Sensors in science and technology: functionality and application areas
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Buch |
Sprache: | English German |
Veröffentlicht: |
Wiesbaden
Springer
[2022]
|
Ausgabe: | 1st edition 2022 |
Schlagworte: | |
Online-Zugang: | Inhaltstext http://www.springer.com/ Inhaltsverzeichnis |
Beschreibung: | xxviii, 816 Seiten Illustrationen, Diagramme 24 cm x 16.8 cm |
ISBN: | 9783658349196 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV047616164 | ||
003 | DE-604 | ||
005 | 20220228 | ||
007 | t | ||
008 | 211129s2022 gw a||| |||| 00||| eng d | ||
015 | |a 21,N25 |2 dnb | ||
016 | 7 | |a 1235791785 |2 DE-101 | |
020 | |a 9783658349196 |c Festeinband : circa EUR 128.39 (DE) (freier Preis), circa EUR 131.99 (AT) (freier Preis), circa CHF 141.50 (freier Preis), circa EUR 119.99 |9 978-3-658-34919-6 | ||
024 | 3 | |a 9783658349196 | |
028 | 5 | 2 | |a Bestellnummer: 89075568 |
028 | 5 | 2 | |a Bestellnummer: 978-3-658-34919-6 |
035 | |a (OCoLC)1257413083 | ||
035 | |a (DE-599)DNB1235791785 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 1 | |a eng |h ger | |
044 | |a gw |c XA-DE-HE | ||
049 | |a DE-29T | ||
084 | |8 1\p |a 621.3 |2 23sdnb | ||
130 | 0 | |a Sensoren in Wissenschaft und Technik | |
245 | 1 | 0 | |a Sensors in science and technology |b functionality and application areas |c Ekbert Hering, Gert Schönfelder, editors |
250 | |a 1st edition 2022 | ||
264 | 1 | |a Wiesbaden |b Springer |c [2022] | |
300 | |a xxviii, 816 Seiten |b Illustrationen, Diagramme |c 24 cm x 16.8 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Sensortechnik |0 (DE-588)4121663-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sensor |0 (DE-588)4038824-4 |2 gnd |9 rswk-swf |
653 | |a Acoustical sensors | ||
653 | |a Automation | ||
653 | |a Biological sensors | ||
653 | |a Calibration | ||
653 | |a Chemical sensors | ||
653 | |a Climate sensors | ||
653 | |a Control engineering | ||
653 | |a Electrical and magnetic sensors | ||
653 | |a Electrical engineering | ||
653 | |a Measurement | ||
653 | |a Mechanical engineering | ||
653 | |a Medical sensors | ||
653 | |a Physical sensors | ||
653 | |a Robotics | ||
653 | |a Safety aspects | ||
653 | |a Sensor applications | ||
653 | |a Sensor systems | ||
689 | 0 | 0 | |a Sensor |0 (DE-588)4038824-4 |D s |
689 | 0 | 1 | |a Sensortechnik |0 (DE-588)4121663-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Hering, Ekbert |d 1943- |0 (DE-588)12263019X |4 edt | |
700 | 1 | |a Schönfelder, Gert |0 (DE-588)1155438760 |4 edt | |
710 | 2 | |a Springer Fachmedien Wiesbaden |0 (DE-588)1043386068 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-658-34920-2 |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=66946341edd942f8ab515bc024eeb94a&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m X:MVB |u http://www.springer.com/ |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033000879&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033000879 | ||
883 | 1 | |8 1\p |a vlb |d 20210619 |q DE-101 |u https://d-nb.info/provenance/plan#vlb |
Datensatz im Suchindex
_version_ | 1804183049856876544 |
---|---|
adam_text | 1
SENSOR
SYSTEMS
....................................................................................................
1
EKBERT
HERING
1.1
DEFINITION
AND
MODE
OF
OPERATION
..........................................................
1
1.2
CLASSIFICATION
..............................................................................................
2
2
PHYSICAL
EFFECTS
OF
SENSOR
USE
..........................................................................
5
EKBERT
HERING,
KARL-ERNST
BIEL,
ULRICH
GUTH,
MARTIN
LIESS,
AND
WINFRIED
VONAU
2.1
PIEZOELECTRIC
EFFECT
....................................................................................
5
2.1.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
....................
5
2.1.2
MATERIALS
.......................................................................................
7
2.1.3
APPLICATIONS
................................................................................
8
2.2
RESISTIVE
AND
PIEZORESISTIVE
EFFECT
..........................................................
9
2.2.1
OPERATING
PRINCIPLES
AND
PHYSICAL
DESCRIPTION
........................
9
2.2.2
RESISTIVE
EFFECT
AND
ITS
APPLICATION
BY
MEANS
OF
SGS
..........
11
2.2.3
PIEZORESISTIVE
EFFECT
AND
ITS
APPLICATION
BY
SILICON
SEMICONDUCTOR
ELEMENTS
...........................................................
13
2.2.4
MATERIALS
......................................................................................
13
2.3
MAGNETORESISTIVE
EFFECT
............................................................................
15
2.3.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
....................
15
2.3.1.1
AMR
(ANISOTROPIC
MAGNETO
RESISTANCE)
...............
16
2.3.1.2
GMR
(GIANT
MAGNETO
RESISTANCE)
..........................
18
2.3.1.3
CMR
(COLOSSAL
MAGNETO
RESISTANCE)
....................
19
2.3.1.4
TMR
(TUNNEL
MAGNETO
RESISTANCE)
........................
19
2.3.2
ADVANTAGES
OF
XMR
TECHNOLOGY
.............................................
19
2.3.3
APPLICATIONS
OF
XMR
TECHNOLOGY
...........................................
22
2.4
MAGNETOSTRICTIVE
EFFECT
.............................................................................
25
2.4.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
.....................
25
2.4.2
ADVANTAGES
OF
MAGNETOSTRICTIVE
SENSOR
TECHNOLOGY
.............
26
2.4.3
APPLICATIONS
OF
MAGNETOSTRICTIVE
SENSOR
TECHNOLOGY
............
27
VII
VIII
CONTENTS
2.5
EFFECTS
OF
INDUCTION
...................................................................................
28
2.5.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
.....................
28
2.5.1.1
LAW
OF
INDUCTION
.......................................................
28
2.5.1.2
GENERATION
OF
EDDY
CURRENTS
IN
ELECTRICALLY
CONDUCTIVE
MATERIALS
...............................................
33
2.5.1.3
ELECTROMAGNETIC
OSCILLATING
CIRCUITS
......................
33
2.5.2
ADVANTAGES
OF
INDUCTIVE
SENSOR
TECHNOLOGY
..........................
34
2.5.3
APPLICATIONS
OF
INDUCTIVE
SENSOR
TECHNOLOGY
.........................
35
2.6
EFFECTS
OF
CAPACITANCE
...............................................................................
35
2.6.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
....................
35
2.6.1.1
CAPACITOR
AND
CAPACITANCE
.......................................
36
2.6.1.2
CAPACITANCE
IN
THE
ALTERNATING
CURRENT
CIRCUIT
..
.
41
2.6.2
ADVANTAGES
OF
CAPACITIVE
SENSOR
TECHNOLOGY
........................
46
2.6.3
APPLICATIONS
OF
CAPACITIVE
SENSOR
TECHNOLOGY
......................
47
2.7
GAUSSIAN
EFFECT
..........................................................................................
48
2.7.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
......................
48
2.7.2
APPLICATION
OF
THE
GAUSSIAN
EFFECT
...........................................
50
2.8
HALL
EFFECT
..................................................................................................
52
2.8.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
.....................
52
2.8.2
APPLICATION
OF
THE
HALL
EFFECT
...................................................
54
2.9
EDDY
CURRENT
EFFECT
...................................................................................
55
2.9.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
......................
55
2.9.2
APPLICATION
OF
THE
EDDY
CURRENT
EFFECT
....................................
56
2.10
THERMOELECTRIC
EFFECT
................................................................................
63
2.11
THERMORESISTANCE
EFFECT
............................................................................
68
2.11.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
.....................
68
2.11.1.1
THERMAL
RESPONSE
TIMES
..........................................
69
2.11.1.2
SELF-HEATING
AND
MEASURING
CURRENT
........................
70
2.11.2
ADVANTAGES
OF
SENSOR
TECHNOLOGY
WITH
THE
THERMORESISTANCE
EFFECT
............................................................................................
71
2.11.3
FIELDS
OF
APPLICATION
..................................................................
71
2.12
TEMPERATURE
EFFECTS
IN
SEMICONDUCTORS
..................................................
72
2.12.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
....................
72
2.12.2
PTC
THERMISTORS
(PTC
RESISTORS)
............................................
73
2.12.2.1
PHYSICAL
CONTEXT
.......................................................
74
2.12.2.2
ADVANTAGES
AND
APPLICATION
AREAS
.........................
75
2.12.3
THERMISTORS
(NTC
RESISTORS)
.....................................................
76
2.12.3.1
ADVANTAGES
AND
APPLICATION
AREAS
.........................
77
2.13
PYROELECTRIC
EFFECT
.....................................................................................
79
2.13.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
......................
79
2.13.2
MATERIALS
......................................................................................
80
CONTENTS
IX
2.13.3
APPLICATIONS
.................................................................................
81
2.14
PHOTOELECTRIC
EFFECT
...................................................................................
84
2.14.1
OPERATING
PRINCIPLES
AND
PHYSICAL
DESCRIPTION
........................
84
2.14.1.1
OUTER
PHOTOELECTRIC
EFFECT
.......................................
85
2.14.1.2
INNER
PHOTOELECTRIC
EFFECT:
PHOTOCONDUCTOR
...........
87
2.14.1.3
INTERNAL
PHOTOELECTRIC
EFFECT:
OPTOCOUPLER
............
88
2.14.1.4
INTERNAL
PHOTO
EFFECT:
PHOTOVOLTAIC
EFFECT
.............
88
2.14.1.5
PHOTOIONIZATION
.........................................................
88
2.14.2
PHOTOELECTRIC
SENSOR
ELEMENTS
..................................................
90
2.14.3
PHOTOELECTRIC
SENSOR
ELEMENTS
..................................................
90
2.14.3.1
PHOTOMULTIPLIER
.........................................................
90
2.14.3.2
OPTOCOUPLER
..............................................................
91
2.14.3.3
LIGHT
BARRIERS
............................................................
93
2.14.3.4
PHOTOELECTRIC
SWITCHES
.............................................
95
2.14.3.5
LIGHT
CURTAIN
.............................................................
96
2.14.3.6
LIGHT
MEASUREMENT
..................................................
96
2.14.3.7
COLOUR
RECOGNITION
..................................................
97
2.15
ELECTRO-OPTICAL
EFFECT
................................................................................
98
2.15.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
....................
98
2.15.2
MATERIALS
......................................................................................
100
2.15.3
APPLICATIONS
................................................................................
100
2.16
ELECTROCHEMICAL
EFFECTS
............................................................................
103
2.16.1
PRINCIPLE
OF
OPERATION
AND
CLASSIFICATION
................................
103
2.16.2
POTENTIOMETRIC
SENSORS
...............................................................
104
2.16.3
AMPEROMETRIC
SENSORS
...............................................................
108
2.16.4
CONDUCTOMETRIC
AND
IMPEDIMETRIC
SENSORS
.............................
109
2.16.5
AREAS
OF
APPLICATION
..................................................................
110
2.17
CHEMICAL
EFFECTS
.......................................................................................
110
2.17.1
PHYSICAL-CHEMICAL
INTERACTIONS
OF
GASES
WITH
SURFACES
...........
110
2.17.2
GAS
SOLUBILITY
(ABSORPTION)
......................................................
112
2.17.3
GAS
TRANSPORT
TO
THE
SOLID
SURFACE
...........................................
116
2.17.4
ADSORPTION
AND
CHEMISORPTION
.................................................
117
2.17.5
REACTIONS
WITH
ADSORBED
SPECIES
.............................................
118
2.17.6
REACTION
OF
THE
GAS
WITH
THE
SOLID
...........................................
118
2.17.7
THE
MIXED-PHASE
DISORDER
........................................................
121
2.18
ACOUSTIC
EFFECTS
........................................................................................
123
2.18.1
DEFINITION
AND
CLASSIFICATION
OF
SOUND
....................................
123
2.18.2
CHARACTERIZATION
OF
ACOUSTIC
WAVES
........................................
123
2.18.3
SOUND
VELOCITY
IN
IDEAL
GASES
..................................................
124
2.18.3.1
DEPENDENCE
ON
TEMPERATURE
...................................
124
2.18.3.2
DEPENDENCE
ON
THE
RELATIVE
AIR
HUMIDITY
............
125
X
CONTENTS
2.18.3.3
DEPENDENCE
ON
PRESSURE
...........................................
125
2.18.4
INTENSITY
OR
SOUND
INTENSITY
.......................................................
125
2.18.5
SOUND
ABSORPTION
IN
AIR
............................................................
126
2.18.6
REFLECTION
AND
TRANSMISSION
......................................................
127
2.19
OPTICAL
EFFECTS
............................................................................................
128
2.19.1
PHYSICAL
EFFECTS
...........................................................................
128
2.19.2
DESIGN
OF
OPTICAL
SENSORS
..........................................................
133
2.19.3
CATEGORIES
OF
OPTICAL
SENSORS
...................................................
135
2.19.4
APPLICATION
FIELDS
OF
OPTICAL
SENSORS
......................................
136
2.20
DOPPLER
EFFECT
............................................................................................
137
2.20.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
.....................
137
2.20.1.1
OBSERVER
MOVES,
SOURCE
RESTS
.................................
137
2.20.1.2
SOURCE
MOVES,
OBSERVER
RESTS
................................
138
2.20.1.3
OBSERVER
AND
SOURCE
MOVE
.....................................
138
2.20.1.4
DOPPLER
EFFECT
OF
LIGHT
(DOPPLER
EFFECT
WITHOUT
MEDIUM)
....................................................................
139
2.20.2
APPLICATION
AREAS
.......................................................................
140
2.20.2.1
ASTRONOMY
.................................................................
140
2.20.2.2
GEODESY
(LAND
SURVEYING)
......................................
141
2.20.2.3
NAVIGATION
.................................................................
141
2.20.2.4
VIBRATION
ANALYSIS
....................................................
142
2.20.2.5
SPEED
MEASUREMENT
..................................................
142
2.20.2.6
DETERMINATION
OF
CHEMICAL
ELEMENTS
.....................
142
2.20.2.7
MEDICAL
TECHNOLOGY
.................................................
142
2.20.2.8
ACOUSTICS
...................................................................
142
BIBLIOGRAPHY
..........................................................................................................
143
3
GEOMETRIC
QUANTITIES
..........................................................................................
147
EKBERT
HERING,
GERT
SCHONFELDER,
STEFAN
BASLER,
KARL-ERNST
BIEHL,
THOMAS
BURKHARDT,
THOMAS
ENGEL,
ALBERT
FEINAUGLE,
SORIN
FERICEAN,
ALEXANDER
FORKL,
CARSTEN
GIEBELER,
BERNHARD
HAHN,
ERNST
HALDER,
CHRISTOPHER
HERFORT,
STEFAN
HUBRICH,
JURGEN
REICHENBACH,
MICHAEL
ROBEL,
AND
STEFAN
SESTER
3.1
DISPLACEMENT
AND
DISTANCE
SENSORS
........................................................
148
3.1.1
INDUCTIVE
DISTANCE
AND
DISPLACEMENT
SENSORS
........................
148
3.1.1.1
FUNCTIONAL
PRINCIPLE
AND
MORPHOLOGICAL
DESCRIPTION
OF
INDUCTIVE
SENSORS
............................
148
3.1.1.2
NON-CONTACT
INDUCTIVE
DISTANCE
SENSORS
(INS)
.
.
.
152
3.1.1.3
NON-CONTACT
INDUCTIVE
DISPLACEMENT
SENSORS
(IWS)
..........................................................................
160
3.1.1.4
DIFFERENTIAL
TRANSFORMERS
WITH
SLIDING
CORE
(LVDT)
......................................................................
163
CONTENTS
XI
3.1.1.5
PULSED
INDUCTIVE
LINEAR
POSITION
SENSOR
(MICROPULSE
BIW)
..................................................
168
3.1.1.6
SIGNAL
PROCESSING
BY
PHASE
MEASUREMENT
(SAGENTIA)
..................................................................
173
3.1.1.7
PLCD
DISPLACEMENT
SENSORS
(PERMANENT
LINEAR
CONTACTLESS
DISPLACEMENT
SENSOR)
..........................
178
3.1.1.8
NON-CONTACT
MAGNETOINDUCTIVE
DISPLACEMENT
SENSORS
(SMARTSENS-BIL)
.........................................
184
3.1.2
OPTOELECTRONIC
DISTANCE
AND
DISPLACEMENT
SENSORS
...............
193
3.1.2.1
OVERVIEW
....................................................................
193
3.1.2.2
OPTOELECTRONIC
COMPONENTS
.....................................
195
3.1.2.3
OPTICAL
PRINCIPLES
OF
DISTANCE
SENSORS
...................
200
3.1.2.4
MEASURING
PRINCIPLE:
TRIANGULATION
.........................
204
3.1.2.5
MEASURING
PRINCIPLE:
PULSE
DELAY
METHOD
.............
206
3.1.2.6
MEASURING
PRINCIPLE:
PHASE
OR
FREQUENCY
DELAY
METHOD
......................................................................
208
3.1.2.7
MEASURING
PRINCIPLE:
PHOTOELECTRIC
SCANNING
...
.
211
3.1.2.8
MEASURING
PRINCIPLE:
INTERFEROMETRIC
LENGTH
MEASUREMENT
.............................................................
212
3.1.3
ULTRASONIC
SENSORS
FOR
DISTANCE
MEASUREMENT
AND
OBJECT
DETECTION
.....................................................................................
213
3.1.3.1
OPERATING
PRINCIPLES
AND
DESIGN
TOUCH
OPERATION
WITH
ECHO
RUNTIME
MEASUREMENT
.
...
213
3.1.3.2
DESIGN
OF
THE
ULTRASONIC
TRANSDUCER
.......................
215
3.1.3.3
DETECTION
RANGE
OF
AN
ULTRASONIC
SENSOR
...............
217
3.1.3.4
DEFLECTION
OF
THE
ULTRASOUND
....................................
219
3.1.3.5
OBJECT
AND
ENVIRONMENTAL
INFLUENCES
.......................
219
3.1.3.6
APPLICATIONS
...............................................................
220
3.1.4
POTENTIOMETRIC
DISPLACEMENT
AND
ANGLE
SENSORS
....................
222
3.1.4.1
INTRODUCTION
................................................................
222
3.1.4.2
OPERATING
PRINCIPLE
AND
CHARACTERISTICS
OF
POTENTIOMETRIC
SENSORS
.............................................
225
3.1.4.3
TECHNOLOGY
AND
CONSTRUCTION
TECHNIQUES
...............
228
3.1.4.4
PRODUCTS
AND
APPLICATIONS
........................................
233
3.1.5
MAGNETOSTRICTIVE
DISPLACEMENT
SENSORS
...................................
234
3.1.5.1
OPERATING
PRINCIPLE
AND
DESIGN
OF
MAGNETOSTRICTIVE
DISPLACEMENT
SENSORS
.................
236
3.1.5.2
HOUSING
CONCEPTS
AND
APPLICATIONS
........................
239
3.1.6
DISPLACEMENT
SENSORS
WITH
MAGNETICALLY
CODED
MEASURING
STANDARD
...................................................................
244
3.1.6.1
MEASURING
PRINCIPLE
..................................................
244
XII
CONTENTS
3.1.6.2
DESIGN
AND
FUNCTION
OF
INCREMENTAL
AND
ABSOLUTE
MEASURING
SYSTEMS
...........................
248
3.1.6.3
CHARACTERISTIC
VALUES
................................................
251
3.1.6.4
SENSOR
TYPES
IN
COMPARISON
...................................
254
3.1.6.5
APPLICATION
EXAMPLES
..............................................
255
3.2
SENSORS
FOR
ANGLE
AND
ROTATION
................................................................
257
3.2.1
OPTICAL
ENCODERS
.........................................................................
267
3.2.1.1
PHYSICAL
PRINCIPLES
....................................................
267
3.2.1.2
DESIGN
OF
OPTICAL
ENCODERS
......................................
270
3.2.1.3
SPECIAL
FEATURES
OF
OPTICAL
ENCODERS
......................
274
3.2.2
MAGNETICALLY
ENCODED
ROTARY
ENCODER
....................................
275
3.2.2.1
APPLICATIONS
..............................................................
279
3.2.3
ROTATION-COUNTING
ANGLE
SENSORS
............................................
281
3.2.3.1
GENERAL
PRINCIPLE
OF
OPERATION
AND
MORPHOLOGICAL
DESCRIPTION
OF
ROTATION-COUNTING
ANGLE
SENSORS
...........................................................
281
3.2.3.2
GEARBOX-BASED
REVOLUTION-COUNTING
METHODS
.
.
282
3.2.3.3
ROTATION-COUNTING
METHOD
ON
INDUCTIVE
BASIS
.
.
.
284
3.2.3.4
BATTERY
BUFFERING
OF
THE
ROTATION
INFORMATION
.
.
.
286
3.2.3.5
NOVEL
GMR
SYSTEM
FOR
DETECTION
AND
STORAGE
OF
ROTATION
INFORMATION
...........................................
287
3.2.4
CAPACITIVE
ENCODERS
...................................................................
292
3.2.5
VARIABLE
TRANSFORMERS,
RESOLVERS
.............................................
295
3.2.5.1
GENERAL
OPERATING
PRINCIPLE
OF
THE
VT
..................
295
3.2.5.2
SIGNIFICANT
VARIANTS
OF
VT
..........................................
298
3.2.5.3
RESOLVER,
A
REPRESENTATIVE
VARIANT
OF
VT
.............
298
3.2.6
IVPP
OR
SIN/COS
INTERFACE
.........................................................
304
3.2.7
INCREMENTAL
ENCODERS
.................................................................
307
3.2.7.1
SUMMARY
OF
THE
PROPERTIES
OF
INCREMENTAL
INTERFACES
..................................................
308
3.3
INCLINATION
...................................................................................................
308
3.3.1
MAGNETORESISTIVE
INCLINATION
SENSORS
........................................
310
3.3.2
COMPASS
SENSORS
........................................................................
311
3.3.3
ELECTROLYTIC
SENSORS
....................................................................
311
3.3.4
PIEZORESISTIVE
INCLINATION
SENSORS/DMS
BENDING
BEAM
SENSORS
..............................................................................
313
3.3.5
MEMS
..........................................................................................
314
3.3.6
SERVO-INCLINOMETER
.....................................................................
315
3.3.7
OVERVIEW
AND
SELECTION
OF
INCLINATION
SENSORS
.......................
316
3.4
SENSORS
FOR
OBJECT
DETECTION
....................................................................
316
CONTENTS
XIII
3.4.1
PROXIMITY
SWITCH
........................................................................
316
3.4.1.1
BLOCK
DIAGRAM
OF
THE
NS,
DETECTION
TYPE
AND
MODE
OF
OPERATION
OF
THE
NS
..........................
319
3.4.1.2
MAIN
FEATURES
OF
THE
NS
...........................................
321
3.4.1.3
SWITCHING
DISTANCES
..................................................
321
3.4.1.4
HYSTERESIS
...................................................................
323
3.4.1.5
SWITCHING
ELEMENT
FUNCTION
.....................................
323
3.4.1.6
OUTPUT
TYPE
................................................................
324
3.4.1.7
DESIGN
AND
SIZE
........................................................
324
3.4.1.8
CHARACTERISTICS
OF
THE
NS
...........................................
325
3.4.1.9
SPECIAL
DESIGNS
AND
THEIR
APPLICATIONS
..................
326
3.4.1.10
NS
WITH
SEVERAL
SWITCHING
OUTPUTS
.......................
326
3.4.1.11
NS
WITH
DIAGNOSTIC
INFORMATION
.............................
328
3.4.1.12
APPLICATIONS
OF
THE
NS
............................................
328
3.4.2
OBJECT
DETECTION
AND
DISTANCE
MEASUREMENT
WITH
ULTRASOUND
...................................................................................
330
3.4.2.1
SPEED
OF
SOUND
IN
AIR
..............................................
330
3.4.3
OBJECT
DETECTION
WITH
RADAR
.....................................................
331
3.4.3.1
IMPULSE
RADAR
...........................................................
331
3.4.3.2
CW
RADAR
.................................................................
333
3.4.3.3
APPLICATION
................................................................
334
3.4.4
PYROELECTRIC
SENSORS
FOR
MOTION
AND
PRESENCE
DETECTION
.
.
.
334
3.4.4.1
MATERIAL
PROPERTIES
OF
SPUTTERED
PZT
FILMS
..........
334
3.4.4.2
EFFECT
ON
ELECTRONICS
................................................
335
3.4.5
OBJECT
DETECTION
WITH
LASER
SCANNER
.......................................
337
3.4.5.1
APPLICATION
................................................................
337
3.4.6
SENSORS
FOR
AUTOMATIC
IDENTIFICATION
(AUTO-IDENT)
..................
337
3.4.6.1
OVERVIEW
....................................................................
337
3.4.6.2
BARCODE
SCANNER
.......................................................
339
3.4.6.3
AUTO-IDENT
CAMERAS
..................................................
346
3.4.6.4
CONSTRUCTION
OF
AUTO-IDENT
CAMERAS
.......................
347
3.4.6.5
IMPORTANT
FIELDS
OF
APPLICATION
FOR
AUTO-IDENT
CAMERAS
.....................................................................
348
3.4.6.6
RFID
SYSTEMS
AND
READERS
.....................................
348
3.5
THREE-DIMENSIONAL
MEASURING
METHODS
(3D
MEASUREMENT)
...............
356
3.5.1
PALPABLE
3D
MEASUREMENT
METHODS
..........................................
357
3.5.1.1
SWITCHING
SENSOR
.......................................................
357
3.5.1.2
2-PHASE
SWITCHING
SENSOR
........................................
359
3.5.2
OPTICAL
PROBING
3D
MEASURING
METHODS
.................................
360
3.5.2.1
OPTICAL,
SWITCHING
SINGLE
POINT
SENSOR
..................
360
3.5.2.2
SCANNING
SENSORS
.......................................................
361
XIV
CONTENTS
3.5.2.3
OTHER
PROBE
AND
MEASURING
SYSTEMS
.......................
362
3.5.3
3D
IMAGING
MEASURING
METHODS
..............................................
363
3.5.3.1
OPTICAL
3D
MEASUREMENT
(GRID
AND
LINE
PROJECTION)
.................................................................
363
3.5.3.2
MEASURING
PRINCIPLE
AND
MEASURING
ARRANGEMENT
..............................................................
364
3.5.3.3
FRINGE
PROJECTION
........................................................
365
3.5.3.4
LIMITATIONS
OF
THE
PROCEDURE
.....................................
367
3.5.3.5
FIELDS
OF
APPLICATION
.................................................
367
3.5.4
OVERVIEW
OF
3D
MEASURING
METHODS
.......................................
368
BIBLIOGRAPHY
...........................................................................................................
369
4
MECHANICAL
MEASURED
VARIABLES
.......................................................................
373
EKBERT
HERING,
GERT
SCHONFELDER,
AND
STEFAN
VINZELBERG
4.1
MASS
............................................................................................................
373
4.1.1
DEFINITION
.....................................................................................
373
4.1.2
APPLICATIONS
.................................................................................
374
4.2
FORCE
...........................................................................................................
376
4.2.1
DEFINITION
........................................................
376
4.2.1.1
WEIGHT
FORCE
F
W
.......................................................
376
4.2.1.2
CENTRIPETAL
FORCE
F
CP
.................................................
376
4.2.1.3
ELASTIC
FORCE
OR
SPRING
FORCE
F
EL
..................................
377
4.2.1.4
FRICTIONAL
FORCE
F
F
..............
377
4.2.2
EFFECTS
FOR
THE
APPLICATIONS
........................................................
377
4.2.2.1
PIEZOELECTRIC
EFFECT
....................................................
378
4.2.3
APPLICATION
AREAS
.......................................................................
381
4.2.3.1
PROCESS
CONTROL
..........................................................
381
4.3
ELONGATION
..................................................................................................
384
4.3.1
DEFINITION
.....................................................................................
384
4.3.2
STRAIN
MEASUREMENT
....................................................................
385
4.3.2.1
BENDING
BEAM
...........................................................
387
4.3.2.2
FIBER
BRAGG
GRATING
..................................................
387
4.4
PRESSURE
.......................................................................................................
388
4.4.1
DEFINITION
.....................................................................................
388
4.4.1.1
FIELDS
OF
APPLICATION
.................................................
389
4.4.2
MEASURING
PRINCIPLES
..................................................................
389
4.4.2.1
MEASURING
PRINCIPLES
.................................................
389
4.4.2.2
DIFFERENTIAL
PRESSURE
MEASUREMENT
.........................
389
4.4.2.3
RELATIVE
PRESSURE
MEASUREMENT
................................
390
4.4.2.4
ABSOLUTE
PRESSURE
MEASUREMENT
.............................
390
4.4.3
MEASURING
ARRANGEMENTS
...........................................................
391
4.5
TORQUE
.........................................................................................................
395
CONTENTS
XV
4.5.1
DEFINITION
....................................................................................
395
4.5.2
MEASURING
PRINCIPLES
.................................................................
396
4.5.3
APPLICATION
AREAS
.......................................................................
397
4.6
HARDNESS
.....................................................................................................
398
4.6.1
DEFINITION
....................................................................................
398
4.6.2
MACROSCOPIC
HARDNESS
DETERMINATION
.....................................
399
4.6.3
HARDNESS
DETERMINATION
BY
NANOINDENTATION
..........................
400
4.6.4
SENSORS
FOR
NANOHARDNESS
MEASUREMENT
.................................
401
4.6.5
MODEL
AND
EVALUATION
................................................................
401
4.6.6
APPLICATIONS
................................................................................
403
5
TIME-BASED
MEASUREMENTS
...............................................................................
405
GERT
SCHONFELDER
AND
GERD
STEPHAN
5.1
TIME
...........................................................................................................
405
5.1.1
DEFINITION
....................................................................................
405
5.1.2
MEASURING
PRINCIPLES
..................................................................
405
5.2
FREQUENCY
...................................................................................................
406
5.2.1
DEFINITION
....................................................................................
406
5.2.2
MEASURING
PRINCIPLES
.................................................................
407
5.2.3
MEASURING
ARRANGEMENTS
FOR
FREQUENCY
AND
TIME
MEASUREMENT
...............................................................................
407
5.2.4
MEASUREMENT
ERROR
OF
TIME-DISCRETE
MEASUREMENTS
.............
407
5.2.5
MEASURING
ARRANGEMENTS
...........................................................
409
5.3
PULSE
WIDTH
...............................................................................................
412
5.3.1
DEFINITION
....................................................................................
412
5.3.2
MEASURING
PRINCIPLES
.................................................................
412
5.3.3
ANALOGUE
EVALUATION
..................................................................
414
5.3.4
DIGITAL
EVALUATION
......................................................................
415
5.3.5
MEASURING
ARRANGEMENTS
...........................................................
415
5.4
PHASE,
RUNNING
TIME,
AND
LIGHT
RUNNING
TIME
....................................
415
5.4.1
DEFINITION
....................................................................................
415
5.4.2
MEASURING
PRINCIPLES
.................................................................
416
5.4.3
MEASURING
ARRANGEMENTS
...........................................................
417
5.4.4
LIGHT
RUNNING
TIME
...................................................................
417
5.4.5
DIRECT
TIME-OF-FLIGHT
MEASUREMENT
.........................................
418
5.4.6
TRANSIT
TIME
MEASUREMENT
THROUGH
PULSE
INTEGRATION
..........
419
5.4.7
TIME
OF
FLIGHT
MEASUREMENT
WITH
MODULATED
LIGHT
..............
421
5.5
VISUAL
REPRESENTATION
OF
MEASURED
VARIABLES
.........................................
422
5.5.1
MEASURING
PRINCIPLE
...................................................................
422
5.5.2
ANALOGUE
OSCILLOGRAPHS
.............................................................
423
5.5.3
DIGITAL
STORAGE
OSCILLOSCOPES
(DSOS)
.....................................
424
5.5.4
MIXED
SIGNAL
OSCILLOSCOPES
(MSOS)
.......................................
426
XVI
CONTENTS
5.5.5
THE
SAMPLING
PRINCIPLE
..............................................................
426
5.5.6
MEASURING
ARRANGEMENTS
...........................................................
427
5.5.7
VOLTAGE
AND
PERIOD
DURATION
MEASUREMENT
.............................
427
5.5.8
MEASUREMENT
OF
RISE
TIMES
......................................................
428
5.5.9
MEASUREMENT
OF
PHASES
..............................................................
428
5.5.10
MEASUREMENT
OF
PULSE
DURATION
AND
PULSE
RATIOS
(PWM)
.
.
431
5.6
SPEED
AND
ANGLE
OF
ROTATION
...................................................................
431
5.6.1
DEFINITION
.....................................................................................
431
5.6.2
MEASURING
PRINCIPLES
..................................................................
433
5.6.3
MEASUREMENT
THROUGH
EVENT
RECORDING
..................................
433
5.6.4
MEASUREMENT
BY
POSITION
DETECTION
.........................................
433
5.6.5
SPEED
DETERMINATION
BY
BEATING
(STROBOSCOPE)
......................
433
5.6.6
MEASURING
ARRANGEMENTS
...........................................................
434
5.6.6.1
MAGNETIC
AND
OPTICAL
SCANNING
..............................
434
5.6.7
DIGITAL
OR
AZB
INTERFACE
(INCREMENTAL
ENCODER)
......................
434
5.7
SPEED
...........................................................................................................
436
5.7.1
DEFINITION
.....................................................................................
436
5.7.2
MEASURING
PRINCIPLE
SPEED
........................................................
437
5.7.3
MEASURING
ARRANGEMENTS
FOR
SPEED
MEASUREMENT
.................
437
5.8
ACCELERATION
................................................................................................
439
5.8.1
DEFINITION
.....................................................................................
439
5.8.2
FIELDS
OF
APPLICATION
..................................................................
440
5.8.3
MEASURING
PRINCIPLE
LINEAR
ACCELERATION
.................................
440
5.8.4
MEASURING
PRINCIPLE
ANGULAR
ACCELERATION
..............................
443
5.8.5
MEASURING
ARRANGEMENT
FOR
MEASURING
ACCELERATION
............. 445
5.9
FLOW
RATE
(MASS
AND
VOLUME)
................................................................
445
5.9.1
DEFINITION
.....................................................................................
445
5.9.2
MASS
.............................................................................................
445
5.9.3
VOLUME
........................................................................................
445
5.9.4
VOLUME
FLOW
...............................................................................
446
5.9.5
MASS
FLOW
...................................................................................
446
5.9.6
MAIN
GROUPS
................................................................................
446
5.9.7
MEASUREMENT
METHODS
AND
APPLICATION
...................................
446
5.9.8
BULK
FLOW
METER
.........................................................................
447
5.9.9
BAFFLE
PLATE
SCALES
......................................................................
448
5.9.10
WEIGHFEEDERS
...............................................................................
448
5.9.11
BELT
SCALES
...................................................................................
448
5.9.12
DIFFERENTIAL
SCALES
.......................................................................
448
5.9.13
OPTICAL
BELT
WEIGHER
..................................................................
449
BIBLIOGRAPHY
..........................................................................................................
450
CONTENTS
XVII
6
TEMPERATURE
MEASUREMENT
..............................................................................
451
EKBERT
HERING,
GERT
SCHONFELDER,
MARTIN
LIESS,
AND
LOTHAR
MICHALOWSKI
6.1
TEMPERATURE
AS
PHYSICAL
STATE
VARIABLE
..................................................
451
6.2
MEASURING
PRINCIPLES
AND
MEASURING
RANGES
........................................
453
6.3
TEMPERATURE
DEPENDENCE
OF
THE
ELECTRICAL
RESISTANCE
..........................
453
6.3.1
METALS
..........................................................................................
453
6.3.2
METALS
WITH
DEFINED
ADDITIVES
(ALLOYS)
OR
LATTICE
DEFECTS
.........................................................................................
458
6.3.3
ION
CONDUCTING
MATERIALS
FOR
HIGH
TEMPERATURES
.....................
459
6.3.4
THERMISTORS
.................................................................................
460
6.3.5
CONSTRICTION
RESISTOR
TEMPERATURE
SENSORS
(SPREADING
RESISTOR)
...................................................................
461
6.3.6
DIODES
..........................................................................................
463
6.4
THERMOELECTRICITY
(SEEBECK
EFFECT)
.........................................................
464
6.4.1
THERMOCOUPLES
FOR
VERY
HIGH
APPLICATION
TEMPERATURES
.
.
.
469
6.4.2
METALLIC
THERMOCOUPLES
FOR
VERY
HIGH
APPLICATION
TEMPERATURES
...............................................................................
469
6.4.3
INORGANIC-NON-METALLIC
THERMOCOUPLES
FOR
VERY
HIGH
APPLICATION
TEMPERATURES
..........................................................
469
6.5
THERMAL
EXPANSION
...................................................................................
470
6.5.1
THERMAL
EXPANSION
OF
SOLID
BODIES
.........................................
470
6.5.2
THERMAL
EXPANSION
OF
LIQUIDS
..................................................
472
6.5.3
THERMAL
EXPANSION
OF
GASES
.....................................................
474
6.6
TEMPERATURE
AND
FREQUENCY
.....................................................................
474
6.7
THERMOCHROMISM
......................................................................................
475
6.8
SEGER
CONE
.................................................................................................
476
6.9
NON-CONTACT
OPTICAL
TEMPERATURE
MEASUREMENT
....................................
477
6.9.1
RADIATION
THERMOMETER
(PYROMETER)
........................................
477
6.9.2
FIBER
OPTIC
APPLICATIONS
............................................................
479
6.9.2.1
INTRINSIC
SENSORS,
DTS
(DISTRIBUTED
TEMPERATURE
SENSING)
.....................................................................
479
6.9.2.2
EXTRINSIC
SENSORS
......................................................
481
BIBLIOGRAPHY
..........................................................................................................
483
7
ELECTRICAL
AND
MAGNETIC
MEASURED
VARIABLES
...............................................
485
GERT
SCHONFELDER
AND
ANDREAS
WILDE
7.1
VOLTAGE
.......................................................................................................
485
7.1.1
DEFINITION
.....................................................................................
485
7.1.1.1
AC
VOLTAGE
................................................................
486
7.1.1.2
MEASURING
PRINCIPLES
.................................................
487
7.1.1.3
CONVERSION
INTO
AN
ELECTROMAGNETIC
FIELD
..............
488
7.1.1.4
CONVERSION
TO
HEAT
...................................................
488
XVIII
CONTENTS
7.1.1.5
CONVERSION
INTO
A
CURRENT
........................................
488
7.1.1.6
MEASUREMENT
BY
COMPARISON
WITH
A
STANDARD
.
.
.
488
7.1.2
MEASURING
ARRANGEMENTS
............................................................
490
7.1.2.1
MEASUREMENT
BY
ENERGY
EXTRACTION
........................
490
7.1.2.2
MEASUREMENT
THROUGH
INTEGRATION
..........................
491
7.1.2.3
MEASUREMENT
BY
COMPARISON
..................................
492
7.1.2.4
SERVO
CONVERTER
.........................................................
492
7.1.2.5
THE
SUCCESSIVE
APPROXIMATION
...............................
492
7.1.2.6
MEASUREMENT
OF
ALTERNATING
VOLTAGES
....................
494
7.2
AMPERAGE
...................................................................................................
495
7.2.1
DEFINITION
.....................................................................................
495
7.2.1.1
MEASURING
PRINCIPLES
.................................................
495
7.2.1.2
CURRENT
FLOW
THROUGH
A
RESISTOR
............................
495
7.2.1.3
THERMAL
EFFECT
OF
CURRENT
FLOW
..............................
496
7.2.1.4
MAGNETIC
FIELD
DUE
TO
CURRENT
FLOW
......................
496
7.2.2
MEASURING
ARRANGEMENTS
...........................................................
496
7.3
ELECTRICAL
CHARGE
AND
CAPACITY
................................................................
498
7.3.1
DEFINITION
.....................................................................................
498
7.3.1.1
MEASURING
PRINCIPLE
CHARGE
.....................................
500
7.3.1.2
MEASURING
PRINCIPLE
CAPACITY
.................................
501
7.3.2
MEASURING
ARRANGEMENTS
...........................................................
503
7.3.2.1
CAPACITY
MEASUREMENT
THROUGH
CHARGE
SHARING
.......................................................................
503
7.3.2.2
CAPACITY
MEASUREMENT
BY
RC
GENERATORS
............. 503
7.3.2.3
COMPLEX
COMPONENTS
FOR
CAPACITANCE
DETERMINATION
............................................................
503
7.4
ELECTRICAL
CONDUCTIVITY
AND
SPECIFIC
ELECTRICAL
RESISTANCE
...................
504
7.4.1
DEFINITION
.....................................................................................
504
7.4.1.1
MEASURING
PRINCIPLES
FOR
RESISTANCE
.......................
506
7.4.2
MEASURING
ARRANGEMENTS
...........................................................
506
7.4.2.1
DETERMINATION
OF
CURRENT
AND
VOLTAGE
AT
THE
MEASURED
OBJECT
.......................................................
506
7.4.2.2
RESISTANCE
MEASUREMENT
THROUGH
COMPENSATION
...........................................................
508
7.4.2.3
AC
VOLTAGE
RESISTANCE
MEASUREMENT
....................
509
7.5
ELECTRIC
FIELD
STRENGTH
...............................................................................
509
7.5.1
DEFINITION
.....................................................................................
509
7.5.2
MEASURING
PRINCIPLES
FOR
THE
ELECTRIC
FIELD
STRENGTH
...............
510
7.6
ELECTRICAL
ENERGY
AND
POWER
....................................................................
511
7.6.1
DEFINITIONS
...................................................................................
511
7.6.1.1
PRACTICAL
CASE
ACCUMULATOR
.....................................
512
CONTENTS
XIX
7.6.2
FORMS
OF
POWER
..........................................................................
512
7.6.2.1
POWER
IN
DC
CIRCUIT
................................................
512
7.6.2.2
POWER
IN
AC
CIRCUIT
.................................................
513
7.6.3
MEASURING
PRINCIPLES
..................................................................
515
7.6.3.1
ELECTROMECHANICAL
....................................................
515
7.6.3.2
WITH
ANALOGUE
ELECTRONICS
......................................
515
7.6.3.3
WITH
DIGITAL
ELECTRONICS
..........................................
516
7.6.3.4
WITH
STATISTICAL
METHODS
.........................................
517
7.7
INDUCTANCE
..................................................................................................
517
7.7.1
DEFINITION
....................................................................................
517
7.7.2
MEASURING
PRINCIPLES
.................................................................
519
7.8
MAGNETIC
FIELD
STRENGTH
...........................................................................
520
7.8.1
DEFINITION
....................................................................................
520
7.8.2
MEASURING
PRINCIPLES
OF
MAGNETIC
QUANTITIES
.........................
521
7.8.2.1
HALL
SENSOR
................................................................
521
7.8.2.2
GMR
SENSOR
..............................................................
521
7.8.2.3
FIELD
PLATE
..................................................................
521
7.8.2.4
SQUID
.......................................................................
521
7.8.3
MEASURING
ARRANGEMENTS
...........................................................
522
7.8.3.1 HALL
SWITCH
................................................................
522
7.8.3.2
HALL
SENSORS
...............................................................
522
7.8.3.3
ANGLE
SENSORS
............................................................
522
7.8.3.4
CURRENT
SENSORS
.........................................................
522
7.8.4
MULTIDIMENSIONAL
MEASUREMENTS
WITH
THE
HALL
EFFECT
.............
523
7.8.4.1
BASICS
.........................................................................
523
7.8.4.2
APPLICATIONS
...............................................................
524
BIBLIOGRAPHY
..........................................................................................................
525
8
RADIO
AND
PHOTOMETRIC
QUANTITIES
...................................................................
527
EKBERT
HERING
AND
GERT
SCHONFELDER
8.1
RADIOMETRY
................................................................................................
527
8.1.1
RADIOMETRIC
QUANTITIES
..............................................................
527
8.1.1.1
ENERGY
DENSITY
...........................................................
527
8.1.1.2
RADIANT
POWER
O
E
......................................................
528
8.1.1.3
SOLID
ANGLE
Q
.............................................................
528
8.1.1.4
RADIANT
INTENSITY
LE
....................................................
529
8.1.1.5
RADIANCE
L
E
...............................................................
530
8.1.2
MEASUREMENT
OF
ELECTROMAGNETIC
RADIATION
............................
531
8.2
PHOTOMETRY
.................................................................................................
531
8.2.1
PHOTOMETRIC
QUANTITIES
...............................................................
532
8.2.1.1
LUMINOUS
FLUX
Z V
.....................................................
532
8.2.1.2
LIGHT
QUANTITY
Q
V
.....................................................
534
XX
CONTENTS
8.2.1.3
LUMINOUS
INTENSITY
7
V
................................................
534
8.2.1.4
LUMINANCE
L
V
.............................................................
534
8.2.1.5
ILLUMINANCE
E
Y
...........................................................
535
8.2.1.6
SPECIFIC
LIGHT
EMISSION
M,
.....................................
535
8.2.1.7
LUMINOUS
EFFICACY
T]
................................................
535
8.2.2
MEASUREMENT
OF
PHOTOMETRIC
QUANTITIES
...................................
535
8.3
APPLICATION
OF
BRIGHTNESS
SENSORS
...........................................................
537
8.4
COLOUR
.........................................................................................................
540
8.4.1
COLOUR
PERCEPTION
.......................................................................
540
8.4.2
COLOUR
MODELS
.............................................................................
543
8.4.2.1
OTHER
COLOR
SPACES
....................................................
544
8.4.3
COLOR
SYSTEMS
.............................................................................
544
8.4.4
COLOUR
FILTERS
FOR
SENSORS
..........................................................
545
8.4.4.1
BAYER
PATTERN
..............................................................
545
8.4.4.2
COLOR
CORRECTION
.......................................................
546
8.4.4.3
WHITE
BALANCE
...........................................................
546
8.4.5
COLOUR
SENSORS
............................................................................
547
BIBLIOGRAPHY
...........................................................................................................
548
9
ACOUSTIC
MEASURED
VARIABLES
............................................................................
549
EKBERT
HERING
9.1
DEFINITION
OF
IMPORTANT
ACOUSTIC
QUANTITIES
...........................................
549
9.2
HUMAN
PERCEPTION
.....................................................................................
551
9.2.1
LEVEL
.............................................................................................
551
9.2.2
VOLUME
.........................................................................................
553
9.2.3
LOUDNESS
......................................................................................
554
9.3
TRANSDUCER
..................................................................................................
555
9.4
FIELDS
OF
APPLICATION
.................................................................................
557
BIBLIOGRAPHY
..........................................................................................................
560
10
CLIMATIC
AND
METEOROLOGICAL
MEASURED
VARIABLES
.........................................
561
GERT
SCHONFELDER,
ROBERT
KRAH,
GERD
STEPHAN,
AND
ROLAND
WEMECKE
10.1
MOISTURE
IN
GASES
......................................................................................
561
10.1.1
DEFINITIONS
AND
EQUATIONS
..........................................................
561
10.1.1.1
HUMIDITY
....................................................................
561
10.1.1.2
WATER
VAPOUR
PARTIAL
PRESSURE
................................
561
10.1.1.3
ABSOLUTE
AND
SPECIFIC
HUMIDITY
.............................
562
10.1.1.4
SATURATION
HUMIDITY
.................................................
562
10.1.1.5
RELATIVE
HUMIDITY
P
.................................................
562
10.1.1.6
DEWPOINT
..................................................................
563
10.1.1.7
ENTHALPY
.....................................................................
564
10.1.1.8
MOLLIER
DIAGRAM
(H-X
DIAGRAM)
..............................
564
CONTENTS
XXI
10.1.2
HUMIDITY
MEASUREMENTS
IN
GASES
............................................
566
10.1.2.1
PSYCHROMETERS,
DESIGN
AND
FUNCTION
.....................
566
10.1.2.2
DESIGN
TYPES
AND
AREAS
OF
APPLICATION
................
568
10.1.2.3
ASPIRATION
PSYCHROMETER
.........................................
568
10.1.2.4
SLINGSHOT
PSYCHROMETER
...........................................
568
10.1.2.5
DEW
POINT
MIRROR
.....................................................
569
10.1.2.6
CAPACITIVE
HUMIDITY
MEASUREMENT
........................
572
10.1.2.7
INTEGRATED
CAPACITIVE
HUMIDITY
SENSORS
WITH
BUS
OUTPUT
.......................................................
574
10.2
MOISTURE
ANALYSIS
IN
SOLID
AND
LIQUID
SUBSTANCES
...............................
574
10.2.1
DIRECT
METHODS
FOR
THE
DETERMINATION
OF
MATERIAL
MOISTURE
......................................................................................
576
10.2.1.1
PERCENTAGE
WATER
CONTENT
OF
A
MATERIAL
SAMPLE
.
.
576
10.2.1.2
WATER
ACTIVITY
OF
A
MATERIAL
SAMPLE
......................
577
10.2.1.3
KARL
FISCHER
TITRATION
...............................................
577
10.2.1.4
CALCIUM
CARBIDE
METHOD
........................................
579
10.2.1.5
CALCIUM
HYDRIDE
METHOD
........................................
579
10.2.2
INDIRECT
MEASURING
METHODS
FOR
DETERMINING
THE
MOISTURE
CONTENT
OF
MATERIALS
..................................................................
579
10.2.2.1
MEASUREMENT
OF
THE
ELECTRICAL
PROPERTIES
..............
579
10.2.2.2
DETECTION
OF
THE
OPTICAL
PROPERTIES
OF
WATER
AND
WATER
VAPOUR
....................................................
580
10.2.2.3
MEASUREMENT
OF
THE
SUCTION
PRESSURE
IN
MOIST
MATERIALS
(TENSIOMETRY)
..........................................
582
10.2.2.4
MEASUREMENT
OF
ATOMIC
PROPERTIES
........................
582
10.2.2.5
NUCLEAR
MAGNETIC
RESONANCE
(NMR)
METHOD
.
.
.
583
10.2.2.6
MEASUREMENT
OF
THERMAL
CONDUCTIVITY
.................
584
10.3
MEASUREMENT
OF
PRECIPITATION
IN
OUTDOOR
CLIMATE
................................
585
10.3.1
MEASUREMENT
OF
THE
RELATIVE
AIR
HUMIDITY
.............................
585
10.3.2
PRECIPITATION
MEASUREMENT
........................................................
585
10.3.3
CONDENSATION
MEASUREMENT
......................................................
586
10.4
HUMIDITY
MEASUREMENT
IN
CLOSED
ROOMS
..............................................
587
10.4.1
MEASUREMENT
OF
THE
CLIMATE
IN
HOMES
AND
AT
WORKPLACES
......................................................................
587
10.4.2
CLIMATE
IN
MUSEUMS
AND
EXHIBITION
ROOMS
...........................
588
10.4.3
CLIMATE
IN
ELECTRICAL
INSTALLATIONS
.............................................
591
10.4.4
INFLUENCING
THE
INDOOR
CLIMATE
.................................................
591
10.4.4.1
AIR
HUMIDIFICATION
...................................................
591
10.4.4.2
EVAPORATOR
.................................................................
591
10.4.4.3
STEAM
HUMIDIFIER
.....................................................
592
10.4.4.4
NEBULIZER
...................................................................
592
XXII
CONTENTS
10.4.4.5
DEHUMIDIFYING
ROOMS
.............................................
593
10.4.4.6
CONDENSATION
DEHUMIDIFICATION
..............................
593
10.4.4.7
ADSORPTION
DEHUMIDIFIER
.........................................
593
10.4.4.8
ABSORPTION
DEHUMIDIFIER
.........................................
593
10.5
AIR
PRESSURE
................................................................................................
593
10.5.1
FIELDS
OF
APPLICATION
..................................................................
593
10.5.2
MEASURING
PRINCIPLES
..................................................................
594
10.5.3
DEFINITIONS
...................................................................................
594
10.6
WIND
AND
AIR
FLOW
....................................................................................
595
10.6.1
DEFINITION
.....................................................................................
595
10.6.2
METHODS
FOR
WIND
MEASUREMENT
..............................................
595
10.7
WATER
FLOW
.................................................................................................
600
10.7.1
DEFINITION
.....................................................................................
600
10.7.2
DIRECT
AND
INDIRECT
FLOW
MEASUREMENT
....................................
601
10.7.2.1
ULTRASONIC
MEASUREMENT
..........................................
601
10.7.2.2
TERM
PRINCIPLE
...........................................................
601
10.7.2.3
DOPPLER
PRINCIPLE
......................................................
603
10.7.2.4
ELECTROMAGNETIC
MEASURING
METHOD
.......................
604
10.7.2.5
HYDROMETRIC
MEASURING
BLADE
................................
604
10.7.2.6
MEASUREMENT
WITH
MARKERS
(TRACERS)
.....................
605
BIBLIOGRAPHY
..........................................................................................................
605
11
SELECTED
CHEMICAL
PARAMETERS
..........................................................................
607
WINFRIED
VONAU
11.1
REDOX
POTENTIAL
..........................................................................................
607
11.1.1
GENERAL
.........................................................................................
607
11.1.2
PRECIOUS
METAL
REDOX
ELECTRODES
.............................................
610
11.1.3
REDOX
GLASS
ELECTRODES
..............................................................
611
11.1.4
REFERENCE
ELECTRODES
..................................................................
613
11.2
IONS
INCLUDING
HYDRONIUM
IONS
................................................................
617
11.2.1
GENERAL
INFORMATION
....................................................................
617
11.2.2
PH
MEASUREMENT
........................................................................
618
11.2.3
OTHER
IONS
....................................................................................
623
11.3
GASES
...........................................................................................................
627
11.3.1
GENERAL
INFORMATION
....................................................................
627
11.3.2
GASES
IN
A
PHYSICALLY
DISSOLVED
STATE
OR
AT
NORMAL
TEMPERATURE
.................................................................................
628
11.3.2.1
SOLID
ELECTROLYTE
SENSORS
.........................................
630
11.3.3
SEMICONDUCTOR
GAS
SENSORS:
METAL
OXIDE
SEMICONDUCTOR
SENSORS
(MOS)
............................................................................
641
11.3.3.1
SURFACE
CONDUCTIVITY
................................................
641
11.3.3.2
VOLUME
CONDUCTIVITY
...............................................
642
11.3.4
PELLISTORS
.......................................................................................
643
CONTENTS
XXIII
11.4
ELECTROLYTIC
CONDUCTIVITY
..........................................................................
644
11.4.1
GENERAL
INFORMATION
...................................................................
644
11.4.2
KOHLRAUSCH
MEASURING
CELLS
.....................................................
644
11.4.3
MULTI-ELECTRODE
MEASURING
CELLS
..............................................
645
11.4.4
ELECTRODELESS
CONDUCTIVITY
MEASURING
CELLS
...........................
646
11.4.5
EXAMPLES
FOR
THE
APPLICATION
OF
CONDUCTIVITY
SENSORS
.........
647
12
BIOLOGICAL
AND
MEDICAL
SENSORS
........................................................................
651
ELFRIEDE
SIMON
12.1
BIOLOGICAL
SENSOR
TECHNOLOGY
.................................................................
651
12.1.1
BIOSENSOR
TECHNOLOGY
...............................................................
651
12.1.2
REAL
BIOLOGICAL
SENSORS
.............................................................
653
12.2
FUNCTIONAL
PRINCIPLES
OF
BIOSENSORS
........................................................
655
12.2.1
CALORIMETRIC
SENSORS
..................................................................
655
12.2.2
MICROGRAVIMETRIC
SENSORS
..........................................................
657
12.2.3
OPTICAL
SENSORS
...........................................................................
658
12.2.4
ELECTROCHEMICAL
SENSORS
............................................................
660
12.2.5
IMMOBILIZATION
METHODS
............................................................
663
12.3
PHYSICAL
AND
CHEMICAL
SENSORS
IN
MEDICINE
..........................................
664
12.3.1
PHYSICAL-CHEMICAL
BLOOD
ANALYSES
..........................................
665
12.3.2
CLINICAL-CHEMICAL
BLOOD
ANALYSES
...........................................
668
12.4
ENZYMATIC
METHODS:
ENZYME
SENSORS
....................................................
669
12.4.1
ENZYME-BASED
ANALYTE
DETECTION
............................................
672
12.4.2
DETERMINATION
OF
ENZYME
ACTIVITY
...........................................
673
12.4.3
APPLICATION
FIELDS
OF
ENZYMATIC
TESTS
....................................
674
12.5
IMMUNOLOGICAL
METHODS:
IMMUNOSENSORS
..............................................
675
12.5.1
DIRECT
IMMUNOSENSORS
...............................................................
679
12.5.2
INDIRECT
IMMUNOSENSORS
.............................................................
679
12.5.3
APPLICATION
FIELDS
OF
IMMUNOSENSORS
......................................
681
12.6
DNA-BASED
SENSORS
.................................................................................
681
12.6.1
HYBRIDIZATION
DIAGNOSTICS
.........................................................
682
12.6.2
APPLICATION
AND
USE
OF
DNA
SENSORS
.....................................
684
12.7
CELL-BASED
SENSOR
TECHNOLOGY
................................................................
686
12.7.1
METABOLIC
CELL
CHIP
...................................................................
687
12.7.2
NEURO-CHIP
..................................................................................
687
BIBLIOGRAPHY
..........................................................................................................
689
13
MEASURED
QUANTITIES
FOR
IONIZING
RADIATION
.................................................
691
HARTMUT
BARWOLFF
13.1
INTRODUCTION
AND
PHYSICAL
QUANTITIES
.......................................................
691
13.2
INTERACTION
OF
IONISING
RADIATION
WITH
MATTER
........................................
696
XXIV
CONTENTS
13.3
CLASSIFICATION
OF
SENSORS
...........................................................................
700
13.4
GAS-FILLED
RADIATION
SENSORS
...................................................................
703
13.5
RADIATION
SENSORS
ACCORDING
TO
THE
EXCITATION
PRINCIPLE
......................
708
13.6
SEMICONDUCTOR
SENSORS
.............................................................................
710
BIBLIOGRAPHY
..........................................................................................................
720
14
PHOTOELECTRIC
SENSORS
..........................................................................................
721
GERT
SCHONFELDER
AND
MARTIN
LIESS
14.1
RADIATION
.....................................................................................................
721
14.2
SCINTILLATORS
.................................................................................................
722
14.3
OUTER
PHOTOELECTRIC
EFFECT
.........................................................................
723
14.3.1
PHOTOMULTIPLIER
............................................................................
723
14.3.2
CHANNEL
PHOTOMULTIPLIER
............................................................
724
14.3.3
IMAGE
PICKUP
TUBES
...................................................................
725
14.4
INTERNAL
PHOTOELECTRIC
EFFECT
.....................................................................
726
14.4.1
PHOTOCONDUCTOR
...........................................................................
726
14.4.2
PHOTODIODES
.................................................................................
728
14.4.3
PHOTOTRANSISTOR,
PHOTOTHYRISTOR
AND
PHOTO-FET
.......................
731
14.4.4
CMOS
IMAGE
SENSORS
................................................................
732
14.4.5
HIGH
DYNAMIC
CMOS
IMAGE
SENSORS
......................................
732
14.5
CCD
SENSORS
..............................................................................................
734
14.5.1
LINE
SENSORS
................................................................................
735
14.5.2
CCD
MATRIX
SENSORS
..................................................................
735
14.6
QUANTUM
WELL
INFRARED
PHOTODETECTOR
QWIP
..........................................
736
14.7
THERMAL
OPTICAL
DETECTORS
........................................................................
738
14.7.1
THERMAL
PILES
..............................................................................
739
14.7.2
PYROELECTRIC
DETECTORS
.................................................................
741
14.7.3
BOLOMETER
....................................................................................
742
15
SIGNAL
PROCESSING
AND
CALIBRATION
...................................................................
745
GERT
SCHONFELDER
15.1
SIGNAL
PROCESSING
.......................................................................................
745
15.1.1
ANALOG
(DISCRETE)
SIGNAL
CONDITIONING
....................................
746
15.1.2
SIGNAL
CONDITIONING
WITH
SYSTEM
CIRCUITS
...............................
746
15.1.3
SIGNAL
CONDITIONING
WITH
ASICS
...............................................
746
15.1.4
SIGNAL
CONDITIONING
WITH
MICROCONTROLLERS
..............................
748
15.2
SENSOR
CALIBRATION
.....................................................................................
748
15.2.1
PASSIVE
COMPENSATION
................................................................
749
15.2.2
ADJUSTMENT
WITH
ANALOG
SIGNAL
PROCESSING
.............................
750
15.2.3
ADJUSTMENT
WITH
DIGITAL
SIGNAL
PROCESSING
.............................
751
15.3
ENERGY
MANAGEMENT
FOR
SENSORS
.............................................................
753
BIBLIOGRAPHY
..........................................................................................................
755
CONTENTS
XXV
16
INTERFACE
................................................................................................................
757
GERT
SCHONFELDER
16.1
ANALOGUE
INTERFACES
..................................................................................
757
16.1.1
VOLTAGE
OUTPUT
...........................................................................
758
16.1.2
RATIOMETRIC
VOLTAGE
OUTPUT
......................................................
759
16.1.3
CURRENT
OUTPUT
............................................................................
759
16.1.4
FREQUENCY
OUTPUT
AND
PULSE
WIDTH
MODULATION
......................
760
16.1.5
4-/6-WIRE
INTERFACE
.....................................................................
762
16.2
DIGITAL
INTERFACES
.......................................................................................
762
16.2.1
CAN
GROUP
.................................................................................
765
16.2.2
LON
.............................................................................................
767
16.2.3
HART
..........................................................................................
767
16.2.4
RS485
..........................................................................................
768
16.2.5
LO-LINK
........................................................................................
768
16.2.6
PROFIBUS
.......................................................................................
770
16.2.7
I2C
...............................................................................................
771
16.2.8
SPI
...............................................................................................
772
16.2.9
IEEE
1451
...................................................................................
773
BIBLIOGRAPHY
..........................................................................................................
776
17
SAFETY
ASPECTS
FOR
SENSORS
................................................................................
777
GERT
SCHONFELDER
AND
SORIN
FERICEAN
17.1
FEATURES
FOR
FUNCTION
MONITORING
............................................................
777
17.2
ELECTROMAGNETIC
COMPATIBILITY
(EMC)
...................................................
782
17.3
FUNCTIONAL
SAFETY
(SIL)
............................................................................
785
17.4
SENSORS
IN
EXPLOSIVE
ENVIRONMENTS
(ATEX)
.........................................
787
17.4.1
BASIC
PRINCIPLES
OF
ATEX
.........................................................
788
17.4.2
IGNITION
PROTECTION
TYPE
INTRINSIC
SAFETY
.................................
789
17.4.3
TYPE
OF
PROTECTION
FLAMEPROOF
ENCLOSURE
...............................
791
BIBLIOGRAPHY
..........................................................................................................
791
18
MEASUREMENT
ERRORS,
MEASUREMENT
ACCURACY
AND
MEASUREMENT
PARAMETERS
...........................................................................................................
793
GERT
SCHONFELDER
18.1
CLASSIFICATION
OF
MEASUREMENT
ERRORS
ACCORDING
TO
THEIR
CAUSE
.
.
.
.
793
18.2
DISPLAY
OF
MEASUREMENT
ERRORS
...............................................................
795
18.2.1
ARITHMETIC
MEAN,
ERROR
SUM
AND
STANDARD
DEVIATION
...........
795
18.2.2
ABSOLUTE
ERROR
............................................................................
796
18.2.3
RELATIVE
ERROR
.............................................................................
796
18.3
MEASUREMENT
PARAMETERS
..........................................................................
799
18.3.1
SCATTERING
OF
MEASURED
VALUES
.................................................
800
18.3.2
RESOLUTION
OF
MEASURED
VALUES
................................................
801
18.3.3
SIGNAL-TO-NOISE
RATIO
AND
DYNAMICS
OF
MEASURED
VALUES
.
.
801
BIBLIOGRAPHY
..........................................................................................................
802
INDEX
..............................................................................................................................
803
|
adam_txt |
1
SENSOR
SYSTEMS
.
1
EKBERT
HERING
1.1
DEFINITION
AND
MODE
OF
OPERATION
.
1
1.2
CLASSIFICATION
.
2
2
PHYSICAL
EFFECTS
OF
SENSOR
USE
.
5
EKBERT
HERING,
KARL-ERNST
BIEL,
ULRICH
GUTH,
MARTIN
LIESS,
AND
WINFRIED
VONAU
2.1
PIEZOELECTRIC
EFFECT
.
5
2.1.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
.
5
2.1.2
MATERIALS
.
7
2.1.3
APPLICATIONS
.
8
2.2
RESISTIVE
AND
PIEZORESISTIVE
EFFECT
.
9
2.2.1
OPERATING
PRINCIPLES
AND
PHYSICAL
DESCRIPTION
.
9
2.2.2
RESISTIVE
EFFECT
AND
ITS
APPLICATION
BY
MEANS
OF
SGS
.
11
2.2.3
PIEZORESISTIVE
EFFECT
AND
ITS
APPLICATION
BY
SILICON
SEMICONDUCTOR
ELEMENTS
.
13
2.2.4
MATERIALS
.
13
2.3
MAGNETORESISTIVE
EFFECT
.
15
2.3.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
.
15
2.3.1.1
AMR
(ANISOTROPIC
MAGNETO
RESISTANCE)
.
16
2.3.1.2
GMR
(GIANT
MAGNETO
RESISTANCE)
.
18
2.3.1.3
CMR
(COLOSSAL
MAGNETO
RESISTANCE)
.
19
2.3.1.4
TMR
(TUNNEL
MAGNETO
RESISTANCE)
.
19
2.3.2
ADVANTAGES
OF
XMR
TECHNOLOGY
.
19
2.3.3
APPLICATIONS
OF
XMR
TECHNOLOGY
.
22
2.4
MAGNETOSTRICTIVE
EFFECT
.
25
2.4.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
.
25
2.4.2
ADVANTAGES
OF
MAGNETOSTRICTIVE
SENSOR
TECHNOLOGY
.
26
2.4.3
APPLICATIONS
OF
MAGNETOSTRICTIVE
SENSOR
TECHNOLOGY
.
27
VII
VIII
CONTENTS
2.5
EFFECTS
OF
INDUCTION
.
28
2.5.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
.
28
2.5.1.1
LAW
OF
INDUCTION
.
28
2.5.1.2
GENERATION
OF
EDDY
CURRENTS
IN
ELECTRICALLY
CONDUCTIVE
MATERIALS
.
33
2.5.1.3
ELECTROMAGNETIC
OSCILLATING
CIRCUITS
.
33
2.5.2
ADVANTAGES
OF
INDUCTIVE
SENSOR
TECHNOLOGY
.
34
2.5.3
APPLICATIONS
OF
INDUCTIVE
SENSOR
TECHNOLOGY
.
35
2.6
EFFECTS
OF
CAPACITANCE
.
35
2.6.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
.
35
2.6.1.1
CAPACITOR
AND
CAPACITANCE
.
36
2.6.1.2
CAPACITANCE
IN
THE
ALTERNATING
CURRENT
CIRCUIT
.
.
41
2.6.2
ADVANTAGES
OF
CAPACITIVE
SENSOR
TECHNOLOGY
.
46
2.6.3
APPLICATIONS
OF
CAPACITIVE
SENSOR
TECHNOLOGY
.
47
2.7
GAUSSIAN
EFFECT
.
48
2.7.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
.
48
2.7.2
APPLICATION
OF
THE
GAUSSIAN
EFFECT
.
50
2.8
HALL
EFFECT
.
52
2.8.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
.
52
2.8.2
APPLICATION
OF
THE
HALL
EFFECT
.
54
2.9
EDDY
CURRENT
EFFECT
.
55
2.9.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
.
55
2.9.2
APPLICATION
OF
THE
EDDY
CURRENT
EFFECT
.
56
2.10
THERMOELECTRIC
EFFECT
.
63
2.11
THERMORESISTANCE
EFFECT
.
68
2.11.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
.
68
2.11.1.1
THERMAL
RESPONSE
TIMES
.
69
2.11.1.2
SELF-HEATING
AND
MEASURING
CURRENT
.
70
2.11.2
ADVANTAGES
OF
SENSOR
TECHNOLOGY
WITH
THE
THERMORESISTANCE
EFFECT
.
71
2.11.3
FIELDS
OF
APPLICATION
.
71
2.12
TEMPERATURE
EFFECTS
IN
SEMICONDUCTORS
.
72
2.12.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
.
72
2.12.2
PTC
THERMISTORS
(PTC
RESISTORS)
.
73
2.12.2.1
PHYSICAL
CONTEXT
.
74
2.12.2.2
ADVANTAGES
AND
APPLICATION
AREAS
.
75
2.12.3
THERMISTORS
(NTC
RESISTORS)
.
76
2.12.3.1
ADVANTAGES
AND
APPLICATION
AREAS
.
77
2.13
PYROELECTRIC
EFFECT
.
79
2.13.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
.
79
2.13.2
MATERIALS
.
80
CONTENTS
IX
2.13.3
APPLICATIONS
.
81
2.14
PHOTOELECTRIC
EFFECT
.
84
2.14.1
OPERATING
PRINCIPLES
AND
PHYSICAL
DESCRIPTION
.
84
2.14.1.1
OUTER
PHOTOELECTRIC
EFFECT
.
85
2.14.1.2
INNER
PHOTOELECTRIC
EFFECT:
PHOTOCONDUCTOR
.
87
2.14.1.3
INTERNAL
PHOTOELECTRIC
EFFECT:
OPTOCOUPLER
.
88
2.14.1.4
INTERNAL
PHOTO
EFFECT:
PHOTOVOLTAIC
EFFECT
.
88
2.14.1.5
PHOTOIONIZATION
.
88
2.14.2
PHOTOELECTRIC
SENSOR
ELEMENTS
.
90
2.14.3
PHOTOELECTRIC
SENSOR
ELEMENTS
.
90
2.14.3.1
PHOTOMULTIPLIER
.
90
2.14.3.2
OPTOCOUPLER
.
91
2.14.3.3
LIGHT
BARRIERS
.
93
2.14.3.4
PHOTOELECTRIC
SWITCHES
.
95
2.14.3.5
LIGHT
CURTAIN
.
96
2.14.3.6
LIGHT
MEASUREMENT
.
96
2.14.3.7
COLOUR
RECOGNITION
.
97
2.15
ELECTRO-OPTICAL
EFFECT
.
98
2.15.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
.
98
2.15.2
MATERIALS
.
100
2.15.3
APPLICATIONS
.
100
2.16
ELECTROCHEMICAL
EFFECTS
.
103
2.16.1
PRINCIPLE
OF
OPERATION
AND
CLASSIFICATION
.
103
2.16.2
POTENTIOMETRIC
SENSORS
.
104
2.16.3
AMPEROMETRIC
SENSORS
.
108
2.16.4
CONDUCTOMETRIC
AND
IMPEDIMETRIC
SENSORS
.
109
2.16.5
AREAS
OF
APPLICATION
.
110
2.17
CHEMICAL
EFFECTS
.
110
2.17.1
PHYSICAL-CHEMICAL
INTERACTIONS
OF
GASES
WITH
SURFACES
.
110
2.17.2
GAS
SOLUBILITY
(ABSORPTION)
.
112
2.17.3
GAS
TRANSPORT
TO
THE
SOLID
SURFACE
.
116
2.17.4
ADSORPTION
AND
CHEMISORPTION
.
117
2.17.5
REACTIONS
WITH
ADSORBED
SPECIES
.
118
2.17.6
REACTION
OF
THE
GAS
WITH
THE
SOLID
.
118
2.17.7
THE
MIXED-PHASE
DISORDER
.
121
2.18
ACOUSTIC
EFFECTS
.
123
2.18.1
DEFINITION
AND
CLASSIFICATION
OF
SOUND
.
123
2.18.2
CHARACTERIZATION
OF
ACOUSTIC
WAVES
.
123
2.18.3
SOUND
VELOCITY
IN
IDEAL
GASES
.
124
2.18.3.1
DEPENDENCE
ON
TEMPERATURE
.
124
2.18.3.2
DEPENDENCE
ON
THE
RELATIVE
AIR
HUMIDITY
.
125
X
CONTENTS
2.18.3.3
DEPENDENCE
ON
PRESSURE
.
125
2.18.4
INTENSITY
OR
SOUND
INTENSITY
.
125
2.18.5
SOUND
ABSORPTION
IN
AIR
.
126
2.18.6
REFLECTION
AND
TRANSMISSION
.
127
2.19
OPTICAL
EFFECTS
.
128
2.19.1
PHYSICAL
EFFECTS
.
128
2.19.2
DESIGN
OF
OPTICAL
SENSORS
.
133
2.19.3
CATEGORIES
OF
OPTICAL
SENSORS
.
135
2.19.4
APPLICATION
FIELDS
OF
OPTICAL
SENSORS
.
136
2.20
DOPPLER
EFFECT
.
137
2.20.1
PRINCIPLE
OF
OPERATION
AND
PHYSICAL
DESCRIPTION
.
137
2.20.1.1
OBSERVER
MOVES,
SOURCE
RESTS
.
137
2.20.1.2
SOURCE
MOVES,
OBSERVER
RESTS
.
138
2.20.1.3
OBSERVER
AND
SOURCE
MOVE
.
138
2.20.1.4
DOPPLER
EFFECT
OF
LIGHT
(DOPPLER
EFFECT
WITHOUT
MEDIUM)
.
139
2.20.2
APPLICATION
AREAS
.
140
2.20.2.1
ASTRONOMY
.
140
2.20.2.2
GEODESY
(LAND
SURVEYING)
.
141
2.20.2.3
NAVIGATION
.
141
2.20.2.4
VIBRATION
ANALYSIS
.
142
2.20.2.5
SPEED
MEASUREMENT
.
142
2.20.2.6
DETERMINATION
OF
CHEMICAL
ELEMENTS
.
142
2.20.2.7
MEDICAL
TECHNOLOGY
.
142
2.20.2.8
ACOUSTICS
.
142
BIBLIOGRAPHY
.
143
3
GEOMETRIC
QUANTITIES
.
147
EKBERT
HERING,
GERT
SCHONFELDER,
STEFAN
BASLER,
KARL-ERNST
BIEHL,
THOMAS
BURKHARDT,
THOMAS
ENGEL,
ALBERT
FEINAUGLE,
SORIN
FERICEAN,
ALEXANDER
FORKL,
CARSTEN
GIEBELER,
BERNHARD
HAHN,
ERNST
HALDER,
CHRISTOPHER
HERFORT,
STEFAN
HUBRICH,
JURGEN
REICHENBACH,
MICHAEL
ROBEL,
AND
STEFAN
SESTER
3.1
DISPLACEMENT
AND
DISTANCE
SENSORS
.
148
3.1.1
INDUCTIVE
DISTANCE
AND
DISPLACEMENT
SENSORS
.
148
3.1.1.1
FUNCTIONAL
PRINCIPLE
AND
MORPHOLOGICAL
DESCRIPTION
OF
INDUCTIVE
SENSORS
.
148
3.1.1.2
NON-CONTACT
INDUCTIVE
DISTANCE
SENSORS
(INS)
.
.
.
152
3.1.1.3
NON-CONTACT
INDUCTIVE
DISPLACEMENT
SENSORS
(IWS)
.
160
3.1.1.4
DIFFERENTIAL
TRANSFORMERS
WITH
SLIDING
CORE
(LVDT)
.
163
CONTENTS
XI
3.1.1.5
PULSED
INDUCTIVE
LINEAR
POSITION
SENSOR
(MICROPULSE
BIW)
.
168
3.1.1.6
SIGNAL
PROCESSING
BY
PHASE
MEASUREMENT
(SAGENTIA)
.
173
3.1.1.7
PLCD
DISPLACEMENT
SENSORS
(PERMANENT
LINEAR
CONTACTLESS
DISPLACEMENT
SENSOR)
.
178
3.1.1.8
NON-CONTACT
MAGNETOINDUCTIVE
DISPLACEMENT
SENSORS
(SMARTSENS-BIL)
.
184
3.1.2
OPTOELECTRONIC
DISTANCE
AND
DISPLACEMENT
SENSORS
.
193
3.1.2.1
OVERVIEW
.
193
3.1.2.2
OPTOELECTRONIC
COMPONENTS
.
195
3.1.2.3
OPTICAL
PRINCIPLES
OF
DISTANCE
SENSORS
.
200
3.1.2.4
MEASURING
PRINCIPLE:
TRIANGULATION
.
204
3.1.2.5
MEASURING
PRINCIPLE:
PULSE
DELAY
METHOD
.
206
3.1.2.6
MEASURING
PRINCIPLE:
PHASE
OR
FREQUENCY
DELAY
METHOD
.
208
3.1.2.7
MEASURING
PRINCIPLE:
PHOTOELECTRIC
SCANNING
.
.
211
3.1.2.8
MEASURING
PRINCIPLE:
INTERFEROMETRIC
LENGTH
MEASUREMENT
.
212
3.1.3
ULTRASONIC
SENSORS
FOR
DISTANCE
MEASUREMENT
AND
OBJECT
DETECTION
.
213
3.1.3.1
OPERATING
PRINCIPLES
AND
DESIGN
TOUCH
OPERATION
WITH
ECHO
RUNTIME
MEASUREMENT
.
.
213
3.1.3.2
DESIGN
OF
THE
ULTRASONIC
TRANSDUCER
.
215
3.1.3.3
DETECTION
RANGE
OF
AN
ULTRASONIC
SENSOR
.
217
3.1.3.4
DEFLECTION
OF
THE
ULTRASOUND
.
219
3.1.3.5
OBJECT
AND
ENVIRONMENTAL
INFLUENCES
.
219
3.1.3.6
APPLICATIONS
.
220
3.1.4
POTENTIOMETRIC
DISPLACEMENT
AND
ANGLE
SENSORS
.
222
3.1.4.1
INTRODUCTION
.
222
3.1.4.2
OPERATING
PRINCIPLE
AND
CHARACTERISTICS
OF
POTENTIOMETRIC
SENSORS
.
225
3.1.4.3
TECHNOLOGY
AND
CONSTRUCTION
TECHNIQUES
.
228
3.1.4.4
PRODUCTS
AND
APPLICATIONS
.
233
3.1.5
MAGNETOSTRICTIVE
DISPLACEMENT
SENSORS
.
234
3.1.5.1
OPERATING
PRINCIPLE
AND
DESIGN
OF
MAGNETOSTRICTIVE
DISPLACEMENT
SENSORS
.
236
3.1.5.2
HOUSING
CONCEPTS
AND
APPLICATIONS
.
239
3.1.6
DISPLACEMENT
SENSORS
WITH
MAGNETICALLY
CODED
MEASURING
STANDARD
.
244
3.1.6.1
MEASURING
PRINCIPLE
.
244
XII
CONTENTS
3.1.6.2
DESIGN
AND
FUNCTION
OF
INCREMENTAL
AND
ABSOLUTE
MEASURING
SYSTEMS
.
248
3.1.6.3
CHARACTERISTIC
VALUES
.
251
3.1.6.4
SENSOR
TYPES
IN
COMPARISON
.
254
3.1.6.5
APPLICATION
EXAMPLES
.
255
3.2
SENSORS
FOR
ANGLE
AND
ROTATION
.
257
3.2.1
OPTICAL
ENCODERS
.
267
3.2.1.1
PHYSICAL
PRINCIPLES
.
267
3.2.1.2
DESIGN
OF
OPTICAL
ENCODERS
.
270
3.2.1.3
SPECIAL
FEATURES
OF
OPTICAL
ENCODERS
.
274
3.2.2
MAGNETICALLY
ENCODED
ROTARY
ENCODER
.
275
3.2.2.1
APPLICATIONS
.
279
3.2.3
ROTATION-COUNTING
ANGLE
SENSORS
.
281
3.2.3.1
GENERAL
PRINCIPLE
OF
OPERATION
AND
MORPHOLOGICAL
DESCRIPTION
OF
ROTATION-COUNTING
ANGLE
SENSORS
.
281
3.2.3.2
GEARBOX-BASED
REVOLUTION-COUNTING
METHODS
.
.
282
3.2.3.3
ROTATION-COUNTING
METHOD
ON
INDUCTIVE
BASIS
.
.
.
284
3.2.3.4
BATTERY
BUFFERING
OF
THE
ROTATION
INFORMATION
.
.
.
286
3.2.3.5
NOVEL
GMR
SYSTEM
FOR
DETECTION
AND
STORAGE
OF
ROTATION
INFORMATION
.
287
3.2.4
CAPACITIVE
ENCODERS
.
292
3.2.5
VARIABLE
TRANSFORMERS,
RESOLVERS
.
295
3.2.5.1
GENERAL
OPERATING
PRINCIPLE
OF
THE
VT
.
295
3.2.5.2
SIGNIFICANT
VARIANTS
OF
VT
.
298
3.2.5.3
RESOLVER,
A
REPRESENTATIVE
VARIANT
OF
VT
.
298
3.2.6
IVPP
OR
SIN/COS
INTERFACE
.
304
3.2.7
INCREMENTAL
ENCODERS
.
307
3.2.7.1
SUMMARY
OF
THE
PROPERTIES
OF
INCREMENTAL
INTERFACES
.
308
3.3
INCLINATION
.
308
3.3.1
MAGNETORESISTIVE
INCLINATION
SENSORS
.
310
3.3.2
COMPASS
SENSORS
.
311
3.3.3
ELECTROLYTIC
SENSORS
.
311
3.3.4
PIEZORESISTIVE
INCLINATION
SENSORS/DMS
BENDING
BEAM
SENSORS
.
313
3.3.5
MEMS
.
314
3.3.6
SERVO-INCLINOMETER
.
315
3.3.7
OVERVIEW
AND
SELECTION
OF
INCLINATION
SENSORS
.
316
3.4
SENSORS
FOR
OBJECT
DETECTION
.
316
CONTENTS
XIII
3.4.1
PROXIMITY
SWITCH
.
316
3.4.1.1
BLOCK
DIAGRAM
OF
THE
NS,
DETECTION
TYPE
AND
MODE
OF
OPERATION
OF
THE
NS
.
319
3.4.1.2
MAIN
FEATURES
OF
THE
NS
.
321
3.4.1.3
SWITCHING
DISTANCES
.
321
3.4.1.4
HYSTERESIS
.
323
3.4.1.5
SWITCHING
ELEMENT
FUNCTION
.
323
3.4.1.6
OUTPUT
TYPE
.
324
3.4.1.7
DESIGN
AND
SIZE
.
324
3.4.1.8
CHARACTERISTICS
OF
THE
NS
.
325
3.4.1.9
SPECIAL
DESIGNS
AND
THEIR
APPLICATIONS
.
326
3.4.1.10
NS
WITH
SEVERAL
SWITCHING
OUTPUTS
.
326
3.4.1.11
NS
WITH
DIAGNOSTIC
INFORMATION
.
328
3.4.1.12
APPLICATIONS
OF
THE
NS
.
328
3.4.2
OBJECT
DETECTION
AND
DISTANCE
MEASUREMENT
WITH
ULTRASOUND
.
330
3.4.2.1
SPEED
OF
SOUND
IN
AIR
.
330
3.4.3
OBJECT
DETECTION
WITH
RADAR
.
331
3.4.3.1
IMPULSE
RADAR
.
331
3.4.3.2
CW
RADAR
.
333
3.4.3.3
APPLICATION
.
334
3.4.4
PYROELECTRIC
SENSORS
FOR
MOTION
AND
PRESENCE
DETECTION
.
.
.
334
3.4.4.1
MATERIAL
PROPERTIES
OF
SPUTTERED
PZT
FILMS
.
334
3.4.4.2
EFFECT
ON
ELECTRONICS
.
335
3.4.5
OBJECT
DETECTION
WITH
LASER
SCANNER
.
337
3.4.5.1
APPLICATION
.
337
3.4.6
SENSORS
FOR
AUTOMATIC
IDENTIFICATION
(AUTO-IDENT)
.
337
3.4.6.1
OVERVIEW
.
337
3.4.6.2
BARCODE
SCANNER
.
339
3.4.6.3
AUTO-IDENT
CAMERAS
.
346
3.4.6.4
CONSTRUCTION
OF
AUTO-IDENT
CAMERAS
.
347
3.4.6.5
IMPORTANT
FIELDS
OF
APPLICATION
FOR
AUTO-IDENT
CAMERAS
.
348
3.4.6.6
RFID
SYSTEMS
AND
READERS
.
348
3.5
THREE-DIMENSIONAL
MEASURING
METHODS
(3D
MEASUREMENT)
.
356
3.5.1
PALPABLE
3D
MEASUREMENT
METHODS
.
357
3.5.1.1
SWITCHING
SENSOR
.
357
3.5.1.2
2-PHASE
SWITCHING
SENSOR
.
359
3.5.2
OPTICAL
PROBING
3D
MEASURING
METHODS
.
360
3.5.2.1
OPTICAL,
SWITCHING
SINGLE
POINT
SENSOR
.
360
3.5.2.2
SCANNING
SENSORS
.
361
XIV
CONTENTS
3.5.2.3
OTHER
PROBE
AND
MEASURING
SYSTEMS
.
362
3.5.3
3D
IMAGING
MEASURING
METHODS
.
363
3.5.3.1
OPTICAL
3D
MEASUREMENT
(GRID
AND
LINE
PROJECTION)
.
363
3.5.3.2
MEASURING
PRINCIPLE
AND
MEASURING
ARRANGEMENT
.
364
3.5.3.3
FRINGE
PROJECTION
.
365
3.5.3.4
LIMITATIONS
OF
THE
PROCEDURE
.
367
3.5.3.5
FIELDS
OF
APPLICATION
.
367
3.5.4
OVERVIEW
OF
3D
MEASURING
METHODS
.
368
BIBLIOGRAPHY
.
369
4
MECHANICAL
MEASURED
VARIABLES
.
373
EKBERT
HERING,
GERT
SCHONFELDER,
AND
STEFAN
VINZELBERG
4.1
MASS
.
373
4.1.1
DEFINITION
.
373
4.1.2
APPLICATIONS
.
374
4.2
FORCE
.
376
4.2.1
DEFINITION
.
376
4.2.1.1
WEIGHT
FORCE
F
W
.
376
4.2.1.2
CENTRIPETAL
FORCE
F
CP
.
376
4.2.1.3
ELASTIC
FORCE
OR
SPRING
FORCE
F
EL
.
377
4.2.1.4
FRICTIONAL
FORCE
F
F
.
377
4.2.2
EFFECTS
FOR
THE
APPLICATIONS
.
377
4.2.2.1
PIEZOELECTRIC
EFFECT
.
378
4.2.3
APPLICATION
AREAS
.
381
4.2.3.1
PROCESS
CONTROL
.
381
4.3
ELONGATION
.
384
4.3.1
DEFINITION
.
384
4.3.2
STRAIN
MEASUREMENT
.
385
4.3.2.1
BENDING
BEAM
.
387
4.3.2.2
FIBER
BRAGG
GRATING
.
387
4.4
PRESSURE
.
388
4.4.1
DEFINITION
.
388
4.4.1.1
FIELDS
OF
APPLICATION
.
389
4.4.2
MEASURING
PRINCIPLES
.
389
4.4.2.1
MEASURING
PRINCIPLES
.
389
4.4.2.2
DIFFERENTIAL
PRESSURE
MEASUREMENT
.
389
4.4.2.3
RELATIVE
PRESSURE
MEASUREMENT
.
390
4.4.2.4
ABSOLUTE
PRESSURE
MEASUREMENT
.
390
4.4.3
MEASURING
ARRANGEMENTS
.
391
4.5
TORQUE
.
395
CONTENTS
XV
4.5.1
DEFINITION
.
395
4.5.2
MEASURING
PRINCIPLES
.
396
4.5.3
APPLICATION
AREAS
.
397
4.6
HARDNESS
.
398
4.6.1
DEFINITION
.
398
4.6.2
MACROSCOPIC
HARDNESS
DETERMINATION
.
399
4.6.3
HARDNESS
DETERMINATION
BY
NANOINDENTATION
.
400
4.6.4
SENSORS
FOR
NANOHARDNESS
MEASUREMENT
.
401
4.6.5
MODEL
AND
EVALUATION
.
401
4.6.6
APPLICATIONS
.
403
5
TIME-BASED
MEASUREMENTS
.
405
GERT
SCHONFELDER
AND
GERD
STEPHAN
5.1
TIME
.
405
5.1.1
DEFINITION
.
405
5.1.2
MEASURING
PRINCIPLES
.
405
5.2
FREQUENCY
.
406
5.2.1
DEFINITION
.
406
5.2.2
MEASURING
PRINCIPLES
.
407
5.2.3
MEASURING
ARRANGEMENTS
FOR
FREQUENCY
AND
TIME
MEASUREMENT
.
407
5.2.4
MEASUREMENT
ERROR
OF
TIME-DISCRETE
MEASUREMENTS
.
407
5.2.5
MEASURING
ARRANGEMENTS
.
409
5.3
PULSE
WIDTH
.
412
5.3.1
DEFINITION
.
412
5.3.2
MEASURING
PRINCIPLES
.
412
5.3.3
ANALOGUE
EVALUATION
.
414
5.3.4
DIGITAL
EVALUATION
.
415
5.3.5
MEASURING
ARRANGEMENTS
.
415
5.4
PHASE,
RUNNING
TIME,
AND
LIGHT
RUNNING
TIME
.
415
5.4.1
DEFINITION
.
415
5.4.2
MEASURING
PRINCIPLES
.
416
5.4.3
MEASURING
ARRANGEMENTS
.
417
5.4.4
LIGHT
RUNNING
TIME
.
417
5.4.5
DIRECT
TIME-OF-FLIGHT
MEASUREMENT
.
418
5.4.6
TRANSIT
TIME
MEASUREMENT
THROUGH
PULSE
INTEGRATION
.
419
5.4.7
TIME
OF
FLIGHT
MEASUREMENT
WITH
MODULATED
LIGHT
.
421
5.5
VISUAL
REPRESENTATION
OF
MEASURED
VARIABLES
.
422
5.5.1
MEASURING
PRINCIPLE
.
422
5.5.2
ANALOGUE
OSCILLOGRAPHS
.
423
5.5.3
DIGITAL
STORAGE
OSCILLOSCOPES
(DSOS)
.
424
5.5.4
MIXED
SIGNAL
OSCILLOSCOPES
(MSOS)
.
426
XVI
CONTENTS
5.5.5
THE
SAMPLING
PRINCIPLE
.
426
5.5.6
MEASURING
ARRANGEMENTS
.
427
5.5.7
VOLTAGE
AND
PERIOD
DURATION
MEASUREMENT
.
427
5.5.8
MEASUREMENT
OF
RISE
TIMES
.
428
5.5.9
MEASUREMENT
OF
PHASES
.
428
5.5.10
MEASUREMENT
OF
PULSE
DURATION
AND
PULSE
RATIOS
(PWM)
.
.
431
5.6
SPEED
AND
ANGLE
OF
ROTATION
.
431
5.6.1
DEFINITION
.
431
5.6.2
MEASURING
PRINCIPLES
.
433
5.6.3
MEASUREMENT
THROUGH
EVENT
RECORDING
.
433
5.6.4
MEASUREMENT
BY
POSITION
DETECTION
.
433
5.6.5
SPEED
DETERMINATION
BY
BEATING
(STROBOSCOPE)
.
433
5.6.6
MEASURING
ARRANGEMENTS
.
434
5.6.6.1
MAGNETIC
AND
OPTICAL
SCANNING
.
434
5.6.7
DIGITAL
OR
AZB
INTERFACE
(INCREMENTAL
ENCODER)
.
434
5.7
SPEED
.
436
5.7.1
DEFINITION
.
436
5.7.2
MEASURING
PRINCIPLE
SPEED
.
437
5.7.3
MEASURING
ARRANGEMENTS
FOR
SPEED
MEASUREMENT
.
437
5.8
ACCELERATION
.
439
5.8.1
DEFINITION
.
439
5.8.2
FIELDS
OF
APPLICATION
.
440
5.8.3
MEASURING
PRINCIPLE
LINEAR
ACCELERATION
.
440
5.8.4
MEASURING
PRINCIPLE
ANGULAR
ACCELERATION
.
443
5.8.5
MEASURING
ARRANGEMENT
FOR
MEASURING
ACCELERATION
. 445
5.9
FLOW
RATE
(MASS
AND
VOLUME)
.
445
5.9.1
DEFINITION
.
445
5.9.2
MASS
.
445
5.9.3
VOLUME
.
445
5.9.4
VOLUME
FLOW
.
446
5.9.5
MASS
FLOW
.
446
5.9.6
MAIN
GROUPS
.
446
5.9.7
MEASUREMENT
METHODS
AND
APPLICATION
.
446
5.9.8
BULK
FLOW
METER
.
447
5.9.9
BAFFLE
PLATE
SCALES
.
448
5.9.10
WEIGHFEEDERS
.
448
5.9.11
BELT
SCALES
.
448
5.9.12
DIFFERENTIAL
SCALES
.
448
5.9.13
OPTICAL
BELT
WEIGHER
.
449
BIBLIOGRAPHY
.
450
CONTENTS
XVII
6
TEMPERATURE
MEASUREMENT
.
451
EKBERT
HERING,
GERT
SCHONFELDER,
MARTIN
LIESS,
AND
LOTHAR
MICHALOWSKI
6.1
TEMPERATURE
AS
PHYSICAL
STATE
VARIABLE
.
451
6.2
MEASURING
PRINCIPLES
AND
MEASURING
RANGES
.
453
6.3
TEMPERATURE
DEPENDENCE
OF
THE
ELECTRICAL
RESISTANCE
.
453
6.3.1
METALS
.
453
6.3.2
METALS
WITH
DEFINED
ADDITIVES
(ALLOYS)
OR
LATTICE
DEFECTS
.
458
6.3.3
ION
CONDUCTING
MATERIALS
FOR
HIGH
TEMPERATURES
.
459
6.3.4
THERMISTORS
.
460
6.3.5
CONSTRICTION
RESISTOR
TEMPERATURE
SENSORS
(SPREADING
RESISTOR)
.
461
6.3.6
DIODES
.
463
6.4
THERMOELECTRICITY
(SEEBECK
EFFECT)
.
464
6.4.1
THERMOCOUPLES
FOR
VERY
HIGH
APPLICATION
TEMPERATURES
.
.
.
469
6.4.2
METALLIC
THERMOCOUPLES
FOR
VERY
HIGH
APPLICATION
TEMPERATURES
.
469
6.4.3
INORGANIC-NON-METALLIC
THERMOCOUPLES
FOR
VERY
HIGH
APPLICATION
TEMPERATURES
.
469
6.5
THERMAL
EXPANSION
.
470
6.5.1
THERMAL
EXPANSION
OF
SOLID
BODIES
.
470
6.5.2
THERMAL
EXPANSION
OF
LIQUIDS
.
472
6.5.3
THERMAL
EXPANSION
OF
GASES
.
474
6.6
TEMPERATURE
AND
FREQUENCY
.
474
6.7
THERMOCHROMISM
.
475
6.8
SEGER
CONE
.
476
6.9
NON-CONTACT
OPTICAL
TEMPERATURE
MEASUREMENT
.
477
6.9.1
RADIATION
THERMOMETER
(PYROMETER)
.
477
6.9.2
FIBER
OPTIC
APPLICATIONS
.
479
6.9.2.1
INTRINSIC
SENSORS,
DTS
(DISTRIBUTED
TEMPERATURE
SENSING)
.
479
6.9.2.2
EXTRINSIC
SENSORS
.
481
BIBLIOGRAPHY
.
483
7
ELECTRICAL
AND
MAGNETIC
MEASURED
VARIABLES
.
485
GERT
SCHONFELDER
AND
ANDREAS
WILDE
7.1
VOLTAGE
.
485
7.1.1
DEFINITION
.
485
7.1.1.1
AC
VOLTAGE
.
486
7.1.1.2
MEASURING
PRINCIPLES
.
487
7.1.1.3
CONVERSION
INTO
AN
ELECTROMAGNETIC
FIELD
.
488
7.1.1.4
CONVERSION
TO
HEAT
.
488
XVIII
CONTENTS
7.1.1.5
CONVERSION
INTO
A
CURRENT
.
488
7.1.1.6
MEASUREMENT
BY
COMPARISON
WITH
A
STANDARD
.
.
.
488
7.1.2
MEASURING
ARRANGEMENTS
.
490
7.1.2.1
MEASUREMENT
BY
ENERGY
EXTRACTION
.
490
7.1.2.2
MEASUREMENT
THROUGH
INTEGRATION
.
491
7.1.2.3
MEASUREMENT
BY
COMPARISON
.
492
7.1.2.4
SERVO
CONVERTER
.
492
7.1.2.5
THE
SUCCESSIVE
APPROXIMATION
.
492
7.1.2.6
MEASUREMENT
OF
ALTERNATING
VOLTAGES
.
494
7.2
AMPERAGE
.
495
7.2.1
DEFINITION
.
495
7.2.1.1
MEASURING
PRINCIPLES
.
495
7.2.1.2
CURRENT
FLOW
THROUGH
A
RESISTOR
.
495
7.2.1.3
THERMAL
EFFECT
OF
CURRENT
FLOW
.
496
7.2.1.4
MAGNETIC
FIELD
DUE
TO
CURRENT
FLOW
.
496
7.2.2
MEASURING
ARRANGEMENTS
.
496
7.3
ELECTRICAL
CHARGE
AND
CAPACITY
.
498
7.3.1
DEFINITION
.
498
7.3.1.1
MEASURING
PRINCIPLE
CHARGE
.
500
7.3.1.2
MEASURING
PRINCIPLE
CAPACITY
.
501
7.3.2
MEASURING
ARRANGEMENTS
.
503
7.3.2.1
CAPACITY
MEASUREMENT
THROUGH
CHARGE
SHARING
.
503
7.3.2.2
CAPACITY
MEASUREMENT
BY
RC
GENERATORS
. 503
7.3.2.3
COMPLEX
COMPONENTS
FOR
CAPACITANCE
DETERMINATION
.
503
7.4
ELECTRICAL
CONDUCTIVITY
AND
SPECIFIC
ELECTRICAL
RESISTANCE
.
504
7.4.1
DEFINITION
.
504
7.4.1.1
MEASURING
PRINCIPLES
FOR
RESISTANCE
.
506
7.4.2
MEASURING
ARRANGEMENTS
.
506
7.4.2.1
DETERMINATION
OF
CURRENT
AND
VOLTAGE
AT
THE
MEASURED
OBJECT
.
506
7.4.2.2
RESISTANCE
MEASUREMENT
THROUGH
COMPENSATION
.
508
7.4.2.3
AC
VOLTAGE
RESISTANCE
MEASUREMENT
.
509
7.5
ELECTRIC
FIELD
STRENGTH
.
509
7.5.1
DEFINITION
.
509
7.5.2
MEASURING
PRINCIPLES
FOR
THE
ELECTRIC
FIELD
STRENGTH
.
510
7.6
ELECTRICAL
ENERGY
AND
POWER
.
511
7.6.1
DEFINITIONS
.
511
7.6.1.1
PRACTICAL
CASE
ACCUMULATOR
.
512
CONTENTS
XIX
7.6.2
FORMS
OF
POWER
.
512
7.6.2.1
POWER
IN
DC
CIRCUIT
.
512
7.6.2.2
POWER
IN
AC
CIRCUIT
.
513
7.6.3
MEASURING
PRINCIPLES
.
515
7.6.3.1
ELECTROMECHANICAL
.
515
7.6.3.2
WITH
ANALOGUE
ELECTRONICS
.
515
7.6.3.3
WITH
DIGITAL
ELECTRONICS
.
516
7.6.3.4
WITH
STATISTICAL
METHODS
.
517
7.7
INDUCTANCE
.
517
7.7.1
DEFINITION
.
517
7.7.2
MEASURING
PRINCIPLES
.
519
7.8
MAGNETIC
FIELD
STRENGTH
.
520
7.8.1
DEFINITION
.
520
7.8.2
MEASURING
PRINCIPLES
OF
MAGNETIC
QUANTITIES
.
521
7.8.2.1
HALL
SENSOR
.
521
7.8.2.2
GMR
SENSOR
.
521
7.8.2.3
FIELD
PLATE
.
521
7.8.2.4
SQUID
.
521
7.8.3
MEASURING
ARRANGEMENTS
.
522
7.8.3.1 HALL
SWITCH
.
522
7.8.3.2
HALL
SENSORS
.
522
7.8.3.3
ANGLE
SENSORS
.
522
7.8.3.4
CURRENT
SENSORS
.
522
7.8.4
MULTIDIMENSIONAL
MEASUREMENTS
WITH
THE
HALL
EFFECT
.
523
7.8.4.1
BASICS
.
523
7.8.4.2
APPLICATIONS
.
524
BIBLIOGRAPHY
.
525
8
RADIO
AND
PHOTOMETRIC
QUANTITIES
.
527
EKBERT
HERING
AND
GERT
SCHONFELDER
8.1
RADIOMETRY
.
527
8.1.1
RADIOMETRIC
QUANTITIES
.
527
8.1.1.1
ENERGY
DENSITY
.
527
8.1.1.2
RADIANT
POWER
O
E
.
528
8.1.1.3
SOLID
ANGLE
Q
.
528
8.1.1.4
RADIANT
INTENSITY
LE
.
529
8.1.1.5
RADIANCE
L
E
.
530
8.1.2
MEASUREMENT
OF
ELECTROMAGNETIC
RADIATION
.
531
8.2
PHOTOMETRY
.
531
8.2.1
PHOTOMETRIC
QUANTITIES
.
532
8.2.1.1
LUMINOUS
FLUX
Z V
.
532
8.2.1.2
LIGHT
QUANTITY
Q
V
.
534
XX
CONTENTS
8.2.1.3
LUMINOUS
INTENSITY
7
V
.
534
8.2.1.4
LUMINANCE
L
V
.
534
8.2.1.5
ILLUMINANCE
E
Y
.
535
8.2.1.6
SPECIFIC
LIGHT
EMISSION
M,
.
535
8.2.1.7
LUMINOUS
EFFICACY
T]
.
535
8.2.2
MEASUREMENT
OF
PHOTOMETRIC
QUANTITIES
.
535
8.3
APPLICATION
OF
BRIGHTNESS
SENSORS
.
537
8.4
COLOUR
.
540
8.4.1
COLOUR
PERCEPTION
.
540
8.4.2
COLOUR
MODELS
.
543
8.4.2.1
OTHER
COLOR
SPACES
.
544
8.4.3
COLOR
SYSTEMS
.
544
8.4.4
COLOUR
FILTERS
FOR
SENSORS
.
545
8.4.4.1
BAYER
PATTERN
.
545
8.4.4.2
COLOR
CORRECTION
.
546
8.4.4.3
WHITE
BALANCE
.
546
8.4.5
COLOUR
SENSORS
.
547
BIBLIOGRAPHY
.
548
9
ACOUSTIC
MEASURED
VARIABLES
.
549
EKBERT
HERING
9.1
DEFINITION
OF
IMPORTANT
ACOUSTIC
QUANTITIES
.
549
9.2
HUMAN
PERCEPTION
.
551
9.2.1
LEVEL
.
551
9.2.2
VOLUME
.
553
9.2.3
LOUDNESS
.
554
9.3
TRANSDUCER
.
555
9.4
FIELDS
OF
APPLICATION
.
557
BIBLIOGRAPHY
.
560
10
CLIMATIC
AND
METEOROLOGICAL
MEASURED
VARIABLES
.
561
GERT
SCHONFELDER,
ROBERT
KRAH,
GERD
STEPHAN,
AND
ROLAND
WEMECKE
10.1
MOISTURE
IN
GASES
.
561
10.1.1
DEFINITIONS
AND
EQUATIONS
.
561
10.1.1.1
HUMIDITY
.
561
10.1.1.2
WATER
VAPOUR
PARTIAL
PRESSURE
.
561
10.1.1.3
ABSOLUTE
AND
SPECIFIC
HUMIDITY
.
562
10.1.1.4
SATURATION
HUMIDITY
.
562
10.1.1.5
RELATIVE
HUMIDITY
P
.
562
10.1.1.6
DEWPOINT
.
563
10.1.1.7
ENTHALPY
.
564
10.1.1.8
MOLLIER
DIAGRAM
(H-X
DIAGRAM)
.
564
CONTENTS
XXI
10.1.2
HUMIDITY
MEASUREMENTS
IN
GASES
.
566
10.1.2.1
PSYCHROMETERS,
DESIGN
AND
FUNCTION
.
566
10.1.2.2
DESIGN
TYPES
AND
AREAS
OF
APPLICATION
.
568
10.1.2.3
ASPIRATION
PSYCHROMETER
.
568
10.1.2.4
SLINGSHOT
PSYCHROMETER
.
568
10.1.2.5
DEW
POINT
MIRROR
.
569
10.1.2.6
CAPACITIVE
HUMIDITY
MEASUREMENT
.
572
10.1.2.7
INTEGRATED
CAPACITIVE
HUMIDITY
SENSORS
WITH
BUS
OUTPUT
.
574
10.2
MOISTURE
ANALYSIS
IN
SOLID
AND
LIQUID
SUBSTANCES
.
574
10.2.1
DIRECT
METHODS
FOR
THE
DETERMINATION
OF
MATERIAL
MOISTURE
.
576
10.2.1.1
PERCENTAGE
WATER
CONTENT
OF
A
MATERIAL
SAMPLE
.
.
576
10.2.1.2
WATER
ACTIVITY
OF
A
MATERIAL
SAMPLE
.
577
10.2.1.3
KARL
FISCHER
TITRATION
.
577
10.2.1.4
CALCIUM
CARBIDE
METHOD
.
579
10.2.1.5
CALCIUM
HYDRIDE
METHOD
.
579
10.2.2
INDIRECT
MEASURING
METHODS
FOR
DETERMINING
THE
MOISTURE
CONTENT
OF
MATERIALS
.
579
10.2.2.1
MEASUREMENT
OF
THE
ELECTRICAL
PROPERTIES
.
579
10.2.2.2
DETECTION
OF
THE
OPTICAL
PROPERTIES
OF
WATER
AND
WATER
VAPOUR
.
580
10.2.2.3
MEASUREMENT
OF
THE
SUCTION
PRESSURE
IN
MOIST
MATERIALS
(TENSIOMETRY)
.
582
10.2.2.4
MEASUREMENT
OF
ATOMIC
PROPERTIES
.
582
10.2.2.5
NUCLEAR
MAGNETIC
RESONANCE
(NMR)
METHOD
.
.
.
583
10.2.2.6
MEASUREMENT
OF
THERMAL
CONDUCTIVITY
.
584
10.3
MEASUREMENT
OF
PRECIPITATION
IN
OUTDOOR
CLIMATE
.
585
10.3.1
MEASUREMENT
OF
THE
RELATIVE
AIR
HUMIDITY
.
585
10.3.2
PRECIPITATION
MEASUREMENT
.
585
10.3.3
CONDENSATION
MEASUREMENT
.
586
10.4
HUMIDITY
MEASUREMENT
IN
CLOSED
ROOMS
.
587
10.4.1
MEASUREMENT
OF
THE
CLIMATE
IN
HOMES
AND
AT
WORKPLACES
.
587
10.4.2
CLIMATE
IN
MUSEUMS
AND
EXHIBITION
ROOMS
.
588
10.4.3
CLIMATE
IN
ELECTRICAL
INSTALLATIONS
.
591
10.4.4
INFLUENCING
THE
INDOOR
CLIMATE
.
591
10.4.4.1
AIR
HUMIDIFICATION
.
591
10.4.4.2
EVAPORATOR
.
591
10.4.4.3
STEAM
HUMIDIFIER
.
592
10.4.4.4
NEBULIZER
.
592
XXII
CONTENTS
10.4.4.5
DEHUMIDIFYING
ROOMS
.
593
10.4.4.6
CONDENSATION
DEHUMIDIFICATION
.
593
10.4.4.7
ADSORPTION
DEHUMIDIFIER
.
593
10.4.4.8
ABSORPTION
DEHUMIDIFIER
.
593
10.5
AIR
PRESSURE
.
593
10.5.1
FIELDS
OF
APPLICATION
.
593
10.5.2
MEASURING
PRINCIPLES
.
594
10.5.3
DEFINITIONS
.
594
10.6
WIND
AND
AIR
FLOW
.
595
10.6.1
DEFINITION
.
595
10.6.2
METHODS
FOR
WIND
MEASUREMENT
.
595
10.7
WATER
FLOW
.
600
10.7.1
DEFINITION
.
600
10.7.2
DIRECT
AND
INDIRECT
FLOW
MEASUREMENT
.
601
10.7.2.1
ULTRASONIC
MEASUREMENT
.
601
10.7.2.2
TERM
PRINCIPLE
.
601
10.7.2.3
DOPPLER
PRINCIPLE
.
603
10.7.2.4
ELECTROMAGNETIC
MEASURING
METHOD
.
604
10.7.2.5
HYDROMETRIC
MEASURING
BLADE
.
604
10.7.2.6
MEASUREMENT
WITH
MARKERS
(TRACERS)
.
605
BIBLIOGRAPHY
.
605
11
SELECTED
CHEMICAL
PARAMETERS
.
607
WINFRIED
VONAU
11.1
REDOX
POTENTIAL
.
607
11.1.1
GENERAL
.
607
11.1.2
PRECIOUS
METAL
REDOX
ELECTRODES
.
610
11.1.3
REDOX
GLASS
ELECTRODES
.
611
11.1.4
REFERENCE
ELECTRODES
.
613
11.2
IONS
INCLUDING
HYDRONIUM
IONS
.
617
11.2.1
GENERAL
INFORMATION
.
617
11.2.2
PH
MEASUREMENT
.
618
11.2.3
OTHER
IONS
.
623
11.3
GASES
.
627
11.3.1
GENERAL
INFORMATION
.
627
11.3.2
GASES
IN
A
PHYSICALLY
DISSOLVED
STATE
OR
AT
NORMAL
TEMPERATURE
.
628
11.3.2.1
SOLID
ELECTROLYTE
SENSORS
.
630
11.3.3
SEMICONDUCTOR
GAS
SENSORS:
METAL
OXIDE
SEMICONDUCTOR
SENSORS
(MOS)
.
641
11.3.3.1
SURFACE
CONDUCTIVITY
.
641
11.3.3.2
VOLUME
CONDUCTIVITY
.
642
11.3.4
PELLISTORS
.
643
CONTENTS
XXIII
11.4
ELECTROLYTIC
CONDUCTIVITY
.
644
11.4.1
GENERAL
INFORMATION
.
644
11.4.2
KOHLRAUSCH
MEASURING
CELLS
.
644
11.4.3
MULTI-ELECTRODE
MEASURING
CELLS
.
645
11.4.4
ELECTRODELESS
CONDUCTIVITY
MEASURING
CELLS
.
646
11.4.5
EXAMPLES
FOR
THE
APPLICATION
OF
CONDUCTIVITY
SENSORS
.
647
12
BIOLOGICAL
AND
MEDICAL
SENSORS
.
651
ELFRIEDE
SIMON
12.1
BIOLOGICAL
SENSOR
TECHNOLOGY
.
651
12.1.1
BIOSENSOR
TECHNOLOGY
.
651
12.1.2
REAL
BIOLOGICAL
SENSORS
.
653
12.2
FUNCTIONAL
PRINCIPLES
OF
BIOSENSORS
.
655
12.2.1
CALORIMETRIC
SENSORS
.
655
12.2.2
MICROGRAVIMETRIC
SENSORS
.
657
12.2.3
OPTICAL
SENSORS
.
658
12.2.4
ELECTROCHEMICAL
SENSORS
.
660
12.2.5
IMMOBILIZATION
METHODS
.
663
12.3
PHYSICAL
AND
CHEMICAL
SENSORS
IN
MEDICINE
.
664
12.3.1
PHYSICAL-CHEMICAL
BLOOD
ANALYSES
.
665
12.3.2
CLINICAL-CHEMICAL
BLOOD
ANALYSES
.
668
12.4
ENZYMATIC
METHODS:
ENZYME
SENSORS
.
669
12.4.1
ENZYME-BASED
ANALYTE
DETECTION
.
672
12.4.2
DETERMINATION
OF
ENZYME
ACTIVITY
.
673
12.4.3
APPLICATION
FIELDS
OF
ENZYMATIC
TESTS
.
674
12.5
IMMUNOLOGICAL
METHODS:
IMMUNOSENSORS
.
675
12.5.1
DIRECT
IMMUNOSENSORS
.
679
12.5.2
INDIRECT
IMMUNOSENSORS
.
679
12.5.3
APPLICATION
FIELDS
OF
IMMUNOSENSORS
.
681
12.6
DNA-BASED
SENSORS
.
681
12.6.1
HYBRIDIZATION
DIAGNOSTICS
.
682
12.6.2
APPLICATION
AND
USE
OF
DNA
SENSORS
.
684
12.7
CELL-BASED
SENSOR
TECHNOLOGY
.
686
12.7.1
METABOLIC
CELL
CHIP
.
687
12.7.2
NEURO-CHIP
.
687
BIBLIOGRAPHY
.
689
13
MEASURED
QUANTITIES
FOR
IONIZING
RADIATION
.
691
HARTMUT
BARWOLFF
13.1
INTRODUCTION
AND
PHYSICAL
QUANTITIES
.
691
13.2
INTERACTION
OF
IONISING
RADIATION
WITH
MATTER
.
696
XXIV
CONTENTS
13.3
CLASSIFICATION
OF
SENSORS
.
700
13.4
GAS-FILLED
RADIATION
SENSORS
.
703
13.5
RADIATION
SENSORS
ACCORDING
TO
THE
EXCITATION
PRINCIPLE
.
708
13.6
SEMICONDUCTOR
SENSORS
.
710
BIBLIOGRAPHY
.
720
14
PHOTOELECTRIC
SENSORS
.
721
GERT
SCHONFELDER
AND
MARTIN
LIESS
14.1
RADIATION
.
721
14.2
SCINTILLATORS
.
722
14.3
OUTER
PHOTOELECTRIC
EFFECT
.
723
14.3.1
PHOTOMULTIPLIER
.
723
14.3.2
CHANNEL
PHOTOMULTIPLIER
.
724
14.3.3
IMAGE
PICKUP
TUBES
.
725
14.4
INTERNAL
PHOTOELECTRIC
EFFECT
.
726
14.4.1
PHOTOCONDUCTOR
.
726
14.4.2
PHOTODIODES
.
728
14.4.3
PHOTOTRANSISTOR,
PHOTOTHYRISTOR
AND
PHOTO-FET
.
731
14.4.4
CMOS
IMAGE
SENSORS
.
732
14.4.5
HIGH
DYNAMIC
CMOS
IMAGE
SENSORS
.
732
14.5
CCD
SENSORS
.
734
14.5.1
LINE
SENSORS
.
735
14.5.2
CCD
MATRIX
SENSORS
.
735
14.6
QUANTUM
WELL
INFRARED
PHOTODETECTOR
QWIP
.
736
14.7
THERMAL
OPTICAL
DETECTORS
.
738
14.7.1
THERMAL
PILES
.
739
14.7.2
PYROELECTRIC
DETECTORS
.
741
14.7.3
BOLOMETER
.
742
15
SIGNAL
PROCESSING
AND
CALIBRATION
.
745
GERT
SCHONFELDER
15.1
SIGNAL
PROCESSING
.
745
15.1.1
ANALOG
(DISCRETE)
SIGNAL
CONDITIONING
.
746
15.1.2
SIGNAL
CONDITIONING
WITH
SYSTEM
CIRCUITS
.
746
15.1.3
SIGNAL
CONDITIONING
WITH
ASICS
.
746
15.1.4
SIGNAL
CONDITIONING
WITH
MICROCONTROLLERS
.
748
15.2
SENSOR
CALIBRATION
.
748
15.2.1
PASSIVE
COMPENSATION
.
749
15.2.2
ADJUSTMENT
WITH
ANALOG
SIGNAL
PROCESSING
.
750
15.2.3
ADJUSTMENT
WITH
DIGITAL
SIGNAL
PROCESSING
.
751
15.3
ENERGY
MANAGEMENT
FOR
SENSORS
.
753
BIBLIOGRAPHY
.
755
CONTENTS
XXV
16
INTERFACE
.
757
GERT
SCHONFELDER
16.1
ANALOGUE
INTERFACES
.
757
16.1.1
VOLTAGE
OUTPUT
.
758
16.1.2
RATIOMETRIC
VOLTAGE
OUTPUT
.
759
16.1.3
CURRENT
OUTPUT
.
759
16.1.4
FREQUENCY
OUTPUT
AND
PULSE
WIDTH
MODULATION
.
760
16.1.5
4-/6-WIRE
INTERFACE
.
762
16.2
DIGITAL
INTERFACES
.
762
16.2.1
CAN
GROUP
.
765
16.2.2
LON
.
767
16.2.3
HART
.
767
16.2.4
RS485
.
768
16.2.5
LO-LINK
.
768
16.2.6
PROFIBUS
.
770
16.2.7
I2C
.
771
16.2.8
SPI
.
772
16.2.9
IEEE
1451
.
773
BIBLIOGRAPHY
.
776
17
SAFETY
ASPECTS
FOR
SENSORS
.
777
GERT
SCHONFELDER
AND
SORIN
FERICEAN
17.1
FEATURES
FOR
FUNCTION
MONITORING
.
777
17.2
ELECTROMAGNETIC
COMPATIBILITY
(EMC)
.
782
17.3
FUNCTIONAL
SAFETY
(SIL)
.
785
17.4
SENSORS
IN
EXPLOSIVE
ENVIRONMENTS
(ATEX)
.
787
17.4.1
BASIC
PRINCIPLES
OF
ATEX
.
788
17.4.2
IGNITION
PROTECTION
TYPE
INTRINSIC
SAFETY
.
789
17.4.3
TYPE
OF
PROTECTION
FLAMEPROOF
ENCLOSURE
.
791
BIBLIOGRAPHY
.
791
18
MEASUREMENT
ERRORS,
MEASUREMENT
ACCURACY
AND
MEASUREMENT
PARAMETERS
.
793
GERT
SCHONFELDER
18.1
CLASSIFICATION
OF
MEASUREMENT
ERRORS
ACCORDING
TO
THEIR
CAUSE
.
.
.
.
793
18.2
DISPLAY
OF
MEASUREMENT
ERRORS
.
795
18.2.1
ARITHMETIC
MEAN,
ERROR
SUM
AND
STANDARD
DEVIATION
.
795
18.2.2
ABSOLUTE
ERROR
.
796
18.2.3
RELATIVE
ERROR
.
796
18.3
MEASUREMENT
PARAMETERS
.
799
18.3.1
SCATTERING
OF
MEASURED
VALUES
.
800
18.3.2
RESOLUTION
OF
MEASURED
VALUES
.
801
18.3.3
SIGNAL-TO-NOISE
RATIO
AND
DYNAMICS
OF
MEASURED
VALUES
.
.
801
BIBLIOGRAPHY
.
802
INDEX
.
803 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Hering, Ekbert 1943- Schönfelder, Gert |
author2_role | edt edt |
author2_variant | e h eh g s gs |
author_GND | (DE-588)12263019X (DE-588)1155438760 |
author_facet | Hering, Ekbert 1943- Schönfelder, Gert |
building | Verbundindex |
bvnumber | BV047616164 |
ctrlnum | (OCoLC)1257413083 (DE-599)DNB1235791785 |
edition | 1st edition 2022 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02834nam a22007098c 4500</leader><controlfield tag="001">BV047616164</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220228 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">211129s2022 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">21,N25</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1235791785</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783658349196</subfield><subfield code="c">Festeinband : circa EUR 128.39 (DE) (freier Preis), circa EUR 131.99 (AT) (freier Preis), circa CHF 141.50 (freier Preis), circa EUR 119.99</subfield><subfield code="9">978-3-658-34919-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783658349196</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 89075568</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 978-3-658-34919-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1257413083</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1235791785</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-HE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">621.3</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="130" ind1="0" ind2=" "><subfield code="a">Sensoren in Wissenschaft und Technik</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sensors in science and technology</subfield><subfield code="b">functionality and application areas</subfield><subfield code="c">Ekbert Hering, Gert Schönfelder, editors</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition 2022</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Springer</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxviii, 816 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm x 16.8 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sensortechnik</subfield><subfield code="0">(DE-588)4121663-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sensor</subfield><subfield code="0">(DE-588)4038824-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Acoustical sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Automation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biological sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Calibration</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemical sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Climate sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Control engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electrical and magnetic sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electrical engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Measurement</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mechanical engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Medical sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Physical sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Robotics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Safety aspects</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sensor applications</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sensor systems</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sensor</subfield><subfield code="0">(DE-588)4038824-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Sensortechnik</subfield><subfield code="0">(DE-588)4121663-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hering, Ekbert</subfield><subfield code="d">1943-</subfield><subfield code="0">(DE-588)12263019X</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schönfelder, Gert</subfield><subfield code="0">(DE-588)1155438760</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Springer Fachmedien Wiesbaden</subfield><subfield code="0">(DE-588)1043386068</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-658-34920-2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=66946341edd942f8ab515bc024eeb94a&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.springer.com/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033000879&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033000879</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20210619</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield></record></collection> |
id | DE-604.BV047616164 |
illustrated | Illustrated |
index_date | 2024-07-03T18:41:47Z |
indexdate | 2024-07-10T09:17:16Z |
institution | BVB |
institution_GND | (DE-588)1043386068 |
isbn | 9783658349196 |
language | English German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033000879 |
oclc_num | 1257413083 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xxviii, 816 Seiten Illustrationen, Diagramme 24 cm x 16.8 cm |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Springer |
record_format | marc |
spelling | Sensoren in Wissenschaft und Technik Sensors in science and technology functionality and application areas Ekbert Hering, Gert Schönfelder, editors 1st edition 2022 Wiesbaden Springer [2022] xxviii, 816 Seiten Illustrationen, Diagramme 24 cm x 16.8 cm txt rdacontent n rdamedia nc rdacarrier Sensortechnik (DE-588)4121663-5 gnd rswk-swf Sensor (DE-588)4038824-4 gnd rswk-swf Acoustical sensors Automation Biological sensors Calibration Chemical sensors Climate sensors Control engineering Electrical and magnetic sensors Electrical engineering Measurement Mechanical engineering Medical sensors Physical sensors Robotics Safety aspects Sensor applications Sensor systems Sensor (DE-588)4038824-4 s Sensortechnik (DE-588)4121663-5 s DE-604 Hering, Ekbert 1943- (DE-588)12263019X edt Schönfelder, Gert (DE-588)1155438760 edt Springer Fachmedien Wiesbaden (DE-588)1043386068 pbl Erscheint auch als Online-Ausgabe 978-3-658-34920-2 X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=66946341edd942f8ab515bc024eeb94a&prov=M&dok_var=1&dok_ext=htm Inhaltstext X:MVB http://www.springer.com/ DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033000879&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20210619 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Sensors in science and technology functionality and application areas Sensortechnik (DE-588)4121663-5 gnd Sensor (DE-588)4038824-4 gnd |
subject_GND | (DE-588)4121663-5 (DE-588)4038824-4 |
title | Sensors in science and technology functionality and application areas |
title_alt | Sensoren in Wissenschaft und Technik |
title_auth | Sensors in science and technology functionality and application areas |
title_exact_search | Sensors in science and technology functionality and application areas |
title_exact_search_txtP | Sensors in science and technology functionality and application areas |
title_full | Sensors in science and technology functionality and application areas Ekbert Hering, Gert Schönfelder, editors |
title_fullStr | Sensors in science and technology functionality and application areas Ekbert Hering, Gert Schönfelder, editors |
title_full_unstemmed | Sensors in science and technology functionality and application areas Ekbert Hering, Gert Schönfelder, editors |
title_short | Sensors in science and technology |
title_sort | sensors in science and technology functionality and application areas |
title_sub | functionality and application areas |
topic | Sensortechnik (DE-588)4121663-5 gnd Sensor (DE-588)4038824-4 gnd |
topic_facet | Sensortechnik Sensor |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=66946341edd942f8ab515bc024eeb94a&prov=M&dok_var=1&dok_ext=htm http://www.springer.com/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033000879&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | UT sensoreninwissenschaftundtechnik AT heringekbert sensorsinscienceandtechnologyfunctionalityandapplicationareas AT schonfeldergert sensorsinscienceandtechnologyfunctionalityandapplicationareas AT springerfachmedienwiesbaden sensorsinscienceandtechnologyfunctionalityandapplicationareas |