Ecotoxicological QSARs:
This volume focuses on computational modeling of the ecotoxicity of chemicals and presents applications of quantitative structure-activity relationship models (QSARs) in the predictive toxicology field in a regulatory context. The extensive book covers a variety of protocols for descriptor computati...
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer US
2020
|
Ausgabe: | 1st ed. 2020 |
Schriftenreihe: | Methods in Pharmacology and Toxicology
|
Schlagworte: | |
Online-Zugang: | UBR01 TUM01 Volltext |
Zusammenfassung: | This volume focuses on computational modeling of the ecotoxicity of chemicals and presents applications of quantitative structure-activity relationship models (QSARs) in the predictive toxicology field in a regulatory context. The extensive book covers a variety of protocols for descriptor computation, data curation, feature selection, learning algorithms, validation of models, applicability domain assessment, confidence estimation for predictions, and much more, as well as case studies and literature reviews on a number of hot topics. Written for the Methods in Pharmacology and Toxicology series, chapters include the kind of practical advice that is essential for researchers everywhere. Authoritative and comprehensive, Ecotoxicological QSARs is an ideal source to update readers in the field with current practices and introduce to them new developments and should therefore be very useful for researchers in academia, industries, and regulatory bodies |
Beschreibung: | Ecotoxicological Risk Assessment in the Context of Different EU Regulations -- A Brief Introduction to Quantitative Structure-Activity Relationships as Useful Tools in Predictive Ecotoxicology -- Best Practices for Constructing Reproducible QSAR Models -- Wildlife Sentinels for Human and Environmental Health Hazards in Ecotoxicological Risk Assessment -- Importance of Data Curation in QSAR Studies Especially While Modeling Large-Size Data Sets -- Machine Learning and Deep Learning Methods in Ecotoxicological QSAR Modeling -- Use of Machine Learning and Classical QSAR Methods in Computational Ecotoxicology -- On the Relevance of Feature Selection Algorithms While Developing Non-Linear QSARs -- Got to Write a Classic: Classical and Perturbation-Based QSAR Methods, Machine Learning, and the Monitoring of Nanoparticles Ecotoxicity -- Ecotoxicological QSAR Modeling of Nanomaterials: Methods in 3D-QSARs and Combined Docking Studies for Carbon Nanostructures -- - Early Prediction of Ecotoxicological Side-Effects of Pharmaceutical Impurities Based on Open-Source Non-Testing Approaches -- Conformal Prediction for Ecotoxicology and Implications for Regulatory Decision Making -- Read-Across for Regulatory Ecotoxicology -- Methodological Protocol for Assessing the Environmental Footprint by Means of Ecotoxicological Tools: Wastewater Treatment Plants as an Example Case -- Development of Baseline Quantitative Structure-Activity Relationships (QSARs) for the Effects of Active Pharmaceutical Ingredients (APIs) to Aquatic Species -- Ecotoxicological QSARs of Personal Care Products and Biocides -- Computational Approaches to Evaluate Ecotoxicity of Biocides: Cases from the Project COMBASE -- QSAR Modeling of Dye Ecotoxicity -- Ecotoxicological QSARs of Mixtures -- QSPR Modeling of Adsorption of Pollutants by Carbon Nanotubes (CNTs) -- Ecotoxicological QSAR Modeling of Organophosphorus and Neonicotinoid Pesticides -- - QSARs and Read-Across for Thiochemicals: A Case Study of Using Alternative Information for REACH Registrations -- In Silico Ecotoxicological Modeling of Pesticide Metabolites and Mixtures -- Combination of Read-Across and QSAR for Ecotoxicity Prediction: A Case Study of Green Algae Growth Inhibition Toxicity Data -- QSAR Approaches and Ecotoxicological Risk Assessment -- Multi-Scale QSAR Approach for Simultaneous Modeling of Ecotoxic Effects of Pesticides -- Quantitative Structure-Toxicity Relationship Models Based on Hydrophobicity and Electrophilicity -- Environmental Toxicity (Q)SARs for Polymers as an Emerging Class of Materials in Regulatory Frameworks, with a Focus on Challenges and Possibilities Regarding Cationic Polymers -- Ecotoxicity Databases for QSAR Modeling -- VEGAHUB for Ecotoxicological QSAR Modeling -- Enalos Cloud Platform: Nanoinformatics and Cheminformatics Tools -- alvaDesc: A Tool to Calculate and Analyze Molecular Descriptors and Fingerprints |
Beschreibung: | 1 Online-Ressource (XXI, 830 Seiten) Illustrationen |
ISBN: | 9781071601501 |
DOI: | 10.1007/978-1-0716-0150-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047607045 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 211123s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781071601501 |9 978-1-07-160150-1 | ||
024 | 7 | |a 10.1007/978-1-0716-0150-1 |2 doi | |
035 | |a (ZDB-2-PRO)978-1-0716-0150-1 | ||
035 | |a (OCoLC)1286869119 | ||
035 | |a (DE-599)BVBBV047607045 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-91 | ||
082 | 0 | |a 615 | |
245 | 1 | 0 | |a Ecotoxicological QSARs |c edited by Kunal Roy |
250 | |a 1st ed. 2020 | ||
264 | 1 | |a New York, NY |b Springer US |c 2020 | |
300 | |a 1 Online-Ressource (XXI, 830 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Methods in Pharmacology and Toxicology | |
500 | |a Ecotoxicological Risk Assessment in the Context of Different EU Regulations -- A Brief Introduction to Quantitative Structure-Activity Relationships as Useful Tools in Predictive Ecotoxicology -- Best Practices for Constructing Reproducible QSAR Models -- Wildlife Sentinels for Human and Environmental Health Hazards in Ecotoxicological Risk Assessment -- Importance of Data Curation in QSAR Studies Especially While Modeling Large-Size Data Sets -- Machine Learning and Deep Learning Methods in Ecotoxicological QSAR Modeling -- Use of Machine Learning and Classical QSAR Methods in Computational Ecotoxicology -- On the Relevance of Feature Selection Algorithms While Developing Non-Linear QSARs -- Got to Write a Classic: Classical and Perturbation-Based QSAR Methods, Machine Learning, and the Monitoring of Nanoparticles Ecotoxicity -- Ecotoxicological QSAR Modeling of Nanomaterials: Methods in 3D-QSARs and Combined Docking Studies for Carbon Nanostructures -- | ||
500 | |a - Early Prediction of Ecotoxicological Side-Effects of Pharmaceutical Impurities Based on Open-Source Non-Testing Approaches -- Conformal Prediction for Ecotoxicology and Implications for Regulatory Decision Making -- Read-Across for Regulatory Ecotoxicology -- Methodological Protocol for Assessing the Environmental Footprint by Means of Ecotoxicological Tools: Wastewater Treatment Plants as an Example Case -- Development of Baseline Quantitative Structure-Activity Relationships (QSARs) for the Effects of Active Pharmaceutical Ingredients (APIs) to Aquatic Species -- Ecotoxicological QSARs of Personal Care Products and Biocides -- Computational Approaches to Evaluate Ecotoxicity of Biocides: Cases from the Project COMBASE -- QSAR Modeling of Dye Ecotoxicity -- Ecotoxicological QSARs of Mixtures -- QSPR Modeling of Adsorption of Pollutants by Carbon Nanotubes (CNTs) -- Ecotoxicological QSAR Modeling of Organophosphorus and Neonicotinoid Pesticides -- | ||
500 | |a - QSARs and Read-Across for Thiochemicals: A Case Study of Using Alternative Information for REACH Registrations -- In Silico Ecotoxicological Modeling of Pesticide Metabolites and Mixtures -- Combination of Read-Across and QSAR for Ecotoxicity Prediction: A Case Study of Green Algae Growth Inhibition Toxicity Data -- QSAR Approaches and Ecotoxicological Risk Assessment -- Multi-Scale QSAR Approach for Simultaneous Modeling of Ecotoxic Effects of Pesticides -- Quantitative Structure-Toxicity Relationship Models Based on Hydrophobicity and Electrophilicity -- Environmental Toxicity (Q)SARs for Polymers as an Emerging Class of Materials in Regulatory Frameworks, with a Focus on Challenges and Possibilities Regarding Cationic Polymers -- Ecotoxicity Databases for QSAR Modeling -- VEGAHUB for Ecotoxicological QSAR Modeling -- Enalos Cloud Platform: Nanoinformatics and Cheminformatics Tools -- alvaDesc: A Tool to Calculate and Analyze Molecular Descriptors and Fingerprints | ||
520 | |a This volume focuses on computational modeling of the ecotoxicity of chemicals and presents applications of quantitative structure-activity relationship models (QSARs) in the predictive toxicology field in a regulatory context. The extensive book covers a variety of protocols for descriptor computation, data curation, feature selection, learning algorithms, validation of models, applicability domain assessment, confidence estimation for predictions, and much more, as well as case studies and literature reviews on a number of hot topics. Written for the Methods in Pharmacology and Toxicology series, chapters include the kind of practical advice that is essential for researchers everywhere. Authoritative and comprehensive, Ecotoxicological QSARs is an ideal source to update readers in the field with current practices and introduce to them new developments and should therefore be very useful for researchers in academia, industries, and regulatory bodies | ||
650 | 4 | |a Pharmacology | |
650 | 4 | |a Ecotoxicology | |
650 | 4 | |a Bioinformatics | |
700 | 1 | |a Roy, Kunal |d 1971- |e Sonstige |0 (DE-588)1185508783 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781071601495 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781071601518 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781071601525 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-0716-0150-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-PRO | ||
940 | 1 | |q ZDB-2-PRO_2020_Fremddaten | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032992027 | ||
966 | e | |u https://doi.org/10.1007/978-1-0716-0150-1 |l UBR01 |p ZDB-2-PRO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-0716-0150-1 |l TUM01 |p ZDB-2-PRO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182971931951104 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author_GND | (DE-588)1185508783 |
building | Verbundindex |
bvnumber | BV047607045 |
collection | ZDB-2-PRO |
ctrlnum | (ZDB-2-PRO)978-1-0716-0150-1 (OCoLC)1286869119 (DE-599)BVBBV047607045 |
dewey-full | 615 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 615 - Pharmacology and therapeutics |
dewey-raw | 615 |
dewey-search | 615 |
dewey-sort | 3615 |
dewey-tens | 610 - Medicine and health |
discipline | Medizin |
discipline_str_mv | Medizin |
doi_str_mv | 10.1007/978-1-0716-0150-1 |
edition | 1st ed. 2020 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05569nmm a2200493zc 4500</leader><controlfield tag="001">BV047607045</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">211123s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781071601501</subfield><subfield code="9">978-1-07-160150-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-0716-0150-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-PRO)978-1-0716-0150-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1286869119</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047607045</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">615</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ecotoxicological QSARs</subfield><subfield code="c">edited by Kunal Roy</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer US</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXI, 830 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Methods in Pharmacology and Toxicology</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Ecotoxicological Risk Assessment in the Context of Different EU Regulations -- A Brief Introduction to Quantitative Structure-Activity Relationships as Useful Tools in Predictive Ecotoxicology -- Best Practices for Constructing Reproducible QSAR Models -- Wildlife Sentinels for Human and Environmental Health Hazards in Ecotoxicological Risk Assessment -- Importance of Data Curation in QSAR Studies Especially While Modeling Large-Size Data Sets -- Machine Learning and Deep Learning Methods in Ecotoxicological QSAR Modeling -- Use of Machine Learning and Classical QSAR Methods in Computational Ecotoxicology -- On the Relevance of Feature Selection Algorithms While Developing Non-Linear QSARs -- Got to Write a Classic: Classical and Perturbation-Based QSAR Methods, Machine Learning, and the Monitoring of Nanoparticles Ecotoxicity -- Ecotoxicological QSAR Modeling of Nanomaterials: Methods in 3D-QSARs and Combined Docking Studies for Carbon Nanostructures -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Early Prediction of Ecotoxicological Side-Effects of Pharmaceutical Impurities Based on Open-Source Non-Testing Approaches -- Conformal Prediction for Ecotoxicology and Implications for Regulatory Decision Making -- Read-Across for Regulatory Ecotoxicology -- Methodological Protocol for Assessing the Environmental Footprint by Means of Ecotoxicological Tools: Wastewater Treatment Plants as an Example Case -- Development of Baseline Quantitative Structure-Activity Relationships (QSARs) for the Effects of Active Pharmaceutical Ingredients (APIs) to Aquatic Species -- Ecotoxicological QSARs of Personal Care Products and Biocides -- Computational Approaches to Evaluate Ecotoxicity of Biocides: Cases from the Project COMBASE -- QSAR Modeling of Dye Ecotoxicity -- Ecotoxicological QSARs of Mixtures -- QSPR Modeling of Adsorption of Pollutants by Carbon Nanotubes (CNTs) -- Ecotoxicological QSAR Modeling of Organophosphorus and Neonicotinoid Pesticides -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - QSARs and Read-Across for Thiochemicals: A Case Study of Using Alternative Information for REACH Registrations -- In Silico Ecotoxicological Modeling of Pesticide Metabolites and Mixtures -- Combination of Read-Across and QSAR for Ecotoxicity Prediction: A Case Study of Green Algae Growth Inhibition Toxicity Data -- QSAR Approaches and Ecotoxicological Risk Assessment -- Multi-Scale QSAR Approach for Simultaneous Modeling of Ecotoxic Effects of Pesticides -- Quantitative Structure-Toxicity Relationship Models Based on Hydrophobicity and Electrophilicity -- Environmental Toxicity (Q)SARs for Polymers as an Emerging Class of Materials in Regulatory Frameworks, with a Focus on Challenges and Possibilities Regarding Cationic Polymers -- Ecotoxicity Databases for QSAR Modeling -- VEGAHUB for Ecotoxicological QSAR Modeling -- Enalos Cloud Platform: Nanoinformatics and Cheminformatics Tools -- alvaDesc: A Tool to Calculate and Analyze Molecular Descriptors and Fingerprints</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This volume focuses on computational modeling of the ecotoxicity of chemicals and presents applications of quantitative structure-activity relationship models (QSARs) in the predictive toxicology field in a regulatory context. The extensive book covers a variety of protocols for descriptor computation, data curation, feature selection, learning algorithms, validation of models, applicability domain assessment, confidence estimation for predictions, and much more, as well as case studies and literature reviews on a number of hot topics. Written for the Methods in Pharmacology and Toxicology series, chapters include the kind of practical advice that is essential for researchers everywhere. Authoritative and comprehensive, Ecotoxicological QSARs is an ideal source to update readers in the field with current practices and introduce to them new developments and should therefore be very useful for researchers in academia, industries, and regulatory bodies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pharmacology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ecotoxicology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioinformatics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roy, Kunal</subfield><subfield code="d">1971-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1185508783</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781071601495</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781071601518</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781071601525</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-0716-0150-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PRO</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PRO_2020_Fremddaten</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032992027</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-0716-0150-1</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-2-PRO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-0716-0150-1</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-PRO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047607045 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:38:42Z |
indexdate | 2024-07-10T09:16:02Z |
institution | BVB |
isbn | 9781071601501 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032992027 |
oclc_num | 1286869119 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-91 DE-BY-TUM |
owner_facet | DE-355 DE-BY-UBR DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (XXI, 830 Seiten) Illustrationen |
psigel | ZDB-2-PRO ZDB-2-PRO_2020_Fremddaten |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer US |
record_format | marc |
series2 | Methods in Pharmacology and Toxicology |
spelling | Ecotoxicological QSARs edited by Kunal Roy 1st ed. 2020 New York, NY Springer US 2020 1 Online-Ressource (XXI, 830 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Methods in Pharmacology and Toxicology Ecotoxicological Risk Assessment in the Context of Different EU Regulations -- A Brief Introduction to Quantitative Structure-Activity Relationships as Useful Tools in Predictive Ecotoxicology -- Best Practices for Constructing Reproducible QSAR Models -- Wildlife Sentinels for Human and Environmental Health Hazards in Ecotoxicological Risk Assessment -- Importance of Data Curation in QSAR Studies Especially While Modeling Large-Size Data Sets -- Machine Learning and Deep Learning Methods in Ecotoxicological QSAR Modeling -- Use of Machine Learning and Classical QSAR Methods in Computational Ecotoxicology -- On the Relevance of Feature Selection Algorithms While Developing Non-Linear QSARs -- Got to Write a Classic: Classical and Perturbation-Based QSAR Methods, Machine Learning, and the Monitoring of Nanoparticles Ecotoxicity -- Ecotoxicological QSAR Modeling of Nanomaterials: Methods in 3D-QSARs and Combined Docking Studies for Carbon Nanostructures -- - Early Prediction of Ecotoxicological Side-Effects of Pharmaceutical Impurities Based on Open-Source Non-Testing Approaches -- Conformal Prediction for Ecotoxicology and Implications for Regulatory Decision Making -- Read-Across for Regulatory Ecotoxicology -- Methodological Protocol for Assessing the Environmental Footprint by Means of Ecotoxicological Tools: Wastewater Treatment Plants as an Example Case -- Development of Baseline Quantitative Structure-Activity Relationships (QSARs) for the Effects of Active Pharmaceutical Ingredients (APIs) to Aquatic Species -- Ecotoxicological QSARs of Personal Care Products and Biocides -- Computational Approaches to Evaluate Ecotoxicity of Biocides: Cases from the Project COMBASE -- QSAR Modeling of Dye Ecotoxicity -- Ecotoxicological QSARs of Mixtures -- QSPR Modeling of Adsorption of Pollutants by Carbon Nanotubes (CNTs) -- Ecotoxicological QSAR Modeling of Organophosphorus and Neonicotinoid Pesticides -- - QSARs and Read-Across for Thiochemicals: A Case Study of Using Alternative Information for REACH Registrations -- In Silico Ecotoxicological Modeling of Pesticide Metabolites and Mixtures -- Combination of Read-Across and QSAR for Ecotoxicity Prediction: A Case Study of Green Algae Growth Inhibition Toxicity Data -- QSAR Approaches and Ecotoxicological Risk Assessment -- Multi-Scale QSAR Approach for Simultaneous Modeling of Ecotoxic Effects of Pesticides -- Quantitative Structure-Toxicity Relationship Models Based on Hydrophobicity and Electrophilicity -- Environmental Toxicity (Q)SARs for Polymers as an Emerging Class of Materials in Regulatory Frameworks, with a Focus on Challenges and Possibilities Regarding Cationic Polymers -- Ecotoxicity Databases for QSAR Modeling -- VEGAHUB for Ecotoxicological QSAR Modeling -- Enalos Cloud Platform: Nanoinformatics and Cheminformatics Tools -- alvaDesc: A Tool to Calculate and Analyze Molecular Descriptors and Fingerprints This volume focuses on computational modeling of the ecotoxicity of chemicals and presents applications of quantitative structure-activity relationship models (QSARs) in the predictive toxicology field in a regulatory context. The extensive book covers a variety of protocols for descriptor computation, data curation, feature selection, learning algorithms, validation of models, applicability domain assessment, confidence estimation for predictions, and much more, as well as case studies and literature reviews on a number of hot topics. Written for the Methods in Pharmacology and Toxicology series, chapters include the kind of practical advice that is essential for researchers everywhere. Authoritative and comprehensive, Ecotoxicological QSARs is an ideal source to update readers in the field with current practices and introduce to them new developments and should therefore be very useful for researchers in academia, industries, and regulatory bodies Pharmacology Ecotoxicology Bioinformatics Roy, Kunal 1971- Sonstige (DE-588)1185508783 oth Erscheint auch als Druck-Ausgabe 9781071601495 Erscheint auch als Druck-Ausgabe 9781071601518 Erscheint auch als Druck-Ausgabe 9781071601525 https://doi.org/10.1007/978-1-0716-0150-1 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Ecotoxicological QSARs Pharmacology Ecotoxicology Bioinformatics |
title | Ecotoxicological QSARs |
title_auth | Ecotoxicological QSARs |
title_exact_search | Ecotoxicological QSARs |
title_exact_search_txtP | Ecotoxicological QSARs |
title_full | Ecotoxicological QSARs edited by Kunal Roy |
title_fullStr | Ecotoxicological QSARs edited by Kunal Roy |
title_full_unstemmed | Ecotoxicological QSARs edited by Kunal Roy |
title_short | Ecotoxicological QSARs |
title_sort | ecotoxicological qsars |
topic | Pharmacology Ecotoxicology Bioinformatics |
topic_facet | Pharmacology Ecotoxicology Bioinformatics |
url | https://doi.org/10.1007/978-1-0716-0150-1 |
work_keys_str_mv | AT roykunal ecotoxicologicalqsars |