Assouad dimension and fractal geometry:
"This book provides a thorough treatment of the Assouad dimension, as well as its many variants, in the context of fractal geometry. The book is split into three parts. In the first part, the basic theory is set up including how the various dimensions relate to each other and how they behave un...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore
Cambridge University Press
2021
|
Schriftenreihe: | Cambridge Tracts in Mathematics
222 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "This book provides a thorough treatment of the Assouad dimension, as well as its many variants, in the context of fractal geometry. The book is split into three parts. In the first part, the basic theory is set up including how the various dimensions relate to each other and how they behave under Lipschitz and Holder mappings. In the second part, many examples are discussed including self-similar sets, self-affine sets, limit sets of Kleinian groups and Mandelbrot percolation. In the third part, several applications are discussed including to problems in number theory, embedding theory, probability theory and functional analysis. Several open problems are discussed at the end"-- |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xvi, 269 Seiten Illustrationen, Diagramme |
ISBN: | 9781108478656 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV047606934 | ||
003 | DE-604 | ||
005 | 20220105 | ||
007 | t | ||
008 | 211123s2021 xxka||| |||| 00||| eng d | ||
020 | |a 9781108478656 |c hardback |9 978-1-108-47865-6 | ||
024 | 7 | |a 10.1017/9781108778459 |2 doi | |
035 | |a (OCoLC)1226374293 | ||
035 | |a (DE-599)KXP1702982904 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxk |c XA-GB | ||
049 | |a DE-91G | ||
050 | 0 | |a QA614.86 | |
082 | 0 | |a 514/.742 | |
084 | |a 31.59 |2 bkl | ||
084 | |a MAT 519 |2 stub | ||
100 | 1 | |a Fraser, Jonathan M. |d 1987- |e Verfasser |0 (DE-588)1221540599 |4 aut | |
245 | 1 | 0 | |a Assouad dimension and fractal geometry |c Jonathan M. Fraser (University of St Andrews) |
264 | 1 | |a Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore |b Cambridge University Press |c 2021 | |
300 | |a xvi, 269 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Cambridge Tracts in Mathematics |v 222 | |
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a "This book provides a thorough treatment of the Assouad dimension, as well as its many variants, in the context of fractal geometry. The book is split into three parts. In the first part, the basic theory is set up including how the various dimensions relate to each other and how they behave under Lipschitz and Holder mappings. In the second part, many examples are discussed including self-similar sets, self-affine sets, limit sets of Kleinian groups and Mandelbrot percolation. In the third part, several applications are discussed including to problems in number theory, embedding theory, probability theory and functional analysis. Several open problems are discussed at the end"-- | |
650 | 0 | 7 | |a Fraktalgeometrie |0 (DE-588)4473576-5 |2 gnd |9 rswk-swf |
653 | 0 | |a Fractals | |
653 | 0 | |a Dimension theory (Topology) | |
689 | 0 | 0 | |a Fraktalgeometrie |0 (DE-588)4473576-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-1-108-77845-9 |
830 | 0 | |a Cambridge Tracts in Mathematics |v 222 |w (DE-604)BV000000001 |9 222 | |
856 | 4 | 2 | |m B:DE-89 |m V:DE-601 |q pdf/application |u https://www.gbv.de/dms/tib-ub-hannover/1702982904.pdf |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032991916 |
Datensatz im Suchindex
_version_ | 1804182971558658048 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Fraser, Jonathan M. 1987- |
author_GND | (DE-588)1221540599 |
author_facet | Fraser, Jonathan M. 1987- |
author_role | aut |
author_sort | Fraser, Jonathan M. 1987- |
author_variant | j m f jm jmf |
building | Verbundindex |
bvnumber | BV047606934 |
callnumber-first | Q - Science |
callnumber-label | QA614 |
callnumber-raw | QA614.86 |
callnumber-search | QA614.86 |
callnumber-sort | QA 3614.86 |
callnumber-subject | QA - Mathematics |
classification_tum | MAT 519 |
ctrlnum | (OCoLC)1226374293 (DE-599)KXP1702982904 |
dewey-full | 514/.742 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.742 |
dewey-search | 514/.742 |
dewey-sort | 3514 3742 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02408nam a2200457 cb4500</leader><controlfield tag="001">BV047606934</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220105 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">211123s2021 xxka||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108478656</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-108-47865-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108778459</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1226374293</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1702982904</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA614.86</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.742</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.59</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 519</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fraser, Jonathan M.</subfield><subfield code="d">1987-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1221540599</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assouad dimension and fractal geometry</subfield><subfield code="c">Jonathan M. Fraser (University of St Andrews)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 269 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge Tracts in Mathematics</subfield><subfield code="v">222</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"This book provides a thorough treatment of the Assouad dimension, as well as its many variants, in the context of fractal geometry. The book is split into three parts. In the first part, the basic theory is set up including how the various dimensions relate to each other and how they behave under Lipschitz and Holder mappings. In the second part, many examples are discussed including self-similar sets, self-affine sets, limit sets of Kleinian groups and Mandelbrot percolation. In the third part, several applications are discussed including to problems in number theory, embedding theory, probability theory and functional analysis. Several open problems are discussed at the end"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktalgeometrie</subfield><subfield code="0">(DE-588)4473576-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Fractals</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Dimension theory (Topology)</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fraktalgeometrie</subfield><subfield code="0">(DE-588)4473576-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-1-108-77845-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge Tracts in Mathematics</subfield><subfield code="v">222</subfield><subfield code="w">(DE-604)BV000000001</subfield><subfield code="9">222</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-89</subfield><subfield code="m">V:DE-601</subfield><subfield code="q">pdf/application</subfield><subfield code="u">https://www.gbv.de/dms/tib-ub-hannover/1702982904.pdf</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032991916</subfield></datafield></record></collection> |
id | DE-604.BV047606934 |
illustrated | Illustrated |
index_date | 2024-07-03T18:38:40Z |
indexdate | 2024-07-10T09:16:02Z |
institution | BVB |
isbn | 9781108478656 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032991916 |
oclc_num | 1226374293 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | xvi, 269 Seiten Illustrationen, Diagramme |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge Tracts in Mathematics |
series2 | Cambridge Tracts in Mathematics |
spelling | Fraser, Jonathan M. 1987- Verfasser (DE-588)1221540599 aut Assouad dimension and fractal geometry Jonathan M. Fraser (University of St Andrews) Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore Cambridge University Press 2021 xvi, 269 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Cambridge Tracts in Mathematics 222 Includes bibliographical references and index "This book provides a thorough treatment of the Assouad dimension, as well as its many variants, in the context of fractal geometry. The book is split into three parts. In the first part, the basic theory is set up including how the various dimensions relate to each other and how they behave under Lipschitz and Holder mappings. In the second part, many examples are discussed including self-similar sets, self-affine sets, limit sets of Kleinian groups and Mandelbrot percolation. In the third part, several applications are discussed including to problems in number theory, embedding theory, probability theory and functional analysis. Several open problems are discussed at the end"-- Fraktalgeometrie (DE-588)4473576-5 gnd rswk-swf Fractals Dimension theory (Topology) Fraktalgeometrie (DE-588)4473576-5 s DE-604 Erscheint auch als Online-Ausgabe, EPUB 978-1-108-77845-9 Cambridge Tracts in Mathematics 222 (DE-604)BV000000001 222 B:DE-89 V:DE-601 pdf/application https://www.gbv.de/dms/tib-ub-hannover/1702982904.pdf Inhaltsverzeichnis |
spellingShingle | Fraser, Jonathan M. 1987- Assouad dimension and fractal geometry Cambridge Tracts in Mathematics Fraktalgeometrie (DE-588)4473576-5 gnd |
subject_GND | (DE-588)4473576-5 |
title | Assouad dimension and fractal geometry |
title_auth | Assouad dimension and fractal geometry |
title_exact_search | Assouad dimension and fractal geometry |
title_exact_search_txtP | Assouad dimension and fractal geometry |
title_full | Assouad dimension and fractal geometry Jonathan M. Fraser (University of St Andrews) |
title_fullStr | Assouad dimension and fractal geometry Jonathan M. Fraser (University of St Andrews) |
title_full_unstemmed | Assouad dimension and fractal geometry Jonathan M. Fraser (University of St Andrews) |
title_short | Assouad dimension and fractal geometry |
title_sort | assouad dimension and fractal geometry |
topic | Fraktalgeometrie (DE-588)4473576-5 gnd |
topic_facet | Fraktalgeometrie |
url | https://www.gbv.de/dms/tib-ub-hannover/1702982904.pdf |
volume_link | (DE-604)BV000000001 |
work_keys_str_mv | AT fraserjonathanm assouaddimensionandfractalgeometry |