Expression Data Analysis with Bioconductor -- Identification and Expression Analysis of Long Intergenic Non-Coding RNAs -- Analysis of RNA-Seq Data Using TEtranscripts -- Computational Analysis of RNA-Protein Interactions via Deep Sequencing -- Predicting Gene Expression Noise from Gene Expression Variations -- A Protocol for Epigenetic Imprinting Analysis with RNA-Seq Data -- Single-Cell Transcriptome Analysis Using SINCERA Pipeline -- Mathematical Modeling and Deconvolution of Molecular Heterogeneity Identifies Novel Subpopulations in Complex Tissues This detailed volume provides comprehensive practical guidance on transcriptome data analysis for a variety of scientific purposes. Beginning with general protocols, the collection moves on to explore protocols for gene characterization analysis with RNA-seq data as well as protocols on several new applications of transcriptome studies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and useful, Transcriptome Data Analysis: Methods and Protocols serves as an ideal guide to the expanding purposes of this field of study Human genetics Datenanalyse (DE-588)4123037-1 gnd rswk-swf Transkriptom (DE-588)4775955-0 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Transkriptom (DE-588)4775955-0 s Datenanalyse (DE-588)4123037-1 s DE-604 Wang, Yejun (DE-588)1182583512 edt Sun, Ming-an edt Erscheint auch als Druck-Ausgabe 9781493977093 Erscheint auch als Druck-Ausgabe 9781493977116 Erscheint auch als Druck-Ausgabe 9781493992645 https://doi.org/10.1007/978-1-4939-7710-9 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Transcriptome data analysis methods and protocols Human genetics Datenanalyse (DE-588)4123037-1 gnd Transkriptom (DE-588)4775955-0 gnd |
subject_GND | (DE-588)4123037-1 (DE-588)4775955-0 (DE-588)4143413-4 |
title | Transcriptome data analysis methods and protocols |
title_auth | Transcriptome data analysis methods and protocols |
title_exact_search | Transcriptome data analysis methods and protocols |
title_exact_search_txtP | Transcriptome data analysis methods and protocols |
title_full | Transcriptome data analysis methods and protocols edited by Yejun Wang, Ming-an Sun |
title_fullStr | Transcriptome data analysis methods and protocols edited by Yejun Wang, Ming-an Sun |
title_full_unstemmed | Transcriptome data analysis methods and protocols edited by Yejun Wang, Ming-an Sun |
title_short | Transcriptome data analysis |
title_sort | transcriptome data analysis methods and protocols |
title_sub | methods and protocols |
topic | Human genetics Datenanalyse (DE-588)4123037-1 gnd Transkriptom (DE-588)4775955-0 gnd |
topic_facet | Human genetics Datenanalyse Transkriptom Aufsatzsammlung |
url | https://doi.org/10.1007/978-1-4939-7710-9 |
work_keys_str_mv | AT wangyejun transcriptomedataanalysismethodsandprotocols AT sunmingan transcriptomedataanalysismethodsandprotocols |