Biotechnology for zero waste: emerging waste management techniques
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2022]
|
Schlagworte: | |
Online-Zugang: | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34898-5/ Inhaltsverzeichnis |
Beschreibung: | xxx, 594 Seiten Illustrationen, Diagramme 24.4 cm x 17 cm |
ISBN: | 9783527348985 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV047604082 | ||
003 | DE-604 | ||
005 | 20220913 | ||
007 | t | ||
008 | 211119s2022 gw a||| |||| 00||| eng d | ||
015 | |a 21,N29 |2 dnb | ||
016 | 7 | |a 1237122805 |2 DE-101 | |
020 | |a 9783527348985 |c : circa EUR 129.00 (DE) (freier Preis) |9 978-3-527-34898-5 | ||
024 | 3 | |a 9783527348985 | |
028 | 5 | 2 | |a Bestellnummer: 1134898 000 |
035 | |a (OCoLC)1304473665 | ||
035 | |a (DE-599)DNB1237122805 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-29T |a DE-634 |a DE-703 |a DE-1028 | ||
084 | |a VN 9400 |0 (DE-625)147645:253 |2 rvk | ||
084 | |8 1\p |a 540 |2 23sdnb | ||
245 | 1 | 0 | |a Biotechnology for zero waste |b emerging waste management techniques |c edited by Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari |
264 | 1 | |a Weinheim |b Wiley-VCH |c [2022] | |
300 | |a xxx, 594 Seiten |b Illustrationen, Diagramme |c 24.4 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Biotechnologie |0 (DE-588)4069491-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Abfallvermeidung |0 (DE-588)4203674-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Grüne Chemie |0 (DE-588)7563215-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Abfallbehandlung |0 (DE-588)4124508-8 |2 gnd |9 rswk-swf |
653 | |a Abfallvermeidung | ||
653 | |a Biochemical Engineering | ||
653 | |a Biochemische Verfahrenstechnik | ||
653 | |a Biotechnologie | ||
653 | |a Biotechnologie i. d. Chemie | ||
653 | |a Biotechnology | ||
653 | |a CG20: Biochemische Verfahrenstechnik | ||
653 | |a CH31: Biotechnologie i. d. Chemie | ||
653 | |a CHC0: Nachhaltige u. Grüne Chemie | ||
653 | |a Chemical Engineering | ||
653 | |a Chemie | ||
653 | |a Chemische Verfahrenstechnik | ||
653 | |a Chemistry | ||
653 | |a Nachhaltige u. Grüne Chemie | ||
653 | |a Sustainable Chemistry & Green Chemistry | ||
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Abfallbehandlung |0 (DE-588)4124508-8 |D s |
689 | 0 | 1 | |a Biotechnologie |0 (DE-588)4069491-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Biotechnologie |0 (DE-588)4069491-4 |D s |
689 | 1 | 1 | |a Abfallvermeidung |0 (DE-588)4203674-4 |D s |
689 | 1 | 2 | |a Grüne Chemie |0 (DE-588)7563215-9 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Hussain, Chaudhery Mustansar |d 1975- |0 (DE-588)1124182330 |4 edt | |
700 | 1 | |a Kadeppagari, Ravi Kumar |4 edt | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-83205-7 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-83207-1 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-527-83206-4 |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34898-5/ |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032989125&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032989125 | ||
883 | 1 | |8 1\p |a vlb |d 20210716 |q DE-101 |u https://d-nb.info/provenance/plan#vlb |
Datensatz im Suchindex
_version_ | 1804182966678585344 |
---|---|
adam_text | V
CONTENTS
FOREWORD
XXVII
PREFACE
XXIX
PART
I
MODERN
PERSPECTIVE
OF
ZERO
WASTE
DRIVES
1
1
ANAEROBIC
CO-DIGESTION
AS
A
SMART
APPROACH
FOR
ENHANCED
BIOGAS
PRODUCTION
AND
SIMULTANEOUS
TREATMENT
OF
DIFFERENT
WASTES
3
S.
BHARATHI
AND
B.
J.
YOGESH
1.1
INTRODUCTION
3
1.1.1
BIODEGRADATION
-
NATURE
S
ART
OF
RECYCLING
3
1.1.2
ANAEROBIC
DIGESTION
(AD)
4
1.1.3
SUSTAINABLE
BIOMETHANATION
5
1.2
ANAEROBIC
CO-DIGESTION
(ACD)
5
1.2.1
ZERO
WASTE
TO
ZERO
CARBON
EMISSION
TECHNOLOGY
6
1.2.2
ALTERNATIVE
FEEDSTOCKS
6
1.2.3
MICROBIOLOGICAL
ASPECTS
8
1.2.4
STRATEGIES
FOR
INOCULUM
DEVELOPMENT
8
1.2.5
REAL-TIME
MONITORING
OF
ACD
9
1.2.5.1
THE
PH
FLUCTUATIONS
10
1.2.5.2
CARBON-NITROGEN
CONTENT
11
1.2.5.3
TEMPERATURE
11
1.2.5.4
VOLATILE
FATTY
ACIDS
12
1.2.5.5
AMMONIA
12
1.2.5.6
ORGANIC
LOADING
RATE
12
1.3
DIGESTER
DESIGNS
13
1.4
DIGESTATE/SPENT
SLURRY
14
1.5
CONCLUSION
15
REFERENCES
15
VI
CONTENTS
2
INTEGRATED
APPROACHES
FOR
THE
PRODUCTION
OF
BIODEGRADABLE
PLASTICS
AND
BIOENERGY
FROM
WASTE
19
CHANDAN
KUMAR
SAHU,
MUKTA
HUGAR,
AND
RAVI
KUMAR
KADEPPAGARI
2.1
INTRODUCTION
19
2.2
FOOD
WASTE
FOR
THE
PRODUCTION
OF
BIODEGRADABLE
PLASTICS
AND
BIOGAS
19
2.2.1
BIODEGRADABLE
PLASTICS
FROM
FOOD
WASTE
20
2.2.2
FOOD
WASTE
AND
BIOENERGY
21
2.2.2.1
ETHANOL
FROM
FOOD
WASTE
21
2.22.2
FOOD
WASTE
TO
BIOHYDROGEN
21
22.2.3
PRODUCTION
OF
BIOGAS
FROM
FOOD
WASTE
21
2.3
DAIRY
AND
MILK
WASTE
FOR
THE
PRODUCTION
OF
BIODEGRADABLE
PLASTICS
AND
BIOGAS
22
2.3.1
BIODEGRADABLE
PLASTICS
AND
DAIRY
WASTE
22
2.3.2
PHB
PRODUCTION
IN
FERMENTER
22
2.3.3
BIOENERGY
FROM
DAIRY
AND
MILK
WASTE
22
2.4
SUGAR
AND
STARCH
WASTE
FOR
THE
PRODUCTION
OF
BIODEGRADABLE
PLASTICS
AND
BIOGAS
23
2.4.1
SUGAR
WASTE
23
2.4.1.1
SUGAR
WASTE
AND
PHA
23
2.4.1.2
BIOENERGY
FROM
SUGAR
WASTE
24
2.4.2
STARCH
WASTE
24
2.4.2.1
BIODEGRADABLE
PLASTICS
AND
STARCH
WASTE
25
2.42.2
BIOENERGY
FROM
STARCH
WASTE
25
2.5
WASTEWATER
FOR
THE
PRODUCTION
OF
BIODEGRADABLE
PLASTICS
AND
BIOENERGY
25
2.5.1
BIODEGRADABLE
PLASTICS
FROM
WASTEWATER
26
2.5.1.1
PRODUCTION
OF
PHA
FROM
WASTEWATER
26
2.5.12
PRODUCTION
OF
PHB
26
2.5.2
PRODUCTION
OF
BIOENERGY
26
2.6
INTEGRATED
APPROACHES
FOR
THE
PRODUCTION
OF
BIODEGRADABLE
PLASTICS
AND
BIOENERGY
FROM
WASTE
27
2.7
CONCLUSIONS
28
REFERENCES
28
3
IMMOBILIZED
ENZYMES
FOR
BIOCONVERSION
OF
WASTE
TO
WEALTH
33
ANGITHA
BALAN,
VAISIRI
V.
MURTHY,
AND
RAVI
KUMAR
KADEPPAGARI
3.1
INTRODUCTION
33
3.2
ENZYMES
AS
BIOCATALYSTS
34
3.3
IMMOBILIZATION
OF
ENZYMES
35
3.3.1
ENZYME
IMMOBILIZATION
METHODS
35
3.3.1.1
ADSORPTION
35
3.3.12
COVALENT BONDING
36
3.3.1.3
AFFINITY
IMMOBILIZATION
36
3.3.1.4
ENTRAPMENT
36
CONTENTS
VII
3.3.2
ADVANTAGES
OF
IMMOBILIZING
ENZYMES
37
3.3.2.1
STABILIZATION
37
3.3.2.2
FLEXIBILITY
OF
BIOREACTOR
DESIGN
37
3.3.2.3
REUSABILITY
AND
RECOVERY
38
3.4
BIOCONVERSION
OFWASTE
TO
USEFUL
PRODUCTS
BY
IMMOBILIZED
ENZYMES
38
3.4.1
UTILIZATION
OF
PROTEIN
WASTES
39
3.4.2
CARBOHYDRATES
AS
FEEDSTOCK
39
3.4.3
UTILIZATION
OF
POLYSACCHARIDES
40
3.4.4
LIPIDS
AS
SUBSTRATES
41
3.5
APPLICATIONS
OF
NANOTECHNOLOGY
FOR
THE
IMMOBILIZATION
OF
ENZYMES
AND
BIOCONVERSION
41
3.6
CHALLENGES
AND
OPPORTUNITIES
43
ACKNOWLEDGMENTS
43
REFERENCES
44
PART
II
BIOREMEDIATION
FOR
ZERO
WASTE
47
4
BIOREMEDIATION
OF
TOXIC
DYES
FOR
ZERO
WASTE
49
VENKATA
KRISHNA
BAYINENI
4.1
INTRODUCTION
49
4.2
BACKGROUND
TO
DYE(S)
50
4.3
THE
TOXICITY
OF
DYE(S)
50
4.4
BIOREMEDIATION
METHODS
51
4.4.1
TYPES
OF
APPROACHES:
EX
SITU
AND
IN
SITU
51
4.4.2
MICROBIAL
REMEDIATION
52
4.4.2.1
AEROBIC
TREATMENT
52
4.4.2.2
ANAEROBIC
TREATMENT
52
4.4.2.3
AEROBIC-ANAEROBIC
TREATMENT
52
4.4.3
DECOLORIZATION
AND
DEGRADATION
OF
DYES
BY
FUNGI
53
4.4.4
DECOLORIZATION
AND
DEGRADATION
OF
DYES
BY
YEAST
53
4.4.5
DECOLORIZATION
AND
DEGRADATION
OF
DYES
BY
ALGAE
53
4.4.6
BACTERIAL
DECOLORIZATION
AND
DEGRADATION
OF
DYES
54
4.4.6.1
FACTORS
AFFECTING
DYE
DECOLORIZATION
AND
DEGRADATION
54
4.4.7
MICROBIAL
DECOLORIZATION
AND
DEGRADATION
MECHANISMS
58
4.4.7.1
BIOSORPTION
58
4.4.7.2
ENZYMATIC
DEGRADATION
58
4.4.8
DECOLORIZATION
AND
DEGRADATION
OF
DYES
BY
PLANTS
(PHYTOREMEDIATION)
58
4.4.8.1
PLANT
MECHANISM
FOR
TREATING
TEXTILE
DYES
AND
WASTEWATER
60
4.4.8.2
ADVANTAGES
OF
PHYTOREMEDIATION
60
4.4.9
INTEGRATED
BIOLOGICAL,
PHYSICAL,
AND
CHEMICAL
TREATMENT
METHODS
60
4.4.10
RDNA
TECHNOLOGY
60
4.4.11
ENZYME-MEDIATED
DYE
REMOVAL
62
4.4.12
IMMOBILIZATION
TECHNIQUES
62
VIII
CONTENTS
4.5
CONCLUSION
63
REFERENCES
63
5
BIOREMEDIATION
OF
HEAVY
METALS
67
TANMOY
PAUL
AND
NIMAI
C.
SAHA
5.1
5.2
5.3
5.4
5.5
5.5.1
5.5.1.1
5.5.1.2
5.5.2
5.5.3
5.5.4
5.6
INTRODUCTION
67
UBIQUITOUS
HEAVY
METAL
CONTAMINATION
-
THE
GLOBAL
SCENARIO
68
HEALTH
HAZARDS
FROM
HEAVY
METAL
POLLUTION
69
DECONTAMINATING
HEAVY
METALS
-
THE
CONVENTIONAL
STRATEGIES
71
BIOREMEDIATION
-
THE
EMERGING
SUSTAINABLE
STRATEGY
72
INTERVENTION
OF
METAL
CONTAMINATION
BY
MICROBIAL
ADAPTATION
72
GENETIC
CIRCUITRY
INVOLVED
IN
MICROBIAL
BIOREMEDIATION
74
DIFFERENT
HEAVY
METAL-RESISTANT
MECHANISMS
74
PLANT-ASSISTED
BIOREMEDIATION
(PHYTOREMEDIATION)
75
ALGAE-ASSISTED
BIOREMEDIATION
(PHYCOREMEDIATION)
77
FUNGI-ASSISTED
BIOREMEDIATION
(MYCOREMEDIATION)
77
CONCLUSION
78
REFERENCES
79
6
BIOREMEDIATION
OF
PESTICIDES
CONTAINING
SOIL
AND
WATER
83
VEENA
S.
MORE,
ALLWIN
EBINESAR
JACOB
SAMUEL
SEHAR,
ANAGHA
P.
SHESHADRI,
SANGEETHA
RAJANNA,
ANANTHARAJU
KURUPALYA
SHIVRAM,
ANEESA
FASIM,
ARCHANA
RAO,
PRAKRUTHI
ACHARYA,
SIKANDAR
MULLA,
AND
SUNIL
S.
MORE
6.1
6.2
6.3
6.4
6.5
6.5.1
6.5.1.1
6.5.1.2
6.5.1.3
6.5.1.4
6.5.2
6.5.2.1
6.5.2.2
6.5.2.3
6.5.2.4
6.6
6.6.1
6.6.2
6.6.3
6.7
6.7.1
6.7.2
INTRODUCTION
83
PESTICIDE
BIOMAGNIFICATION
AND
CONSEQUENCES
84
ILL
EFFECTS
OF
BIOMAGNIFICATION
84
BIOREMEDIATION
85
METHODS
USED
IN
BIOREMEDIATION
PROCESS
86
IN
SITU
METHOD
87
BIOAUGMENTATION
87
BIOVENTING
87
BIOSPARGING
87
BIOSTIMULATION
87
EX
SITU
METHODS
87
COMPOSTING
87
LAND
FARMING
88
BIOPILES
88
BIOREACTORS
88
BIOREMEDIATION
PROCESS
USING
BIOLOGICAL
MEDIATORS
88
BACTERIAL
REMEDIATION
88
FUNGAL
REMEDIATION
89
PHYTOREMEDIATION
89
FACTORS
AFFECTING
BIOREMEDIATION
90
SOIL
TYPE
AND
SOIL
MOISTURE
90
OXYGEN
AND
NUTRIENTS
90
CONTENTS
|
IX
6.7.3
TEMPERATURE
AND
PH
90
6.7.4
ORGANIC
MATTER
91
6.8
FUTURE
PERSPECTIVES
91
REFERENCES
91
7
BIOREMEDIATION
OF
PLASTICS
AND
POLYTHENE
IN
MARINE
WATER
95
TARUN
GANGAR
AND
SANJUKTA
PATRA
7.1
INTRODUCTION
95
7.2
PLASTIC
POLLUTION: A
THREAT
TO
THE
MARINE
ECOSYSTEM
96
7.3
MICRO
AND
NANOPLASTICS
96
7.3.1
MICROPLASTICS
97
7.3.1.1
TOXICITY
OF
MICROPLASTICS
98
7.3.2
NANOPLASTICS
99
7.4
MICROBES
INVOLVED
IN
THE
DEGRADATION
OF
PLASTIC
AND
RELATED
POLYMERS
99
7.4.1
BIODEGRADATION
OF
PLASTIC
99
7.4.1.1
POLYETHYLENE
(PE)
100
7.4.1.2
POLYETHYLENE
TEREPHTHALATE
(PET)
101
7.4.1.3
POLYSTYRENE
(PS)
101
7.5
ENZYMES
RESPONSIBLE
FOR BIODEGRADATION
101
7.6
MECHANISM
OF
BIODEGRADATION
102
7.6.1
FORMATION
OF
BIOFILM
102
7.6.2
BIODETERIORATION
103
7.6.3
BIOFRAGMENTATION
103
7.6.4
ASSIMILATION
103
7.6.5
MINERALIZATION
104
7.7
BIOTECHNOLOGY
IN
PLASTIC
BIOREMEDIATION
104
7.8
FUTURE
PERSPECTIVES:
DEVELOPMENT
OF
MORE
REFINED
BIOREMEDIATION
TECHNOLOGIES
AS
A
STEP
TOWARD
ZERO
WASTE
STRATEGY
106
ACKNOWLEDGMENT
106
CONFLICT
OF
INTEREST
107
REFERENCES
107
PARTLLL
BIOLOGICAL
DEGRADATION
SYSTEMS
111
8
MICROBES
AND
THEIR
CONSORTIA
AS
ESSENTIAL
ADDITIVES
FOR
THE
COMPOSTING
OF
SOLID
WASTE
113
MANSI
RASTOGI
AND
SHEETAL
BARAPATRE
8.1
INTRODUCTION
113
8.2
CLASSIFICATION
OF
SOLID
WASTE
113
8.3
ROLE
OF
MICROBES
IN
COMPOSTING
114
8.4
EFFECT
OF
MICROBIAL
CONSORTIA
ON
SOLID
WASTE
COMPOSTING
116
8.5
BENEFITS
OF
MICROBE-AMENDED
COMPOST
119
REFERENCES
119
CONTENTS
9
BIODEGRADATION
OF
PLASTICS
BY
MICROORGANISMS
123
MD.
ANISUR
R.
MAZUMDER,
MD.
FAHAD
JUBAYER,
AND
THOTTIAM
V.
RANGANATHAN
9.1
INTRODUCTION
123
9.2
DEFINITION
AND
CLASSIFICATION
OF
PLASTICS
124
9.2.1
DEFINITION
OF
PLASTIC
124
9.2.2
CLASSIFICATION
125
9.2.2.1
BASED
ON
BIODEGRADABILITY
125
9.2.2.2
BASED
ON
STRUCTURE
AND
THERMAL
PROPERTIES
126
9.2.23
CHARACTERISTICS
OF
DIFFERENT
BIODEGRADABLE
PLASTICS
126
9.3
BIODEGRADATION
OF
PLASTICS
128
9.3.1
GENERAL
OUTLINE
128
9.3.2
BIODEGRADATION
PHASES
AND
END
PRODUCTS
129
9.3.2.1
AEROBIC
BIODEGRADATION
129
93.2.2
ANAEROBIC
BIODEGRADATION
130
9.3.3
MECHANISM
OF
MICROBIAL
DEGRADATION
OF
PLASTIC
130
9.3.4
FACTORS
AFFECTING
BIODEGRADATION
OF
PLASTICS
131
9.3.5
MICROORGANISMS
INVOLVED
IN
THE
BIODEGRADATION
PROCESS
132
9.3.6
ENZYMES
INVOLVED
IN
THE
PLASTIC
BIODEGRADATION
133
93.6.1
CUTINASES
(EC
3.1.1.74)
135
93.6.2
LIPASES
(EC
3.1.13)
135
9.3.63
CARBOXYLESTERASES
(EC
3.1.1.1)
135
93.6.4
PROTEASES
135
93.6.5
LIGNIN
MODIFYING
ENZYMES
136
9.4
CURRENT
TRENDS
AND
FUTURE
PROSPECTS
136
LIST
OF
ABBREVIATIONS
137
REFERENCES
138
10
ENZYME
TECHNOLOGY
FOR
THE
DEGRADATION
OF
LIGNOCELLULOSIC
WASTE
143
SWARRNA
HAIDAR
AND
SOUMITRA
BANERJEE
10.1
INTRODUCTION
143
10.2
ENZYMES
REQUIRED
FOR
THE
DEGRADATION
OF
LIGNOCELLULOSIC
WASTE
144
10.2.1
DEGRADATION
OF
CELLULOSE
144
10.2.1.1
MICROBIAL
PRODUCTION
OF
CELLULASE
144
10.2.1.2
ENZYMES
RESPONSIBLE
FOR
CELLULOSE
DEGRADATION
145
10.2.1.3
PHYSICAL
PRE-TREATMENTS
TO
BREAK
DOWN
CELLULOSE
145
10.2.2
DEGRADATION
OF
HEMICELLULOSE
146
10.2.2.1
ENZYMES
RESPONSIBLE
FOR
DEGRADATION
OF
HEMICELLULOSE
146
10.2.2.2
MICROBIAL
PRODUCTION
OF
HEMICELLULASES
147
10.2.2.3
PHYSICAL
PRE-TREATMENTS
TO
BREAK
DOWN
HEMICELLULOSE
147
10.2.3
DEGRADATION
OF
LIGNIN
148
10.2.3.1
MICROBIAL
PRODUCTION
OF
LIGNIN
DEGRADING
ENZYMES
148
10.2.3.2
ENZYMES
RESPONSIBLE
FOR
THE
DEGRADATION
OF
LIGNIN
148
10.2.4
DEGRADATION
OF
PECTIN
149
10.3
UTILIZING
ENZYMES
FOR
THE
DEGRADATION
OF
LIGNOCELLULOSIC
WASTE
150
CONTENTS
XI
10.4
CONCLUSION
150
REFERENCES
150
11
USAGE
OF
MICROALGAE:
A
SUSTAINABLE
APPROACH
TO
WASTEWATER
TREATMENT
155
KUMUDINI
B.
SATYAN,
MICHAEL
V.
L.
CHHANDAMA,
AND
DHANYA
V.
RANJIT
11.1
11.1.1
11.1.2
11.2
11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.3
11.3.1
11.3.1.1
11.3.1.2
11.3.1.3
11.3.2
11.3.2.1
11.3.2.2
11.4
11.4.1
11.4.2
11.4.3
11.4.4
11.4.5
11.5
INTRODUCTION
155
MICROALGAE
156
COMPOSITION
OF
WASTEWATER
157
MICROALGAE
FOR
WASTEWATER
TREATMENT
158
BIOLOGICAL
OXYGEN
DEMAND
(BOD)
159
CHEMICAL
OXYGEN
DEMAND
(COD)
159
NUTRIENTS
(NITROGEN
AND
PHOSPHORUS)
160
HEAVY
METALS
160
XENOBIOTIC
COMPOUNDS
161
CULTIVATION
OF
MICROALGAE
IN
WASTEWATER
162
FACTORS
AFFECTING
THE
GROWTH
OF
MICROALGAE
162
TN:TP
RATIO
162
PH
162
LIGHT
162
ALGAL
CULTURE
SYSTEMS
163
OPEN
SYSTEMS
163
CLOSED
SYSTEMS
164
ALGAE
AS
A
SOURCE
OF
BIOENERGY
164
BIODIESEL
FROM
MICROALGAE
165
BIOETHANOL
FROM
MICROALGAE
165
BIOMETHANE
FROM
MICROALGAE
165
HYDROGEN
PRODUCTION
165
MICROBIAL
FUEL
CELLS
166
CONCLUSION
166
REFERENCES
166
PART
IV
BIOLEACHING
AND
BIOSORPTION
OF
WASTE:
APPROACHES
AND
UTILIZATION
171
12
MICROBES
AND
AGRI-FOOD
WASTE
AS
NOVEL
SOURCES
OF
BIOSORBENTS
173
SIMRANJEET
SINGH,
PRAVEEN
C.
RAMAMURTHY,
VIJAY
KUMAR,
DHRITI
KAPOOR,
VAISHALI
DHAKA,
AND
JOGINDER
SINGH
12.1
12.2
12.3
12.3.1
12.3.2
INTRODUCTION
173
CONVENTIONAL
METHODS FOR
AGRI-FOOD
WASTE
TREATMENT
175
APPLICATION
OF
THE
BIOSORPTION
PROCESSES
176
REMOVAL
OF
INORGANIC
POLLUTANTS
176
REMOVAL
OF
ORGANIC
POLLUTANTS
177
XII
CONTENTS
12.4
USE
OF
GENETICALLY
ENGINEERED
MICROORGANISMS
AND
AGRI-FOOD
WASTE
178
12.5
12.6
12.6.1
12.6.2
12.6.3
12.7
12.8
BIOSORPTION
POTENTIAL
OF
MICROBES
AND
AGRI-FOOD
WASTE
179
MODIFICATION,
PARAMETER
OPTIMIZATION,
AND
RECOVERY
180
MODIFICATION
181
PARAMETERS
182
RECOVERY
182
IMMOBILIZATION
OF
BIOSORBENT
182
CONCLUSIONS
183
REFERENCES
185
13
BIOSORPTION
OF
HEAVY
METALS
AND
METAL-COMPLEXED
DYES
UNDER
THE
INFLUENCE
OF
VARIOUS
PHYSICOCHEMICAL
PARAMETERS
189
ALLWIN
EBINESAR
JACOB
SAMUEL
SEHAR,
VEENA
S.
MORE,
AMRUTHA
GUDIBANDA
RAMESH,
AND
SUNIL
S.
MORE
13.1
13.2
INTRODUCTION
189
MECHANISMS
INVOLVED
IN
BIOSORPTION
OF
TOXIC
HEAVY
METAL
IONS
AND
DYES
191
13.3
13.4
13.5
CHEMISTRY
OF
HEAVY
METALS
IN
WATER
191
CHEMISTRY
OF
METAL-COMPLEXED
DYES
192
MICROBIAL
SPECIES
USED
FOR
THE
REMOVAL
OF
METALS
AND
METAL-COMPLEXED
DYES
192
13.5.1
13.5.2
13.5.3
13.5.4
13.6
13.6.1
13.6.2
13.7
13.8
13.9
13.10
BIOSORPTION
OF
ZINC
USING
BACTERIA
192
BIOSORPTION
OF
HEAVY
METALS
BY
ALGAE
193
REMOVAL
OF
TOXIC
HEAVY
METALS
BY
FUNGI
194
BIOSORPTION
OF
HEAVY
METALS
USING
YEAST
194
INDUSTRIAL
APPLICATION
ON
THE
BIOSORPTION
OF
HEAVY
METALS
195
BIOSORPTION
OF
HEAVY
METALS
USING
FLUIDIZED
BED
REACTOR
195
BIOSORPTION
OF
HEAVY
METALS
BY
USING
PACKED
BED
REACTORS
197
BIOSORPTION
OF
REACTIVE
DYES
198
METAL-COMPLEXED
DYES
199
BIOSORPTION
OF
METAL-COMPLEXED
DYES
200
CONCLUSION
203
REFERENCES
203
14
RECOVERY
OF
PRECIOUS
METALS
FROM
ELECTRONIC
AND
OTHER
SECONDARY
SOLID
WASTE
BY
BIOLEACHING
APPROACH
207
DAYANAND
PETER,
LEONARD
SHRUTI
ARPUTHA
SAKAYARAJ,
AND
THOTTIAM
VASUDEVAN
RANGANATHAN
14.1
14.2
14.2.1
14.2.2
14.2.3
INTRODUCTION
207
WHAT
IS
BIOLEACHING?
208
MECHANISM
OF
BIOLEACHING
208
INDUSTRIAL
PROCESSES
OF
BIOLEACHING
209
FACTORS
AFFECTING
BIOLEACHING
209
CONTENTS
XIII
14.2.4
14.2.5
14.3
14.3.1
14.3.2
14.3.3
14.4
14.4.1
14.4.2
14.4.3
14.5
14.5.1
14.5.2
14.5.3
14.5.4
14.6
14.7
ADVANTAGES
OF
BIOLEACHING
OVER
OTHER
METHODS
210
LIMITATION
OF
BIOLEACHING
OVER
OTHER
METHODS
210
E-WASTE,
WHAT
ARE
THEY?
210
E-WASTE
PRODUCTION
SCALE
211
POLLUTION
CAUSED
BY
E-WASTE
211
GENERAL
METHODS
OF
E-WASTE
TREATMENT
212
ROLE
OF
MICROBES
IN
BIOLEACHING
OF
E-WASTE
212
BACTERIA
212
FUNGI
213
ACTINOBACTERIA
AND
CYANOGENIC
ORGANISMS
213
APPLICATION
OF
BIOLEACHING
FOR
RECOVERY
OF
INDIVIDUAL
METALS
214
GOLD
214
SILVER
215
COPPER
215
NICKEL
215
LARGE-SCALE
BIOLEACHING
OF
E-WASTE
215
FUTURE
ASPECTS
215
LIST
OF
ABBREVIATIONS
216
REFERENCES
216
PART
V
BIOREACTORS
FOR
ZERO
WASTE
219
15
PHOTOBIOLOGICAL
REACTORS
FOR
THE
DEGRADATION
OF
HARMFUL
COMPOUNDS
IN
WASTEWATERS
221
NAVEEN
B.
KILARU,
NELLURI
K.
DURGA
DEVI,
AND
KONDEPATI
HARITHA
15.1
15.2
INTRODUCTION
221
PHOTOBIOLOGICAL
AGENTS
AND
METHODS
USED
IN
PHOTOBIOLOGICAL
REACTORS
222
15.2.1
MICROBES
ACTING
AS
PHOTOBIOLOGICAL
AGENTS
IN
VARIOUS
PHOTOBIOLOGICAL
REACTORS
FOR
THE
REMEDIATION
OF
WASTEWATER
222
15.2.1.1
OLIVE
MILL
WASTEWATER
TREATMENT
BY
IMMOBILIZED
CELLS
OF
ASPERGILLUS
NIGER
222
15.2.1.2
ISOLATION
OF
ALKANE-DEGRADING
BACTERIA
FROM
PETROLEUM
TANK
WASTEWATER
224
15.2.1.3
DEVELOPMENT
OF
MICROBUBBLE
AERATOR
FOR
WASTEWATER
TREATMENT
BY
MEANS
OF
AEROBIC
ACTIVATED
SLUDGE
224
15.2.1.4
WASTEWATER
PRODUCED
FROM
AN
OILFIELD
AND
INCESSANT
TREATMENT
WITH
AN
OIL-DEGRADING
BACTERIUM
225
15.2.1.5
PEPPER
MILD
MOTTLE
VIRUS
(A
PLANT
PATHOGEN)
AS
AN
APT
TO
ENTERIC
VIRUS
225
15.2.1.6
CYANOBACTERIA
AS
A
BIO-RESOURCE
IN
MAKING
OF
BIO-FERTILIZER
AND
BIOFUEL
FROM
WASTEWATERS
226
15.2.1.7
BIO-SORPTION
OF
COPPER
AND
LEAD
IONS
BY
SURPLUS
BEER
YEAST
226
XIV
CONTENTS
15.2.1.8
ORGANIZATION
OF
LIPID-BASED
BIOFUEL
PRODUCTION
WITH
WASTE
TREATMENT
USING
OLEAGINOUS
BACTERIA
227
15.2.1.9
ANAEROBIC
DEGRADATION
OF
TEXTILE
DYE
BATH
EFFLUENT
USING
HALOMONAS
SPECIES
228
15.2.1.10
LACCASE
PRODUCTION
ON
EICHHOMIA
CRASSIPES
BIOMASS
229
15.2.1.11
ALGAE-BACTERIA
INTERACTION
IN
PHOTO-BIOREACTORS
230
15.2.1.12
PHOTO SEQUENCE
BATCH
REACTOR
230
15.2.1.13
DETECTION
OF
SULL
AND
SUL2
GENES
IN
SULFONAMIDE-RESISTANT
BACTERIA
(SRB)
FROM
SEWAGE,
AQUACULTURE
SOURCES,
ANIMAL
WASTES,
AND
HOSPITAL
WASTEWATER
231
15.2.1.14
PHOTOSYNTHETIC
BACTERIA
AS
A
POTENTIAL
ALTERNATIVE
TO
MEET
SUSTAINABLE
WASTEWATER
TREATMENT
REQUIREMENT
231
15.2.1.15
ANAEROBIC
FERMENTATION
FOR
THE
PRODUCTION
OF
SHORT-CHAIN
FATTY
ACIDS
BY
ACIDOGENIC
BACTERIA
232
15.2.2
USE
OF
PHOTOLYTIC
AND
PHOTOCHEMICAL
METHODS
IN
VARIOUS
PHOTOBIOLOGICAL
REACTORS
FOR
TREATMENT
OF
WASTEWATER
233
15.2.2.1
PHOTO-ENHANCED
DEGRADATION
OF
CONTAMINANTS
OF
EMERGING
CONCERN
IN
WASTEWATER
233
15.2.2.2
POND
REACTORS
(PHOTO-FENTON
PROCESS)
233
15.2.2.3
PHOTOCHEMICAL
APPROACHES
IN
THE
TREATMENT
OF
WASTEWATER
235
15.2.3
MEMBRANE
BIOREACTOR
237
15.2.4
NANOTECHNOLOGY
IN
PHOTOBIOLOGICAL
REACTORS
FOR
THE
TREATMENT
OF
WASTEWATER
238
15.2.4.1
POTENTIAL
OF
NANOTECHNOLOGY
IN
THE
TREATMENT
OF
WASTEWATER
238
15.2.4.2
MOVING
BED
BIOFILM
REACTOR
238
15.3
CONCLUSION
238
ACKNOWLEDGMENT
238
REFERENCES
239
16
BIOREACTORS
FOR
THE
PRODUCTION
OF
INDUSTRIAL
CHEMICALS
AND
BIOENERGY
RECOVERY
FROM
WASTE
241
GARGI
GHOSHAL
16.1
INTRODUCTION
241
16.1.1
BIOGAS
PRODUCTION
241
16.1.2
BIOHYDROGEN
PRODUCTION
243
16.2
BASIC
BIOHYDROGEN-MANUFACTURING
TECHNOLOGIES
AND
THEIR
DEFICIENCY
244
16.2.1
DIRECT
BIOPHOTOLYSIS
244
16.2.2
PHOTOFERMENTATION
245
16.2.3
DARK
FERMENTATION
245
16.3
OVERVIEW
OF
ANAEROBIC
MEMBRANE
BIOREACTORS
246
16.3.1
CHALLENGES
AND
OPPORTUNITIES
246
16.3.1.1
MEMBRANE
FOULING
AND
ENERGY
DEMANDS
246
16.3.1.2
BIOHYDROGEN
GENERATION
RATE
AND
YIELD
248
16.4
FACTORS
AFFECTING
BIOHYDROGEN
PRODUCTION
IN
ANMBRS
248
CONTENTS
XV
16.4.1
16.4.2
16.4.3
16.4.4
16.4.5
16.4.6
16.4.7
16.5
16.5.1
16.5.2
16.6
NUTRIENTS
AVAILABILITY
248
HYDRAULIC
RETENTION
TIME
(HRT)
AND
SOLID
RETENTION
TIME
(SRT)
250
DESIGN
OF
BIOHYDROGEN-PRODUCING
REACTOR
250
SUBSTRATE
CONCENTRATION
250
TEMPERATURE
AND
PH
251
SEED
CULTURE
251
HYDROGEN
PARTIAL
PRESSURE
251
TECHNIQUES
TO
IMPROVE
BIOHYDROGEN
PRODUCTION
252
REACTOR
DESIGN
AND
CONFIGURATION
252
MICROBIAL
CONSORTIA
252
ENVIRONMENTAL
AND
ECONOMIC
ASSESSMENT
OF
BIOHYDROGEN
PRODUCTION
IN
ANMBRS
253
16.7
16.8
16.8.1
16.8.2
16.8.3
16.8.4
16.8.5
16.8.6
16.8.7
16.9
16.10
FUTURE
PERSPECTIVES
OF
BIOHYDROGEN
PRODUCTION
253
PRODUCTS
BASED
ON
SOLID-STATE
FERMENTER
253
BIOACTIVE
PRODUCTS
253
ENZYMES
254
ORGANIC
ACIDS
255
BIOPESTICIDES
256
AROMA
COMPOUNDS
256
BIO-PIGMENT
PRODUCTION
257
MISCELLANEOUS
COMPOUNDS
257
KOJI
FERMENTERS
FOR
SSF
FOR
PRODUCTION
OF
DIFFERENT
CHEMICALS
257
RECENT
RESEARCH
ON
BIOFUEL
MANUFACTURING
IN
BIOREACTORS
OTHER
THAN
BIOHYDROGEN
258
REFERENCES
259
PART
VI
WASTE2ENERGY
WITH
BIOTECHNOLOGY:
FEASIBILITIES
AND
CHALLENGES
263
17
UTILIZATION
OF
MICROBIAL
POTENTIAL
FOR
BIOETHANOL
PRODUCTION
FROM
LIGNOCELLULOSIC
WASTE
265
MANISHA
ROUT,
BITHIKA
SARDAR,
PUNEET
K.
SINGH,
RITESH
PATTNAIK,
AND
SNEHASISH
MISHRA
17.1
17.1.1
17.1.2
17.1.3
17.1.4
17.2
17.3
17.3.1
17.3.1.1
17.3.1.2
17.3.2
INTRODUCTION
265
BIOETHANOL
FROM
DIFFERENT
FEED
STOCKS
265
SOURCES
OF
LIGNOCELLULOSIC
BIOMASS
266
STRUCTURE
AND
COMPOSITION
OF
LIGNOCELLULOSE
266
CHALLENGES
IN
BIOETHANOL
PRODUCTION
FROM
LCB
267
PROCESSING
OF
LIGNOCELLULOSIC
BIOMASS
TO
ETHANOL
268
BIOLOGICAL
PRETREATMENT
271
POTENTIAL
MICROORGANISMS
INVOLVED
IN
LIGNIN
DEGRADATION
272
LIGNIN
DEGRADING
FUNGI
272
LIGNIN-DEGRADING
BACTERIA
274
MECHANISM
INVOLVED
IN
DELIGNIFICATION
274
XVI
CONTENTS
17.3.3
ENZYMES
INVOLVED
BIOLOGICAL
PRETREATMENT
274
17.3.3.1
LIGNIN
PEROXIDASE
275
17.3.3.2
MANGANESE
PEROXIDASE
275
17.3.3.3
LACCASES
275
17.3.3.4
VERSATILE
PEROXIDASE
(VP)
276
17.4
ENZYMATIC
HYDROLYSIS
276
17.4.1
HYDROLYSIS
OF
POLYSACCHARIDES
277
17.4.1.1
CELLULOSE
AND
HEMICELLULOSE
DEGRADING
ENZYMES
AND
MECHANISMS
277
17.5
FERMENTATION
277
17.5.1
MICROORGANISMS
INVOLVED
IN
FERMENTATION
277
17.5.2
FERMENTATION
PROCESS
278
17.5.3
PRODUCT
RECOVERY
OF
BIOETHANOL
POST
FERMENTATION
278
17.6
CONCLUSION
AND
FUTURE
PROSPECTS
279
REFERENCES
280
18
ADVANCEMENTS
IN
BIO-HYDROGEN
PRODUCTION
FROM
WASTE
BIOMASS
283
SHYAMALI
SARMA
AND
SANKAR
CHAKMA
18.1
INTRODUCTION
283
18.2
ROUTES
OF
PRODUCTION
285
18.2.1
BIOPHOTOLYSIS
285
18.2.2
DARK
FERMENTATION
286
18.2.3
PHOTO-FERMENTATION
286
18.3
BIOMASS
AS
FEEDSTOCK
FOR
BIOHYDROGEN
286
18.4
FACTORS
AFFECTING
BIOHYDROGEN
288
18.4.1
INFLUENCE
OF
PH
288
18.4.2
SYSTEM
TEMPERATURE
288
18.4.3
INOCULUM
289
18.4.4
SUBSTRATES
291
18.4.5
TYPE
OF
REACTOR
291
18.4.5.1
BATCH
MODE
291
18.4.5.2
CONTINUOUS
MODE
292
18.4.5.3
FED
BATCH
292
18.5
STRATEGIES
TO
ENHANCE
MICROBIAL
HYDROGEN
PRODUCTION
292
18.5.1
INTEGRATIVE
PROCESS
293
18.5.2
MEDIUM
AND
PROCESS
OPTIMIZATION
293
18.5.3
METABOLIC
FLUX
ANALYSIS
294
18.5.4
APPLICATION
OF
ULTRASONICATION
295
18.5.5
STRAIN
DEVELOPMENT
295
18.6
FUTURE
PERSPECTIVES
AND
CONCLUSION
297
REFERENCES
297
CONTENTS
XVII
19
REAPING
OF
BIO-ENERGY
FROM
WASTE
USING
MICROBIAL
FUEL
CELL
TECHNOLOGY
303
SENTHILKUMAR
KANDASAMY,
NAVEENKUMAR
MANICKAM,
AND
SAMRAJ
SADHAPPA
19.1
INTRODUCTION
303
19.1.1
EFFECTS
OF
INDUSTRIAL
WASTES
ON
ENVIRONMENT
304
19.1.1.1
MFC
AS
ENERGY
SOURCE
304
19.1.1.2
THEORY
OF
MICROBIAL
FUEL
CELL
305
19.2
MICROBIAL
FUEL
CELL
COMPONENTS
AND
PROCESS
306
19.2.1
MECHANISM
BEHIND
MFC
306
19.2.1.1
ELECTRODE
MATERIALS
IN
MFC
308
19.2.1.2
PROTON
EXCHANGE
MEMBRANE
309
19.3
APPLICATION
OF
MICROBIAL
FUEL
CELL
TO
THE
SOCIAL
RELEVANCE
309
19.3.1
ELECTRICITY
GENERATION
309
19.3.1.1
BIO
HYDROGEN
310
19.3.2
WASTEWATER
TREATMENT
310
19.3.3
BIOSENSOR
310
19.4
CONCLUSION
AND
FUTURE
PERSPECTIVES
311
REFERENCES
311
20
APPLICATION
OF
SUSTAINABLE
MICRO-ALGAL
SPECIES
IN
THE
PRODUCTION
OF
BIOENERGY
FOR
ENVIRONMENTAL
SUSTAINABILITY
315
SENTHILKUMAR
KANDASAMY,
JAYABHARATHI
JAYABALAN,
AND
BALAJI
DHANDAPANI
20.1
INTRODUCTION
315
20.1.1
CLASSIFICATION
OF
BIOFUELS
315
20.1.2
MICROALGAE
AND
BIOENERGY
316
20.2
CULTIVATION
AND
PROCESSING
OF
MICROALGAE
317
20.2.1
CULTIVATION
OF
MICROALGAE
319
20.2.1.1
ISOLATION
OF
CELL
CULTURES
319
20.2.1.2
SINGLE-CELL
ISOLATION
319
20.2.2
TECHNIQUES
319
20.2.2.1
FILTRATION
319
20.2.2.2
AUTOCLAVING
320
20.2.2.3
DRY
HEAT
320
20.2.2.4
PASTEURIZATION
320
20.2.3
CULTURE
CONDITIONS
320
20.2.3.1
TEMPERATURE
320
20.2.3.2
LIGHTING
321
20.2.3.3
CULTURE
MEDIA
321
20.2.3.4
PH
321
20.2.3.5
AERATION
321
XVIII
CONTENTS
20.2.4
20.2.4.1
20.2.4.2
20.2.5
20.2.6
20.2.6.1
20.2.6.2
20.2.7
20.2.7.1
20.2.7.2
20.2.7.3
20.2.7.4
20.2.7.5
20.3
20.4
CULTURE
METHODS
321
BATCH
CULTURE
321
CONTINUOUS
CULTURE
322
HARVESTING
CULTURES
322
BIOENERGY
PRODUCTION
PROCESS
FROM
MICROALGAE
322
PRODUCTION
PROCESSES
322
BIOMASS
PRODUCTION
FROM
MARINE
WATER
ALGAE
322
LARGE-SCALE
PRODUCTION
AND
PROCESSING
OF
MICROALGAE
324
BIOMETHANE
PRODUCTION
BY
ANAEROBIC
DIGESTION
324
LIQUID
OIL
PRODUCTION
BY
THERMAL
LIQUEFACTION
PROCESS
325
TRANSESTERIFICATION
PROCESS
325
NANO-CATALYZED
TRANSESTERIFICATION
PROCESS
325
BIOHYDROGEN
PRODUCTION
BY
PHOTOBIOLOGICAL
PROCESS
326
GENETIC
ENGINEERING
FOR
THE
IMPROVEMENT
OF
MICROALGAE
326
CONCLUSION
AND
CHALLENGES
IN
COMMERCIALIZING
MICROALGAE
327
REFERENCES
327
PART
VII
EMERGING
TECHNOLOGIES
(NANO
BIOTECHNOLOGY)
FOR
ZERO
WASTE
329
21
NANOMATERIALS
AND
BIOPOLYMERS
FOR
THE
REMEDIATION
OF
POLLUTED
SITES
331
MINCHITHA
K.
UMESHA,
SADHANA
VENKATESH,
AND
SWETHA
SESHAGIRI
21.1
21.2
21.2.1
INTRODUCTION
331
WATER
REMEDIATION
332
APPLICATION
OF
NANOTECHNOLOGY
FOR
WATER
DISINFECTION
AND
TEXTILE
DYE
DEGRADATION
332
21.2.2
NANOBIOPOLYMERS
FOR
WATER
DISINFECTION
AND
TEXTILE
DYE
DEGRADATION
334
21.3
21.3.1
SOIL
REMEDIATION
336
APPLICATION
OF
NANOTECHNOLOGY
FOR
SOIL
REMEDIATION
337
REFERENCES
339
22
BIOFUNCTIONALIZED
NANOMATERIALS
FOR
SENSING
AND
BIOREMEDIATION
OF
POLLUTANTS
343
SATYAM
AND
S.
PATRA
22.1
22.2
22.3
22.3.1
22.3.2
22.3.3
22.3.4
INTRODUCTION
343
SYNTHESIS
AND
SURFACE
MODIFICATION
STRATEGIES
FOR
NANOPARTICLES
345
BINDING
TECHNIQUES
FOR
BIOFUNCTIONALIZATION
OF
NANOPARTICLES
345
COVALENT
FUNCTIONALIZATION
346
NON-COVALENT
FUNCTIONALIZATION
346
ENCAPSULATION
347
ADSORPTION
348
CONTENTS
XIX
22.4
COMMONLY
FUNCTIONALIZED
BIOMATERIALS
AND
THEIR
ROLE
IN
REMEDIATION
348
22.4.1
22.4.2
22.4.3
22.4.4
22.4.5
22.5
BIOPOLYMERS
348
SURFACTANTS
351
NUCLEIC
ACID
352
PROTEINS
AND
PEPTIDES
352
ENZYMES
353
BIOFUNCTIONALIZED
NANOPARTICLE-BASED
SENSORS
FOR
ENVIRONMENTAL
APPLICATION
354
22.6
LIMITATION
OF
BIOFUNCTIONALIZED
NANOPARTICLES
FOR
ENVIRONMENTAL
APPLICATION
355
22.7
22.8
FUTURE
PERSPECTIVE
356
CONCLUSION
356
ACKNOWLEDGMENT
357
REFERENCES
357
23
BIOGENERATION
OF
VALUABLE
NANOMATERIALS
FROM
FOOD
AND
OTHER
WASTES
361
AMRUTHA
B.
MAHANTHESH,
SWARRNA
HAIDAR,
AND
SOUMITRA
BANERJEE
23.1
23.2
INTRODUCTION
361
GREEN
SYNTHESIS
OF
NANOMATERIALS
BY
USING
FOOD
AND
AGRICULTURAL
WASTE
362
23.3
23.3.1
23.3.2
23.4
SYNTHESIS
OF
BIONANOPARTICLES
FROM
FOOD
AND
AGRICULTURAL
WASTE
362
CELLULOSE
NANOMATERIALS
363
PROTEIN
NANOPARTICLES
364
CONCLUSION
365
ACKNOWLEDGMENTS
365
REFERENCES
365
24
BIOSYNTHESIS
OF
NANOPARTICLES
USING
AGRICULTURE
AND
HORTICULTURE
WASTE
369
VINAYAKA
B.
SHET,
KESHAVA
JOSHI,
LOKESHWARI
NAVALGUND,
AND
UJWAL
PUTTUR
24.1
24.2
24.3
24.3.1
24.3.2
24.3.3
24.4
24.4.1
24.4.2
24.4.3
24.4.4
INTRODUCTION
369
AGRICULTURAL
AND
HORTICULTURAL
WASTE
370
BIOSYNTHESIS
OF
NANOPARTICLE
370
PROCESSING
OF
AGRICULTURE
AND
HORTICULTURE
WASTE
370
SYNTHESIS
OF
NANOPARTICLES
372
SEPARATION
OF
NANOPARTICLES
372
CHARACTERIZATION
OF
BIOSYNTHESIZED
NANOPARTICLES
373
UV
SPECTROPHOTOMETER
373
FOURIER-TRANSFORM
INFRARED
SPECTROSCOPY
(FTIR)
374
DYNAMIC
LIGHT
SCATTERING
(DLS)
AND
ZETA
POTENTIAL
374
SCANNING
ELECTRON
MICROSCOPE
(SEM)
AND
TRANSMISSION
ELECTRON
MICROSCOPE
(TEM)
WITH
ENERGY-DISPERSIVE
X-RAY
(EDX)
374
XX
CONTENTS
24.4.5
X-RAY
DIFFRACTION
(XRD)
375
24.5
APPLICATIONS
OF
BIOSYNTHESIZED
NANOPARTICLES
375
24.5.1
ANTIMICROBIAL
ACTIVITY
375
24.5.2
PHOTOCATALYSIS
375
24.5.3
REMOVAL
OF
ANTIBIOTIC
FROM
WATER
376
24.5.4
EFFECT
ON
ENZYME
ACTIVITY
376
24.5.5
NANOFERTILIZER
376
24.5.6
RADICAL
SCAVENGING
ACTIVITY
376
24.5.7
NANO
ADDITIVES
FOR
FUEL
377
REFERENCES
377
25
NANOBIOTECHNOLOGY
-
A
GREEN
SOLUTION
379
BAISHAKHI
DE
AND
TRIDIB
K.
GOSWAMI
25.1
INTRODUCTION
379
25.2
NANOTECHNOLOGY
AND
NANOBIOTECHNOLOGY
-
THE
GREEN
PROCESSES
AND
TECHNOLOGIES
381
25.2.1
GREEN
CHEMISTRY
382
25.2.1.1
ADVANTAGES
AND
CHALLENGES
384
25.3
THE
VERSATILE
ROLE
OF
NANOTECHNOLOGY
AND
NANOBIOTECHNOLOGY
385
25.3.1
AGRICULTURE,
POTABLE
WATER,
AND
FOOD
PROCESSING
385
25.3.2
HEALTH,
MEDICINE,
DRUG
DELIVERY,
AND
PHARMACEUTICALS
388
25.3.3
AUTOMOBILE,
AIRCRAFT,
SPACE
TRAVEL
389
25.3.4
SUSTAINABLE
ENERGY,
BUILDING
TECHNOLOGY
389
25.3.5
SOCIETY
AND
EDUCATION
390
25.4
NANOTECHNOLOGIES
IN
WASTE
REDUCTION
AND
MANAGEMENT
390
25.5
CONCLUSION
393
REFERENCES
393
26
NOVEL
BIOTECHNOLOGICAL
APPROACHES
FOR
REMOVAL
OF
EMERGING
CONTAMINANTS
397
SANGEETHA
GANDHI
SIVASUBRAMANIYAN,
SENTHILKUMAR
KANDASAMY,
AND
NAVEEN
KUMAR
MANICKAM
26.1
INTRODUCTION
397
26.2
CLASSIFICATION
OF
EMERGING
CONTAMINANTS
397
26.2.1
MICROFIBERS
AND
MICROPLASTICS
398
26.2.2
PHARMACEUTICAL
CONTAMINANTS
398
26.2.3
PERSONAL
CARE
PRODUCTS
AND
ITS
CONTAMINANTS
398
26.2.4
INORGANIC
METALS
IN
FOODS
AND
WATER
399
26.2.5
PERFLUORINATED
COMPOUNDS
399
26.2.6
DISINFECTION
BYPRODUCTS
399
26.3
VARIOUS
SOURCES
OF
ECS
399
26.3.1
DEPOSITION
OF
SOLID
AND
LIQUID
WASTE
ON
LAND
399
26.3.2
DEPOSITION
OF
SOLID
AND
LIQUID
WASTE
INTO
THE
WATER
SOURCES
400
26.4
NEED
OF
REMOVAL
OF
ECS
400
26.5
METHODS
OF
TREATMENT
OF
EC
400
CONTENTS
XXI
26.5.1
26.5.2
26.5.3
26.6
26.6.1
26.6.2
26.6.3
26.6.4
26.6.4.1
26.6.4.2
26.6.4.3
26.6.4.4
26.6.4.5
26.6.4.6
26.6.4.7
26.6.5
26.6.5.1
26.6.5.2
26.6.5.3
26.6.5.4
26.6.5.5
26.7
PHYSICAL
METHODS
400
CHEMICAL
METHODS
401
BIOTECHNOLOGICAL
APPROACH
401
BIOTECHNOLOGICAL
APPROACHES
FOR
THE
REMOVAL
OF
ECS
401
DIGESTION
BY
MEMBRANE
BIOREACTOR
401
ENZYMATIC
TREATMENT
401
BIOFILTRATION
402
BIOREMEDIATION
402
BIOAUGMENTATION
403
BIOREACTORS
403
BIOSTIMULATION
404
BIOVENTING
404
COMPOSTING
404
LAND
FARMING/LAND
TREATMENT
405
BIOPILING
405
PHYTOREMEDIATION
405
PHYTOEXTRACTION
AND
PHYTOACCUMULATION
406
PHYTOSTABILIZATION
406
PHYTOVOLATILIZATION
406
PHYTOFILTRATION
406
PHYTODEGRADATION
406
CONCLUSION
406
REFERENCES
407
PART
VIII
ECONOMICS
AND
COMMERCIALIZATION
OF
ZERO
WASTE
BIOTECHNOLOGIES
409
27
BIOCONVERSION
OF
WASTE
TO
WEALTH
AS
CIRCULAR
BIOECONOMY
APPROACH
411
DAYANAND
PETER,
LAYA
RATHINAM,
AND
RANGANATHAN
T.
VASUDEVAN
27.1
27.1.1
27.1.2
27.1.3
27.2
27.2.1
27.2.2
27.3
27.4
INTRODUCTION
411
CIRCULAR
ECONOMY
411
BIOECONOMY
412
CIRCULAR
BIOECONOMY
412
BIOVALORIZATION
OF
ORGANIC
WASTE
413
EXTRACTION
OF
BIOACTIVES
413
BIOENERGY
PRODUCTION
413
BIOECONOMY
WASTE
PRODUCTION
AND
MANAGEMENT
414
CONCERNS
ABOUT
MANAGING
FOOD
WASTE
IN
ACHIEVING
CIRCULAR
BIOECONOMY
POLICIES
416
27.5
27.6
27.6.1
27.7
ECONOMICS
OF
BIOECONOMY
417
ENTREPRENEURSHIP
IN
BIOECONOMY
417
CURRENT
TRENDS
IN
BIOECONOMY
418
CONCLUSION
418
XXII
|
CONTENTS
LIST
OF
ABBREVIATIONS
418
REFERENCES
418
28
BIOCONVERSION
OF
FOOD
WASTE
TO
WEALTH
-
CIRCULAR
BIOECONOMY
APPROACH
421
RAJAM
RAMASAMY
AND
PARTHASARATHI
SUBRAMANIAN
28.1
INTRODUCTION
421
28.2
CIRCULAR
BIOECONOTNY
422
28.3
FOOD
WASTE
MANAGEMENT
CURRENT
PRACTICES
424
28.4
TECHNIQUES
FOR
BIOCONVERSION
OF
FOOD
WASTE
TOWARD
CIRCULAR
BIOECONOMY
APPROACH
425
28.4.1
ANAEROBIC
DIGESTION
425
28.4.1.1
FACTORS
INFLUENCING
ANAEROBIC
DIGESTION
427
28.4.2
MICROBIAL
FERMENTATION
429
28.4.3
ENZYMATIC
TREATMENT
431
28.4.3.1
ENZYME
IMMOBILIZATION
TECHNOLOGY
434
28.5
CONCLUSION
435
REFERENCES
435
29
ZERO-WASTE
BIOREFINERIES
FOR
CIRCULAR
ECONOMY
439
PUNEET
K.
SINGH,
POOJA
SHUKLA,
SUNIL
K.
VERMA,
SNEHASISH
MISHRA,
AND
PANKAJ
K.
PARHI
29.1
INTRODUCTION
439
29.2
BIOENERGY,
BIOECONOMY,
AND
BIOREFINERIES
440
29.3
BIOECONOMIC
STRATEGIES
AROUND
THE
WORLD
443
29.3.1
MALAYSIA
444
29.3.2
BRAZIL
444
29.3.3
UNITED
STATES
444
29.3.4
CANADA
444
29.3.5
GERMANY
444
29.3.6
EUROPEAN
UNION
445
29.3.7
SCENARIO
OF
BIOECONOMY
IN
INDIA
445
29.4
CHALLENGING
FACTORS
AND
IMPACT
ON
BIOECONOMY
445
29.5
EFFECT
OF
INCREASED
CO
2
CONCENTRATION,
SEQUESTRATION,
AND
CIRCULAR
ECONOMY
447
29.6
CARBON
SEQUESTRATION
IN
INDIA
447
29.7
METHODS
FOR
CO
2
CAPTURE
448
29.7.1
SCENARIO
1.
PHOTOSYNTHETIC
BACTERIAL
MODEL
FOR
CO
2
SEQUESTRATION
448
29.7.2
SCENARIO
2.
BIOCHAR
MODEL
FOR
CO
2
SEQUESTRATION
448
29.7.3
SCENARIO
3.
BIOFUELS
449
29.7.4
BIOLOGICAL-BASED
METHODS
TO
CAPTURE
CO
2
449
29.7.4.1
PHOTOSYNTHETIC
MODEL
449
29.7.4.2
SUBSTRATE
IN
BIOREFINERY
AND
CARBON
MANAGEMENT
449
29.8
CONCLUSION
AND
FUTURE
APPROACH
451
REFERENCES
452
CONTENTS
XXIII
30
FEASIBILITY
AND
ECONOMICS
OF
BIOBUTANOL
FROM
LIGNOCELLULOSIC
AND
STARCHY
RESIDUES
457
SANDESH
KANTHAKERE
30.1
30.2
30.3
30.3.1
30.3.2
30.4
30.4.1
INTRODUCTION
457
OPPORTUNITIES
AND
FUTURE
OF
ZERO
WASTE
BIOBUTANOL
458
GENERATION
OF
LIGNOCELLULOSIC
AND
STARCHY
WASTES
459
TYPES
AND
SOURCES
OF
WASTE
GENERATION
460
COMPOSITION
OF
LIGNOCELLULOSE
AND
STARCHY
RESIDUES
461
VALUE
ADDED
PRODUCTS
FROM
LIGNOCELLULOSE
AND
STARCHY
RESIDUES
462
FEASIBILITY
OF
BIOBUTANOL
PRODUCTION
FROM
LIGNOCELLULOSE
AND
STARCHY
RESIDUES
463
30.4.2
30.4.3
30.5
PRETREATMENT
463
ECONOMICS
OF
BIOBUTANOL
PRODUCTION
465
CONCLUSION
468
REFERENCES
468
31
CRITICAL
ISSUES
THAT
CAN
UNDERPIN
THE
DRIVE
FOR
SUSTAINABLE
ANAEROBIC
BIOREFINERY
473
SPYRIDON
ACHINAS
31.1
31.2
31.3
31.4
31.4.1
31.4.2
31.4.3
31.5
INTRODUCTION
473
BIOGAS
-
AN
ENERGY
VECTOR
474
ANAEROBIC
BIOREFINERY
APPROACH
475
TECHNOLOGICAL
TRENDS
AND
CHALLENGES
IN
THE
ANAEROBIC
BIOREFINERY
477
PRETREATMENT
477
MULTISTAGE
AD
PROCESS
480
DYNAMICS
OF
METHANOGENIC
COMMUNITIES
480
PERSPECTIVES
TOWARD
THE
REVITALIZATION
OF
THE
ANAEROBIC
BIOREFINERIES
482
31.5.1
31.5.2
31.6
RECIPROCITY
BETWEEN
RESEARCH,
INDUSTRY,
AND
GOVERNMENT
482
TRANSITION
TO
THE
BIOGAS-BASED
GREEN
ECONOMY
483
CONCLUSION
485
CONFLICT
OF
INTEREST
485
REFERENCES
485
32
MICROBIOLOGY
OF
BIOGAS
PRODUCTION
FROM
FOOD
WASTE:
CURRENT
STATUS,
CHALLENGES,
AND
FUTURE
NEEDS
491
VANAJAKSHI
VASUDEVA,
INCHARA
CRASTA,
AND
SANDEEP
N.
MUDLIAR
32.1
32.2
32.3
32.4
32.4.1
32.4.2
32.4.3
32.5
INTRODUCTION
491
FUNDAMENTALS
FOR
ACCOMPLISHING
NATIONAL
BIOFUEL
POLICY
492
SIGNIFICANCES
OF
ANAEROBIC
MICROBIOLOGY
IN
BIOGAS
PROCESS
493
MICROBIOLOGY
AND
PHYSICO-CHEMICAL
PROCESS
IN
AD
493
HYDROLYSIS
AND
ACIDOGENESIS
493
ACETOGENESIS
494
METHANOGENESIS
AND
THE
ESSENTIAL
MICROBIAL
CONSORTIA
495
PRETREATMENT
496
XXIV
CONTENTS
32.6
VARIATIONS
IN
ANAEROBIC
DIGESTION
496
32.7
FACTORS
INFLUENCING
BIOGAS
PRODUCTION
497
32.7.1
TEMPERATURE
497
32.7.2
PH
497
32.7.3
VFA
498
32.7.4
MICROBIAL
CONSORTIA
IN
AD
498
32.7.5
RECIRCULATION
OF
LEACHATE
499
32.7.6
AMMONIA
499
32.7.7
FEEDSTOCK
COMPOSITION
500
32.7.7.1
PROTEIN-RICH
SUBSTRATE
500
32.7.7.2
LIPID-RICH
SUBSTRATE
500
32.7.7.3
CARBOHYDRATE-RICH
SUBSTRATE
500
32.7.8
TRACE
ELEMENT
SUPPLEMENTATION
500
32.7.9
ENVIRONMENT/ALKALINITY
501
32.7.10
TOXICITY
501
32.8
APPLICATION
OF
METAGENOMICS
502
32.9
CONCLUSIONS
AND
FUTURE
NEEDS
504
LIST
OF
ABBREVIATIONS
504
REFERENCES
505
PART
IX
GREEN
AND
SUSTAINABLE
FUTURE
(ZERO
WASTE
AND
ZERO
EMISSIONS)
507
33
VALORIZATION
OF
WASTE
COOKING
OIL
INTO
BIODIESEL,
BIOLUBRICANTS,
AND
OTHER
PRODUCTS
509
MURLIDHAR
MEGHWAL,
HARITA
DESAI,
SANCHITA
BAISYA,
ARPITA
DAS,
SANGHMITRA
GADE,
REKHA
RANI,
KALYAN
DAS,
AND
RAVI
KUMAR
KADEPPAGARI
33.1
INTRODUCTION
509
33.2
TREATMENT
510
33.2.1
CHEMICAL
TREATMENT
510
33.2.2
MICROBIOLOGICAL
AND
BIOTECHNOLOGICAL
TREATMENT
511
33.3
EVALUATION
OF
WASTE
COOKING
OIL
AND
VALORIZED
COOKING
OIL
511
33.4
VERSATILE
PRODUCTS
AS
AN
OUTCOME
OF
VALORIZED
WASTE
COOKING
OIL
512
33.4.1
BIOSURFACTANTS
AND
LIQUID
DETERGENTS
512
33.4.2
GREEN
CHEMICAL
LUBRICANTS
513
33.4.3
BIODIESEL
PRODUCTION
513
33.4.4
MICROBIAL
LIPIDS
513
33.4.5
VITAMINS
AND
NUTRACEUTICALS
514
33.4.6
BIOPOLYMER
SYNTHESIS
514
33.4.7
POLYHYDROXYALKANOATES
515
33.4.8
FEEDSTOCK
FOR
MICROBIAL
PROCESSES
515
33.4.9
BIOASPHALT
516
33.4.10
BIOPLASTICIZERS
516
33.4.11
BIOSOLVENT
516
CONTENTS
XXV
33.5
CONCLUSION
516
REFERENCES
517
34
AGRI
AND
FOOD
WASTE
VALORIZATION
THROUGH
THE
PRODUCTION
OF
BIOCHEMICALS
AND
PACKAGING
MATERIALS
521
A.
JAGANNATH
AND
POOJA
J.
RAO
34.1
34.2
34.3
34.4
34.5
34.5.1
34.5.2
34.5.3
34.5.4
34.6
34.7
34.7.1
34.7.2
34.7.3
34.7.4
34.7.4.1
34.7.4.2
34.7.4.3
34.8
34.9
INTRODUCTION
521
IMPORTANCE
522
WORLDWIDE
INITIATIVES
522
COMPOSITION-BASED SOLUTIONS
AND
APPROACHES
523
BIOCHEMICALS
523
FUNCTIONAL
PHYTOCHEMICALS
524
INDUSTRIAL-RELEVANT
BIOCHEMICALS
524
ENZYMES
525
FOODS/FEEDS/SUPPLEMENTS
525
BIOFUELS
526
PACKAGING
MATERIALS
AND
BIOPLASTICS
526
SCOPE
AND
FEATURES
527
POLYLACTIC
ACID
(PLA)
527
POLYHYDROXYALKANOATES
(PHAS)
529
REINFORCEMENT
IN
BIOPLASTIC
PROPERTIES
529
NATURAL
EXTRACT
529
COPOLYMERIZATION
530
GREEN
COMPOSITES
530
GREEN
VALORIZATION
531
CONCLUSION
531
REFERENCES
532
35
EDIBLE
COATINGS
AND
FILMS
FROM
AGRICULTURAL
AND
MARINE
FOOD
WASTES
543
C.
NAGA
DEEPIKA,
MURLIDHAR
MEGHWAL,
PRAMOD
K.
PRABHAKAR,
ANURAG
SINGH,
REKHA
RANI,
AND
RAVI
KUMAR
KADEPPAGARI
35.1
35.2
35.3
35.3.1
35.3.2
35.3.3
35.4
35.4.1
35.4.2
35.5
35.5.1
35.5.2
35.5.3
INTRODUCTION
543
SOURCES
OF
FOOD
WASTE
544
FILM/COATING
MADE
FROM
AGRI-FOOD
WASTE
545
BIOPOLYMERS
FROM
FRUITS
AND
VEGETABLES
WASTE
545
BIOPOLYMERS
FROM
GRAIN
WASTAGE
546
BIOACTIVE
COMPOUNDS
FROM
PLANT
RESIDUES
547
FILM/COATING
MATERIALS
FROM
MARINE
BIOWASTE
548
FISH
PROCESSING
BY-PRODUCTS
549
CRUSTACEAN
BY-PRODUCTS
549
FILM/COATING
FORMATION
METHODS
550
SOLVENT
CASTING
550
EXTRUSION
551
DIPPING
METHOD
552
XXVI
CONTENTS
INDEX
569
35.5.4
35.5.5
35.6
SPRAYING
METHOD
552
SPREADING
METHOD
552
CONCLUSION
552
REFERENCES
553
36
VALORIZATION
OF
BY-PRODUCTS
OF
MILK
FAT
PROCESSING
557
MENON
R.
RAVINDRA,
MONIKA
SHARMA,
RAJESH
KRISHNEGOWDA,
AND
AMANCHI
SANGMA
36.1
36.2
36.3
36.3.1
36.3.1.1
36.3.1.2
36.3.1.3
36.3.1.4
36.3.1.5
36.3.1.6
36.3.1.7
36.3.1.8
36.3.1.9
36.3.2
36.3.3
36.4
36.4.1
36.4.2
36.4.2.1
36.4.2.2
36.4.2.3
36.4.2.4
36.4.3
36.4.4
36.5
INTRODUCTION
557
PROCESSING
OF
MILK
FAT
AND
ITS
BY-PRODUCTS
558
VALORIZATION
OF
BUTTERMILK
558
BUTTERMILK
AS
AN
INGREDIENT
IN
FOOD
AND
DAIRY
PRODUCTS
559
MARKET
MILK
559
DAHI
559
YOGHURT
559
CHEESES
560
INDIAN
TRADITIONAL
DAIRY
PRODUCTS
560
BUTTERMILK
ICE
CREAM
560
DAIRY-BASED
BEVERAGES
560
PROBIOTIC
DRINKS
561
DRIED
BUTTERMILK
561
BUTTERMILK
AS
ENCAPSULATING
AGENT
561
BUTTERMILK
AS
A
SOURCE
OF
PHOSPHOLIPIDS
562
VALORIZATION
OF
GHEE
RESIDUE
562
UTILIZATION
OF
GHEE
RESIDUE
FOR
VALUE-ADDED
PRODUCTS
563
GHEE
RESIDUE
AS
AN
INGREDIENT
IN
DAIRY
AND
FOOD
INDUSTRY
563
BAKED
PRODUCTS
563
CHOCOLATE
AND
CONFECTIONERY
563
GHEE-RESIDUE-BASED
FLAVOR
ENHANCER
564
INDIAN
TRADITIONAL
SWEETMEAT
564
GHEE
RESIDUE
AS
ANIMAL
FEED
564
GHEE
RESIDUE
AS
SOURCE
OF
PHOSPHOLIPIDS
564
CONCLUSION
565
REFERENCES
565
|
adam_txt |
V
CONTENTS
FOREWORD
XXVII
PREFACE
XXIX
PART
I
MODERN
PERSPECTIVE
OF
ZERO
WASTE
DRIVES
1
1
ANAEROBIC
CO-DIGESTION
AS
A
SMART
APPROACH
FOR
ENHANCED
BIOGAS
PRODUCTION
AND
SIMULTANEOUS
TREATMENT
OF
DIFFERENT
WASTES
3
S.
BHARATHI
AND
B.
J.
YOGESH
1.1
INTRODUCTION
3
1.1.1
BIODEGRADATION
-
NATURE
'
S
ART
OF
RECYCLING
3
1.1.2
ANAEROBIC
DIGESTION
(AD)
4
1.1.3
SUSTAINABLE
BIOMETHANATION
5
1.2
ANAEROBIC
CO-DIGESTION
(ACD)
5
1.2.1
ZERO
WASTE
TO
ZERO
CARBON
EMISSION
TECHNOLOGY
6
1.2.2
ALTERNATIVE
FEEDSTOCKS
6
1.2.3
MICROBIOLOGICAL
ASPECTS
8
1.2.4
STRATEGIES
FOR
INOCULUM
DEVELOPMENT
8
1.2.5
REAL-TIME
MONITORING
OF
ACD
9
1.2.5.1
THE
PH
FLUCTUATIONS
10
1.2.5.2
CARBON-NITROGEN
CONTENT
11
1.2.5.3
TEMPERATURE
11
1.2.5.4
VOLATILE
FATTY
ACIDS
12
1.2.5.5
AMMONIA
12
1.2.5.6
ORGANIC
LOADING
RATE
12
1.3
DIGESTER
DESIGNS
13
1.4
DIGESTATE/SPENT
SLURRY
14
1.5
CONCLUSION
15
REFERENCES
15
VI
CONTENTS
2
INTEGRATED
APPROACHES
FOR
THE
PRODUCTION
OF
BIODEGRADABLE
PLASTICS
AND
BIOENERGY
FROM
WASTE
19
CHANDAN
KUMAR
SAHU,
MUKTA
HUGAR,
AND
RAVI
KUMAR
KADEPPAGARI
2.1
INTRODUCTION
19
2.2
FOOD
WASTE
FOR
THE
PRODUCTION
OF
BIODEGRADABLE
PLASTICS
AND
BIOGAS
19
2.2.1
BIODEGRADABLE
PLASTICS
FROM
FOOD
WASTE
20
2.2.2
FOOD
WASTE
AND
BIOENERGY
21
2.2.2.1
ETHANOL
FROM
FOOD
WASTE
21
2.22.2
FOOD
WASTE
TO
BIOHYDROGEN
21
22.2.3
PRODUCTION
OF
BIOGAS
FROM
FOOD
WASTE
21
2.3
DAIRY
AND
MILK
WASTE
FOR
THE
PRODUCTION
OF
BIODEGRADABLE
PLASTICS
AND
BIOGAS
22
2.3.1
BIODEGRADABLE
PLASTICS
AND
DAIRY
WASTE
22
2.3.2
PHB
PRODUCTION
IN
FERMENTER
22
2.3.3
BIOENERGY
FROM
DAIRY
AND
MILK
WASTE
22
2.4
SUGAR
AND
STARCH
WASTE
FOR
THE
PRODUCTION
OF
BIODEGRADABLE
PLASTICS
AND
BIOGAS
23
2.4.1
SUGAR
WASTE
23
2.4.1.1
SUGAR
WASTE
AND
PHA
23
2.4.1.2
BIOENERGY
FROM
SUGAR
WASTE
24
2.4.2
STARCH
WASTE
24
2.4.2.1
BIODEGRADABLE
PLASTICS
AND
STARCH
WASTE
25
2.42.2
BIOENERGY
FROM
STARCH
WASTE
25
2.5
WASTEWATER
FOR
THE
PRODUCTION
OF
BIODEGRADABLE
PLASTICS
AND
BIOENERGY
25
2.5.1
BIODEGRADABLE
PLASTICS
FROM
WASTEWATER
26
2.5.1.1
PRODUCTION
OF
PHA
FROM
WASTEWATER
26
2.5.12
PRODUCTION
OF
PHB
26
2.5.2
PRODUCTION
OF
BIOENERGY
26
2.6
INTEGRATED
APPROACHES
FOR
THE
PRODUCTION
OF
BIODEGRADABLE
PLASTICS
AND
BIOENERGY
FROM
WASTE
27
2.7
CONCLUSIONS
28
REFERENCES
28
3
IMMOBILIZED
ENZYMES
FOR
BIOCONVERSION
OF
WASTE
TO
WEALTH
33
ANGITHA
BALAN,
VAISIRI
V.
MURTHY,
AND
RAVI
KUMAR
KADEPPAGARI
3.1
INTRODUCTION
33
3.2
ENZYMES
AS
BIOCATALYSTS
34
3.3
IMMOBILIZATION
OF
ENZYMES
35
3.3.1
ENZYME
IMMOBILIZATION
METHODS
35
3.3.1.1
ADSORPTION
35
3.3.12
COVALENT BONDING
36
3.3.1.3
AFFINITY
IMMOBILIZATION
36
3.3.1.4
ENTRAPMENT
36
CONTENTS
VII
3.3.2
ADVANTAGES
OF
IMMOBILIZING
ENZYMES
37
3.3.2.1
STABILIZATION
37
3.3.2.2
FLEXIBILITY
OF
BIOREACTOR
DESIGN
37
3.3.2.3
REUSABILITY
AND
RECOVERY
38
3.4
BIOCONVERSION
OFWASTE
TO
USEFUL
PRODUCTS
BY
IMMOBILIZED
ENZYMES
38
3.4.1
UTILIZATION
OF
PROTEIN
WASTES
39
3.4.2
CARBOHYDRATES
AS
FEEDSTOCK
39
3.4.3
UTILIZATION
OF
POLYSACCHARIDES
40
3.4.4
LIPIDS
AS
SUBSTRATES
41
3.5
APPLICATIONS
OF
NANOTECHNOLOGY
FOR
THE
IMMOBILIZATION
OF
ENZYMES
AND
BIOCONVERSION
41
3.6
CHALLENGES
AND
OPPORTUNITIES
43
ACKNOWLEDGMENTS
43
REFERENCES
44
PART
II
BIOREMEDIATION
FOR
ZERO
WASTE
47
4
BIOREMEDIATION
OF
TOXIC
DYES
FOR
ZERO
WASTE
49
VENKATA
KRISHNA
BAYINENI
4.1
INTRODUCTION
49
4.2
BACKGROUND
TO
DYE(S)
50
4.3
THE
TOXICITY
OF
DYE(S)
50
4.4
BIOREMEDIATION
METHODS
51
4.4.1
TYPES
OF
APPROACHES:
EX
SITU
AND
IN
SITU
51
4.4.2
MICROBIAL
REMEDIATION
52
4.4.2.1
AEROBIC
TREATMENT
52
4.4.2.2
ANAEROBIC
TREATMENT
52
4.4.2.3
AEROBIC-ANAEROBIC
TREATMENT
52
4.4.3
DECOLORIZATION
AND
DEGRADATION
OF
DYES
BY
FUNGI
53
4.4.4
DECOLORIZATION
AND
DEGRADATION
OF
DYES
BY
YEAST
53
4.4.5
DECOLORIZATION
AND
DEGRADATION
OF
DYES
BY
ALGAE
53
4.4.6
BACTERIAL
DECOLORIZATION
AND
DEGRADATION
OF
DYES
54
4.4.6.1
FACTORS
AFFECTING
DYE
DECOLORIZATION
AND
DEGRADATION
54
4.4.7
MICROBIAL
DECOLORIZATION
AND
DEGRADATION
MECHANISMS
58
4.4.7.1
BIOSORPTION
58
4.4.7.2
ENZYMATIC
DEGRADATION
58
4.4.8
DECOLORIZATION
AND
DEGRADATION
OF
DYES
BY
PLANTS
(PHYTOREMEDIATION)
58
4.4.8.1
PLANT
MECHANISM
FOR
TREATING
TEXTILE
DYES
AND
WASTEWATER
60
4.4.8.2
ADVANTAGES
OF
PHYTOREMEDIATION
60
4.4.9
INTEGRATED
BIOLOGICAL,
PHYSICAL,
AND
CHEMICAL
TREATMENT
METHODS
60
4.4.10
RDNA
TECHNOLOGY
60
4.4.11
ENZYME-MEDIATED
DYE
REMOVAL
62
4.4.12
IMMOBILIZATION
TECHNIQUES
62
VIII
CONTENTS
4.5
CONCLUSION
63
REFERENCES
63
5
BIOREMEDIATION
OF
HEAVY
METALS
67
TANMOY
PAUL
AND
NIMAI
C.
SAHA
5.1
5.2
5.3
5.4
5.5
5.5.1
5.5.1.1
5.5.1.2
5.5.2
5.5.3
5.5.4
5.6
INTRODUCTION
67
UBIQUITOUS
HEAVY
METAL
CONTAMINATION
-
THE
GLOBAL
SCENARIO
68
HEALTH
HAZARDS
FROM
HEAVY
METAL
POLLUTION
69
DECONTAMINATING
HEAVY
METALS
-
THE
CONVENTIONAL
STRATEGIES
71
BIOREMEDIATION
-
THE
EMERGING
SUSTAINABLE
STRATEGY
72
INTERVENTION
OF
METAL
CONTAMINATION
BY
MICROBIAL
ADAPTATION
72
GENETIC
CIRCUITRY
INVOLVED
IN
MICROBIAL
BIOREMEDIATION
74
DIFFERENT
HEAVY
METAL-RESISTANT
MECHANISMS
74
PLANT-ASSISTED
BIOREMEDIATION
(PHYTOREMEDIATION)
75
ALGAE-ASSISTED
BIOREMEDIATION
(PHYCOREMEDIATION)
77
FUNGI-ASSISTED
BIOREMEDIATION
(MYCOREMEDIATION)
77
CONCLUSION
78
REFERENCES
79
6
BIOREMEDIATION
OF
PESTICIDES
CONTAINING
SOIL
AND
WATER
83
VEENA
S.
MORE,
ALLWIN
EBINESAR
JACOB
SAMUEL
SEHAR,
ANAGHA
P.
SHESHADRI,
SANGEETHA
RAJANNA,
ANANTHARAJU
KURUPALYA
SHIVRAM,
ANEESA
FASIM,
ARCHANA
RAO,
PRAKRUTHI
ACHARYA,
SIKANDAR
MULLA,
AND
SUNIL
S.
MORE
6.1
6.2
6.3
6.4
6.5
6.5.1
6.5.1.1
6.5.1.2
6.5.1.3
6.5.1.4
6.5.2
6.5.2.1
6.5.2.2
6.5.2.3
6.5.2.4
6.6
6.6.1
6.6.2
6.6.3
6.7
6.7.1
6.7.2
INTRODUCTION
83
PESTICIDE
BIOMAGNIFICATION
AND
CONSEQUENCES
84
ILL
EFFECTS
OF
BIOMAGNIFICATION
84
BIOREMEDIATION
85
METHODS
USED
IN
BIOREMEDIATION
PROCESS
86
IN
SITU
METHOD
87
BIOAUGMENTATION
87
BIOVENTING
87
BIOSPARGING
87
BIOSTIMULATION
87
EX
SITU
METHODS
87
COMPOSTING
87
LAND
FARMING
88
BIOPILES
88
BIOREACTORS
88
BIOREMEDIATION
PROCESS
USING
BIOLOGICAL
MEDIATORS
88
BACTERIAL
REMEDIATION
88
FUNGAL
REMEDIATION
89
PHYTOREMEDIATION
89
FACTORS
AFFECTING
BIOREMEDIATION
90
SOIL
TYPE
AND
SOIL
MOISTURE
90
OXYGEN
AND
NUTRIENTS
90
CONTENTS
|
IX
6.7.3
TEMPERATURE
AND
PH
90
6.7.4
ORGANIC
MATTER
91
6.8
FUTURE
PERSPECTIVES
91
REFERENCES
91
7
BIOREMEDIATION
OF
PLASTICS
AND
POLYTHENE
IN
MARINE
WATER
95
TARUN
GANGAR
AND
SANJUKTA
PATRA
7.1
INTRODUCTION
95
7.2
PLASTIC
POLLUTION: A
THREAT
TO
THE
MARINE
ECOSYSTEM
96
7.3
MICRO
AND
NANOPLASTICS
96
7.3.1
MICROPLASTICS
97
7.3.1.1
TOXICITY
OF
MICROPLASTICS
98
7.3.2
NANOPLASTICS
99
7.4
MICROBES
INVOLVED
IN
THE
DEGRADATION
OF
PLASTIC
AND
RELATED
POLYMERS
99
7.4.1
BIODEGRADATION
OF
PLASTIC
99
7.4.1.1
POLYETHYLENE
(PE)
100
7.4.1.2
POLYETHYLENE
TEREPHTHALATE
(PET)
101
7.4.1.3
POLYSTYRENE
(PS)
101
7.5
ENZYMES
RESPONSIBLE
FOR BIODEGRADATION
101
7.6
MECHANISM
OF
BIODEGRADATION
102
7.6.1
FORMATION
OF
BIOFILM
102
7.6.2
BIODETERIORATION
103
7.6.3
BIOFRAGMENTATION
103
7.6.4
ASSIMILATION
103
7.6.5
MINERALIZATION
104
7.7
BIOTECHNOLOGY
IN
PLASTIC
BIOREMEDIATION
104
7.8
FUTURE
PERSPECTIVES:
DEVELOPMENT
OF
MORE
REFINED
BIOREMEDIATION
TECHNOLOGIES
AS
A
STEP
TOWARD
ZERO
WASTE
STRATEGY
106
ACKNOWLEDGMENT
106
CONFLICT
OF
INTEREST
107
REFERENCES
107
PARTLLL
BIOLOGICAL
DEGRADATION
SYSTEMS
111
8
MICROBES
AND
THEIR
CONSORTIA
AS
ESSENTIAL
ADDITIVES
FOR
THE
COMPOSTING
OF
SOLID
WASTE
113
MANSI
RASTOGI
AND
SHEETAL
BARAPATRE
8.1
INTRODUCTION
113
8.2
CLASSIFICATION
OF
SOLID
WASTE
113
8.3
ROLE
OF
MICROBES
IN
COMPOSTING
114
8.4
EFFECT
OF
MICROBIAL
CONSORTIA
ON
SOLID
WASTE
COMPOSTING
116
8.5
BENEFITS
OF
MICROBE-AMENDED
COMPOST
119
REFERENCES
119
CONTENTS
9
BIODEGRADATION
OF
PLASTICS
BY
MICROORGANISMS
123
MD.
ANISUR
R.
MAZUMDER,
MD.
FAHAD
JUBAYER,
AND
THOTTIAM
V.
RANGANATHAN
9.1
INTRODUCTION
123
9.2
DEFINITION
AND
CLASSIFICATION
OF
PLASTICS
124
9.2.1
DEFINITION
OF
PLASTIC
124
9.2.2
CLASSIFICATION
125
9.2.2.1
BASED
ON
BIODEGRADABILITY
125
9.2.2.2
BASED
ON
STRUCTURE
AND
THERMAL
PROPERTIES
126
9.2.23
CHARACTERISTICS
OF
DIFFERENT
BIODEGRADABLE
PLASTICS
126
9.3
BIODEGRADATION
OF
PLASTICS
128
9.3.1
GENERAL
OUTLINE
128
9.3.2
BIODEGRADATION
PHASES
AND
END
PRODUCTS
129
9.3.2.1
AEROBIC
BIODEGRADATION
129
93.2.2
ANAEROBIC
BIODEGRADATION
130
9.3.3
MECHANISM
OF
MICROBIAL
DEGRADATION
OF
PLASTIC
130
9.3.4
FACTORS
AFFECTING
BIODEGRADATION
OF
PLASTICS
131
9.3.5
MICROORGANISMS
INVOLVED
IN
THE
BIODEGRADATION
PROCESS
132
9.3.6
ENZYMES
INVOLVED
IN
THE
PLASTIC
BIODEGRADATION
133
93.6.1
CUTINASES
(EC
3.1.1.74)
135
93.6.2
LIPASES
(EC
3.1.13)
135
9.3.63
CARBOXYLESTERASES
(EC
3.1.1.1)
135
93.6.4
PROTEASES
135
93.6.5
LIGNIN
MODIFYING
ENZYMES
136
9.4
CURRENT
TRENDS
AND
FUTURE
PROSPECTS
136
LIST
OF
ABBREVIATIONS
137
REFERENCES
138
10
ENZYME
TECHNOLOGY
FOR
THE
DEGRADATION
OF
LIGNOCELLULOSIC
WASTE
143
SWARRNA
HAIDAR
AND
SOUMITRA
BANERJEE
10.1
INTRODUCTION
143
10.2
ENZYMES
REQUIRED
FOR
THE
DEGRADATION
OF
LIGNOCELLULOSIC
WASTE
144
10.2.1
DEGRADATION
OF
CELLULOSE
144
10.2.1.1
MICROBIAL
PRODUCTION
OF
CELLULASE
144
10.2.1.2
ENZYMES
RESPONSIBLE
FOR
CELLULOSE
DEGRADATION
145
10.2.1.3
PHYSICAL
PRE-TREATMENTS
TO
BREAK
DOWN
CELLULOSE
145
10.2.2
DEGRADATION
OF
HEMICELLULOSE
146
10.2.2.1
ENZYMES
RESPONSIBLE
FOR
DEGRADATION
OF
HEMICELLULOSE
146
10.2.2.2
MICROBIAL
PRODUCTION
OF
HEMICELLULASES
147
10.2.2.3
PHYSICAL
PRE-TREATMENTS
TO
BREAK
DOWN
HEMICELLULOSE
147
10.2.3
DEGRADATION
OF
LIGNIN
148
10.2.3.1
MICROBIAL
PRODUCTION
OF
LIGNIN
DEGRADING
ENZYMES
148
10.2.3.2
ENZYMES
RESPONSIBLE
FOR
THE
DEGRADATION
OF
LIGNIN
148
10.2.4
DEGRADATION
OF
PECTIN
149
10.3
UTILIZING
ENZYMES
FOR
THE
DEGRADATION
OF
LIGNOCELLULOSIC
WASTE
150
CONTENTS
XI
10.4
CONCLUSION
150
REFERENCES
150
11
USAGE
OF
MICROALGAE:
A
SUSTAINABLE
APPROACH
TO
WASTEWATER
TREATMENT
155
KUMUDINI
B.
SATYAN,
MICHAEL
V.
L.
CHHANDAMA,
AND
DHANYA
V.
RANJIT
11.1
11.1.1
11.1.2
11.2
11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.3
11.3.1
11.3.1.1
11.3.1.2
11.3.1.3
11.3.2
11.3.2.1
11.3.2.2
11.4
11.4.1
11.4.2
11.4.3
11.4.4
11.4.5
11.5
INTRODUCTION
155
MICROALGAE
156
COMPOSITION
OF
WASTEWATER
157
MICROALGAE
FOR
WASTEWATER
TREATMENT
158
BIOLOGICAL
OXYGEN
DEMAND
(BOD)
159
CHEMICAL
OXYGEN
DEMAND
(COD)
159
NUTRIENTS
(NITROGEN
AND
PHOSPHORUS)
160
HEAVY
METALS
160
XENOBIOTIC
COMPOUNDS
161
CULTIVATION
OF
MICROALGAE
IN
WASTEWATER
162
FACTORS
AFFECTING
THE
GROWTH
OF
MICROALGAE
162
TN:TP
RATIO
162
PH
162
LIGHT
162
ALGAL
CULTURE
SYSTEMS
163
OPEN
SYSTEMS
163
CLOSED
SYSTEMS
164
ALGAE
AS
A
SOURCE
OF
BIOENERGY
164
BIODIESEL
FROM
MICROALGAE
165
BIOETHANOL
FROM
MICROALGAE
165
BIOMETHANE
FROM
MICROALGAE
165
HYDROGEN
PRODUCTION
165
MICROBIAL
FUEL
CELLS
166
CONCLUSION
166
REFERENCES
166
PART
IV
BIOLEACHING
AND
BIOSORPTION
OF
WASTE:
APPROACHES
AND
UTILIZATION
171
12
MICROBES
AND
AGRI-FOOD
WASTE
AS
NOVEL
SOURCES
OF
BIOSORBENTS
173
SIMRANJEET
SINGH,
PRAVEEN
C.
RAMAMURTHY,
VIJAY
KUMAR,
DHRITI
KAPOOR,
VAISHALI
DHAKA,
AND
JOGINDER
SINGH
12.1
12.2
12.3
12.3.1
12.3.2
INTRODUCTION
173
CONVENTIONAL
METHODS FOR
AGRI-FOOD
WASTE
TREATMENT
175
APPLICATION
OF
THE
BIOSORPTION
PROCESSES
176
REMOVAL
OF
INORGANIC
POLLUTANTS
176
REMOVAL
OF
ORGANIC
POLLUTANTS
177
XII
CONTENTS
12.4
USE
OF
GENETICALLY
ENGINEERED
MICROORGANISMS
AND
AGRI-FOOD
WASTE
178
12.5
12.6
12.6.1
12.6.2
12.6.3
12.7
12.8
BIOSORPTION
POTENTIAL
OF
MICROBES
AND
AGRI-FOOD
WASTE
179
MODIFICATION,
PARAMETER
OPTIMIZATION,
AND
RECOVERY
180
MODIFICATION
181
PARAMETERS
182
RECOVERY
182
IMMOBILIZATION
OF
BIOSORBENT
182
CONCLUSIONS
183
REFERENCES
185
13
BIOSORPTION
OF
HEAVY
METALS
AND
METAL-COMPLEXED
DYES
UNDER
THE
INFLUENCE
OF
VARIOUS
PHYSICOCHEMICAL
PARAMETERS
189
ALLWIN
EBINESAR
JACOB
SAMUEL
SEHAR,
VEENA
S.
MORE,
AMRUTHA
GUDIBANDA
RAMESH,
AND
SUNIL
S.
MORE
13.1
13.2
INTRODUCTION
189
MECHANISMS
INVOLVED
IN
BIOSORPTION
OF
TOXIC
HEAVY
METAL
IONS
AND
DYES
191
13.3
13.4
13.5
CHEMISTRY
OF
HEAVY
METALS
IN
WATER
191
CHEMISTRY
OF
METAL-COMPLEXED
DYES
192
MICROBIAL
SPECIES
USED
FOR
THE
REMOVAL
OF
METALS
AND
METAL-COMPLEXED
DYES
192
13.5.1
13.5.2
13.5.3
13.5.4
13.6
13.6.1
13.6.2
13.7
13.8
13.9
13.10
BIOSORPTION
OF
ZINC
USING
BACTERIA
192
BIOSORPTION
OF
HEAVY
METALS
BY
ALGAE
193
REMOVAL
OF
TOXIC
HEAVY
METALS
BY
FUNGI
194
BIOSORPTION
OF
HEAVY
METALS
USING
YEAST
194
INDUSTRIAL
APPLICATION
ON
THE
BIOSORPTION
OF
HEAVY
METALS
195
BIOSORPTION
OF
HEAVY
METALS
USING
FLUIDIZED
BED
REACTOR
195
BIOSORPTION
OF
HEAVY
METALS
BY
USING
PACKED
BED
REACTORS
197
BIOSORPTION
OF
REACTIVE
DYES
198
METAL-COMPLEXED
DYES
199
BIOSORPTION
OF
METAL-COMPLEXED
DYES
200
CONCLUSION
203
REFERENCES
203
14
RECOVERY
OF
PRECIOUS
METALS
FROM
ELECTRONIC
AND
OTHER
SECONDARY
SOLID
WASTE
BY
BIOLEACHING
APPROACH
207
DAYANAND
PETER,
LEONARD
SHRUTI
ARPUTHA
SAKAYARAJ,
AND
THOTTIAM
VASUDEVAN
RANGANATHAN
14.1
14.2
14.2.1
14.2.2
14.2.3
INTRODUCTION
207
WHAT
IS
BIOLEACHING?
208
MECHANISM
OF
BIOLEACHING
208
INDUSTRIAL
PROCESSES
OF
BIOLEACHING
209
FACTORS
AFFECTING
BIOLEACHING
209
CONTENTS
XIII
14.2.4
14.2.5
14.3
14.3.1
14.3.2
14.3.3
14.4
14.4.1
14.4.2
14.4.3
14.5
14.5.1
14.5.2
14.5.3
14.5.4
14.6
14.7
ADVANTAGES
OF
BIOLEACHING
OVER
OTHER
METHODS
210
LIMITATION
OF
BIOLEACHING
OVER
OTHER
METHODS
210
E-WASTE,
WHAT
ARE
THEY?
210
E-WASTE
PRODUCTION
SCALE
211
POLLUTION
CAUSED
BY
E-WASTE
211
GENERAL
METHODS
OF
E-WASTE
TREATMENT
212
ROLE
OF
MICROBES
IN
BIOLEACHING
OF
E-WASTE
212
BACTERIA
212
FUNGI
213
ACTINOBACTERIA
AND
CYANOGENIC
ORGANISMS
213
APPLICATION
OF
BIOLEACHING
FOR
RECOVERY
OF
INDIVIDUAL
METALS
214
GOLD
214
SILVER
215
COPPER
215
NICKEL
215
LARGE-SCALE
BIOLEACHING
OF
E-WASTE
215
FUTURE
ASPECTS
215
LIST
OF
ABBREVIATIONS
216
REFERENCES
216
PART
V
BIOREACTORS
FOR
ZERO
WASTE
219
15
PHOTOBIOLOGICAL
REACTORS
FOR
THE
DEGRADATION
OF
HARMFUL
COMPOUNDS
IN
WASTEWATERS
221
NAVEEN
B.
KILARU,
NELLURI
K.
DURGA
DEVI,
AND
KONDEPATI
HARITHA
15.1
15.2
INTRODUCTION
221
PHOTOBIOLOGICAL
AGENTS
AND
METHODS
USED
IN
PHOTOBIOLOGICAL
REACTORS
222
15.2.1
MICROBES
ACTING
AS
PHOTOBIOLOGICAL
AGENTS
IN
VARIOUS
PHOTOBIOLOGICAL
REACTORS
FOR
THE
REMEDIATION
OF
WASTEWATER
222
15.2.1.1
OLIVE
MILL
WASTEWATER
TREATMENT
BY
IMMOBILIZED
CELLS
OF
ASPERGILLUS
NIGER
222
15.2.1.2
ISOLATION
OF
ALKANE-DEGRADING
BACTERIA
FROM
PETROLEUM
TANK
WASTEWATER
224
15.2.1.3
DEVELOPMENT
OF
MICROBUBBLE
AERATOR
FOR
WASTEWATER
TREATMENT
BY
MEANS
OF
AEROBIC
ACTIVATED
SLUDGE
224
15.2.1.4
WASTEWATER
PRODUCED
FROM
AN
OILFIELD
AND
INCESSANT
TREATMENT
WITH
AN
OIL-DEGRADING
BACTERIUM
225
15.2.1.5
PEPPER
MILD
MOTTLE
VIRUS
(A
PLANT
PATHOGEN)
AS
AN
APT
TO
ENTERIC
VIRUS
225
15.2.1.6
CYANOBACTERIA
AS
A
BIO-RESOURCE
IN
MAKING
OF
BIO-FERTILIZER
AND
BIOFUEL
FROM
WASTEWATERS
226
15.2.1.7
BIO-SORPTION
OF
COPPER
AND
LEAD
IONS
BY
SURPLUS
BEER
YEAST
226
XIV
CONTENTS
15.2.1.8
ORGANIZATION
OF
LIPID-BASED
BIOFUEL
PRODUCTION
WITH
WASTE
TREATMENT
USING
OLEAGINOUS
BACTERIA
227
15.2.1.9
ANAEROBIC
DEGRADATION
OF
TEXTILE
DYE
BATH
EFFLUENT
USING
HALOMONAS
SPECIES
228
15.2.1.10
LACCASE
PRODUCTION
ON
EICHHOMIA
CRASSIPES
BIOMASS
229
15.2.1.11
ALGAE-BACTERIA
INTERACTION
IN
PHOTO-BIOREACTORS
230
15.2.1.12
PHOTO SEQUENCE
BATCH
REACTOR
230
15.2.1.13
DETECTION
OF
SULL
AND
SUL2
GENES
IN
SULFONAMIDE-RESISTANT
BACTERIA
(SRB)
FROM
SEWAGE,
AQUACULTURE
SOURCES,
ANIMAL
WASTES,
AND
HOSPITAL
WASTEWATER
231
15.2.1.14
PHOTOSYNTHETIC
BACTERIA
AS
A
POTENTIAL
ALTERNATIVE
TO
MEET
SUSTAINABLE
WASTEWATER
TREATMENT
REQUIREMENT
231
15.2.1.15
ANAEROBIC
FERMENTATION
FOR
THE
PRODUCTION
OF
SHORT-CHAIN
FATTY
ACIDS
BY
ACIDOGENIC
BACTERIA
232
15.2.2
USE
OF
PHOTOLYTIC
AND
PHOTOCHEMICAL
METHODS
IN
VARIOUS
PHOTOBIOLOGICAL
REACTORS
FOR
TREATMENT
OF
WASTEWATER
233
15.2.2.1
PHOTO-ENHANCED
DEGRADATION
OF
CONTAMINANTS
OF
EMERGING
CONCERN
IN
WASTEWATER
233
15.2.2.2
POND
REACTORS
(PHOTO-FENTON
PROCESS)
233
15.2.2.3
PHOTOCHEMICAL
APPROACHES
IN
THE
TREATMENT
OF
WASTEWATER
235
15.2.3
MEMBRANE
BIOREACTOR
237
15.2.4
NANOTECHNOLOGY
IN
PHOTOBIOLOGICAL
REACTORS
FOR
THE
TREATMENT
OF
WASTEWATER
238
15.2.4.1
POTENTIAL
OF
NANOTECHNOLOGY
IN
THE
TREATMENT
OF
WASTEWATER
238
15.2.4.2
MOVING
BED
BIOFILM
REACTOR
238
15.3
CONCLUSION
238
ACKNOWLEDGMENT
238
REFERENCES
239
16
BIOREACTORS
FOR
THE
PRODUCTION
OF
INDUSTRIAL
CHEMICALS
AND
BIOENERGY
RECOVERY
FROM
WASTE
241
GARGI
GHOSHAL
16.1
INTRODUCTION
241
16.1.1
BIOGAS
PRODUCTION
241
16.1.2
BIOHYDROGEN
PRODUCTION
243
16.2
BASIC
BIOHYDROGEN-MANUFACTURING
TECHNOLOGIES
AND
THEIR
DEFICIENCY
244
16.2.1
DIRECT
BIOPHOTOLYSIS
244
16.2.2
PHOTOFERMENTATION
245
16.2.3
DARK
FERMENTATION
245
16.3
OVERVIEW
OF
ANAEROBIC
MEMBRANE
BIOREACTORS
246
16.3.1
CHALLENGES
AND
OPPORTUNITIES
246
16.3.1.1
MEMBRANE
FOULING
AND
ENERGY
DEMANDS
246
16.3.1.2
BIOHYDROGEN
GENERATION
RATE
AND
YIELD
248
16.4
FACTORS
AFFECTING
BIOHYDROGEN
PRODUCTION
IN
ANMBRS
248
CONTENTS
XV
16.4.1
16.4.2
16.4.3
16.4.4
16.4.5
16.4.6
16.4.7
16.5
16.5.1
16.5.2
16.6
NUTRIENTS
AVAILABILITY
248
HYDRAULIC
RETENTION
TIME
(HRT)
AND
SOLID
RETENTION
TIME
(SRT)
250
DESIGN
OF
BIOHYDROGEN-PRODUCING
REACTOR
250
SUBSTRATE
CONCENTRATION
250
TEMPERATURE
AND
PH
251
SEED
CULTURE
251
HYDROGEN
PARTIAL
PRESSURE
251
TECHNIQUES
TO
IMPROVE
BIOHYDROGEN
PRODUCTION
252
REACTOR
DESIGN
AND
CONFIGURATION
252
MICROBIAL
CONSORTIA
252
ENVIRONMENTAL
AND
ECONOMIC
ASSESSMENT
OF
BIOHYDROGEN
PRODUCTION
IN
ANMBRS
253
16.7
16.8
16.8.1
16.8.2
16.8.3
16.8.4
16.8.5
16.8.6
16.8.7
16.9
16.10
FUTURE
PERSPECTIVES
OF
BIOHYDROGEN
PRODUCTION
253
PRODUCTS
BASED
ON
SOLID-STATE
FERMENTER
253
BIOACTIVE
PRODUCTS
253
ENZYMES
254
ORGANIC
ACIDS
255
BIOPESTICIDES
256
AROMA
COMPOUNDS
256
BIO-PIGMENT
PRODUCTION
257
MISCELLANEOUS
COMPOUNDS
257
KOJI
FERMENTERS
FOR
SSF
FOR
PRODUCTION
OF
DIFFERENT
CHEMICALS
257
RECENT
RESEARCH
ON
BIOFUEL
MANUFACTURING
IN
BIOREACTORS
OTHER
THAN
BIOHYDROGEN
258
REFERENCES
259
PART
VI
WASTE2ENERGY
WITH
BIOTECHNOLOGY:
FEASIBILITIES
AND
CHALLENGES
263
17
UTILIZATION
OF
MICROBIAL
POTENTIAL
FOR
BIOETHANOL
PRODUCTION
FROM
LIGNOCELLULOSIC
WASTE
265
MANISHA
ROUT,
BITHIKA
SARDAR,
PUNEET
K.
SINGH,
RITESH
PATTNAIK,
AND
SNEHASISH
MISHRA
17.1
17.1.1
17.1.2
17.1.3
17.1.4
17.2
17.3
17.3.1
17.3.1.1
17.3.1.2
17.3.2
INTRODUCTION
265
BIOETHANOL
FROM
DIFFERENT
FEED
STOCKS
265
SOURCES
OF
LIGNOCELLULOSIC
BIOMASS
266
STRUCTURE
AND
COMPOSITION
OF
LIGNOCELLULOSE
266
CHALLENGES
IN
BIOETHANOL
PRODUCTION
FROM
LCB
267
PROCESSING
OF
LIGNOCELLULOSIC
BIOMASS
TO
ETHANOL
268
BIOLOGICAL
PRETREATMENT
271
POTENTIAL
MICROORGANISMS
INVOLVED
IN
LIGNIN
DEGRADATION
272
LIGNIN
DEGRADING
FUNGI
272
LIGNIN-DEGRADING
BACTERIA
274
MECHANISM
INVOLVED
IN
DELIGNIFICATION
274
XVI
CONTENTS
17.3.3
ENZYMES
INVOLVED
BIOLOGICAL
PRETREATMENT
274
17.3.3.1
LIGNIN
PEROXIDASE
275
17.3.3.2
MANGANESE
PEROXIDASE
275
17.3.3.3
LACCASES
275
17.3.3.4
VERSATILE
PEROXIDASE
(VP)
276
17.4
ENZYMATIC
HYDROLYSIS
276
17.4.1
HYDROLYSIS
OF
POLYSACCHARIDES
277
17.4.1.1
CELLULOSE
AND
HEMICELLULOSE
DEGRADING
ENZYMES
AND
MECHANISMS
277
17.5
FERMENTATION
277
17.5.1
MICROORGANISMS
INVOLVED
IN
FERMENTATION
277
17.5.2
FERMENTATION
PROCESS
278
17.5.3
PRODUCT
RECOVERY
OF
BIOETHANOL
POST
FERMENTATION
278
17.6
CONCLUSION
AND
FUTURE
PROSPECTS
279
REFERENCES
280
18
ADVANCEMENTS
IN
BIO-HYDROGEN
PRODUCTION
FROM
WASTE
BIOMASS
283
SHYAMALI
SARMA
AND
SANKAR
CHAKMA
18.1
INTRODUCTION
283
18.2
ROUTES
OF
PRODUCTION
285
18.2.1
BIOPHOTOLYSIS
285
18.2.2
DARK
FERMENTATION
286
18.2.3
PHOTO-FERMENTATION
286
18.3
BIOMASS
AS
FEEDSTOCK
FOR
BIOHYDROGEN
286
18.4
FACTORS
AFFECTING
BIOHYDROGEN
288
18.4.1
INFLUENCE
OF
PH
288
18.4.2
SYSTEM
TEMPERATURE
288
18.4.3
INOCULUM
289
18.4.4
SUBSTRATES
291
18.4.5
TYPE
OF
REACTOR
291
18.4.5.1
BATCH
MODE
291
18.4.5.2
CONTINUOUS
MODE
292
18.4.5.3
FED
BATCH
292
18.5
STRATEGIES
TO
ENHANCE
MICROBIAL
HYDROGEN
PRODUCTION
292
18.5.1
INTEGRATIVE
PROCESS
293
18.5.2
MEDIUM
AND
PROCESS
OPTIMIZATION
293
18.5.3
METABOLIC
FLUX
ANALYSIS
294
18.5.4
APPLICATION
OF
ULTRASONICATION
295
18.5.5
STRAIN
DEVELOPMENT
295
18.6
FUTURE
PERSPECTIVES
AND
CONCLUSION
297
REFERENCES
297
CONTENTS
XVII
19
REAPING
OF
BIO-ENERGY
FROM
WASTE
USING
MICROBIAL
FUEL
CELL
TECHNOLOGY
303
SENTHILKUMAR
KANDASAMY,
NAVEENKUMAR
MANICKAM,
AND
SAMRAJ
SADHAPPA
19.1
INTRODUCTION
303
19.1.1
EFFECTS
OF
INDUSTRIAL
WASTES
ON
ENVIRONMENT
304
19.1.1.1
MFC
AS
ENERGY
SOURCE
304
19.1.1.2
THEORY
OF
MICROBIAL
FUEL
CELL
305
19.2
MICROBIAL
FUEL
CELL
COMPONENTS
AND
PROCESS
306
19.2.1
MECHANISM
BEHIND
MFC
306
19.2.1.1
ELECTRODE
MATERIALS
IN
MFC
308
19.2.1.2
PROTON
EXCHANGE
MEMBRANE
309
19.3
APPLICATION
OF
MICROBIAL
FUEL
CELL
TO
THE
SOCIAL
RELEVANCE
309
19.3.1
ELECTRICITY
GENERATION
309
19.3.1.1
BIO
HYDROGEN
310
19.3.2
WASTEWATER
TREATMENT
310
19.3.3
BIOSENSOR
310
19.4
CONCLUSION
AND
FUTURE
PERSPECTIVES
311
REFERENCES
311
20
APPLICATION
OF
SUSTAINABLE
MICRO-ALGAL
SPECIES
IN
THE
PRODUCTION
OF
BIOENERGY
FOR
ENVIRONMENTAL
SUSTAINABILITY
315
SENTHILKUMAR
KANDASAMY,
JAYABHARATHI
JAYABALAN,
AND
BALAJI
DHANDAPANI
20.1
INTRODUCTION
315
20.1.1
CLASSIFICATION
OF
BIOFUELS
315
20.1.2
MICROALGAE
AND
BIOENERGY
316
20.2
CULTIVATION
AND
PROCESSING
OF
MICROALGAE
317
20.2.1
CULTIVATION
OF
MICROALGAE
319
20.2.1.1
ISOLATION
OF
CELL
CULTURES
319
20.2.1.2
SINGLE-CELL
ISOLATION
319
20.2.2
TECHNIQUES
319
20.2.2.1
FILTRATION
319
20.2.2.2
AUTOCLAVING
320
20.2.2.3
DRY
HEAT
320
20.2.2.4
PASTEURIZATION
320
20.2.3
CULTURE
CONDITIONS
320
20.2.3.1
TEMPERATURE
320
20.2.3.2
LIGHTING
321
20.2.3.3
CULTURE
MEDIA
321
20.2.3.4
PH
321
20.2.3.5
AERATION
321
XVIII
CONTENTS
20.2.4
20.2.4.1
20.2.4.2
20.2.5
20.2.6
20.2.6.1
20.2.6.2
20.2.7
20.2.7.1
20.2.7.2
20.2.7.3
20.2.7.4
20.2.7.5
20.3
20.4
CULTURE
METHODS
321
BATCH
CULTURE
321
CONTINUOUS
CULTURE
322
HARVESTING
CULTURES
322
BIOENERGY
PRODUCTION
PROCESS
FROM
MICROALGAE
322
PRODUCTION
PROCESSES
322
BIOMASS
PRODUCTION
FROM
MARINE
WATER
ALGAE
322
LARGE-SCALE
PRODUCTION
AND
PROCESSING
OF
MICROALGAE
324
BIOMETHANE
PRODUCTION
BY
ANAEROBIC
DIGESTION
324
LIQUID
OIL
PRODUCTION
BY
THERMAL
LIQUEFACTION
PROCESS
325
TRANSESTERIFICATION
PROCESS
325
NANO-CATALYZED
TRANSESTERIFICATION
PROCESS
325
BIOHYDROGEN
PRODUCTION
BY
PHOTOBIOLOGICAL
PROCESS
326
GENETIC
ENGINEERING
FOR
THE
IMPROVEMENT
OF
MICROALGAE
326
CONCLUSION
AND
CHALLENGES
IN
COMMERCIALIZING
MICROALGAE
327
REFERENCES
327
PART
VII
EMERGING
TECHNOLOGIES
(NANO
BIOTECHNOLOGY)
FOR
ZERO
WASTE
329
21
NANOMATERIALS
AND
BIOPOLYMERS
FOR
THE
REMEDIATION
OF
POLLUTED
SITES
331
MINCHITHA
K.
UMESHA,
SADHANA
VENKATESH,
AND
SWETHA
SESHAGIRI
21.1
21.2
21.2.1
INTRODUCTION
331
WATER
REMEDIATION
332
APPLICATION
OF
NANOTECHNOLOGY
FOR
WATER
DISINFECTION
AND
TEXTILE
DYE
DEGRADATION
332
21.2.2
NANOBIOPOLYMERS
FOR
WATER
DISINFECTION
AND
TEXTILE
DYE
DEGRADATION
334
21.3
21.3.1
SOIL
REMEDIATION
336
APPLICATION
OF
NANOTECHNOLOGY
FOR
SOIL
REMEDIATION
337
REFERENCES
339
22
BIOFUNCTIONALIZED
NANOMATERIALS
FOR
SENSING
AND
BIOREMEDIATION
OF
POLLUTANTS
343
SATYAM
AND
S.
PATRA
22.1
22.2
22.3
22.3.1
22.3.2
22.3.3
22.3.4
INTRODUCTION
343
SYNTHESIS
AND
SURFACE
MODIFICATION
STRATEGIES
FOR
NANOPARTICLES
345
BINDING
TECHNIQUES
FOR
BIOFUNCTIONALIZATION
OF
NANOPARTICLES
345
COVALENT
FUNCTIONALIZATION
346
NON-COVALENT
FUNCTIONALIZATION
346
ENCAPSULATION
347
ADSORPTION
348
CONTENTS
XIX
22.4
COMMONLY
FUNCTIONALIZED
BIOMATERIALS
AND
THEIR
ROLE
IN
REMEDIATION
348
22.4.1
22.4.2
22.4.3
22.4.4
22.4.5
22.5
BIOPOLYMERS
348
SURFACTANTS
351
NUCLEIC
ACID
352
PROTEINS
AND
PEPTIDES
352
ENZYMES
353
BIOFUNCTIONALIZED
NANOPARTICLE-BASED
SENSORS
FOR
ENVIRONMENTAL
APPLICATION
354
22.6
LIMITATION
OF
BIOFUNCTIONALIZED
NANOPARTICLES
FOR
ENVIRONMENTAL
APPLICATION
355
22.7
22.8
FUTURE
PERSPECTIVE
356
CONCLUSION
356
ACKNOWLEDGMENT
357
REFERENCES
357
23
BIOGENERATION
OF
VALUABLE
NANOMATERIALS
FROM
FOOD
AND
OTHER
WASTES
361
AMRUTHA
B.
MAHANTHESH,
SWARRNA
HAIDAR,
AND
SOUMITRA
BANERJEE
23.1
23.2
INTRODUCTION
361
GREEN
SYNTHESIS
OF
NANOMATERIALS
BY
USING
FOOD
AND
AGRICULTURAL
WASTE
362
23.3
23.3.1
23.3.2
23.4
SYNTHESIS
OF
BIONANOPARTICLES
FROM
FOOD
AND
AGRICULTURAL
WASTE
362
CELLULOSE
NANOMATERIALS
363
PROTEIN
NANOPARTICLES
364
CONCLUSION
365
ACKNOWLEDGMENTS
365
REFERENCES
365
24
BIOSYNTHESIS
OF
NANOPARTICLES
USING
AGRICULTURE
AND
HORTICULTURE
WASTE
369
VINAYAKA
B.
SHET,
KESHAVA
JOSHI,
LOKESHWARI
NAVALGUND,
AND
UJWAL
PUTTUR
24.1
24.2
24.3
24.3.1
24.3.2
24.3.3
24.4
24.4.1
24.4.2
24.4.3
24.4.4
INTRODUCTION
369
AGRICULTURAL
AND
HORTICULTURAL
WASTE
370
BIOSYNTHESIS
OF
NANOPARTICLE
370
PROCESSING
OF
AGRICULTURE
AND
HORTICULTURE
WASTE
370
SYNTHESIS
OF
NANOPARTICLES
372
SEPARATION
OF
NANOPARTICLES
372
CHARACTERIZATION
OF
BIOSYNTHESIZED
NANOPARTICLES
373
UV
SPECTROPHOTOMETER
373
FOURIER-TRANSFORM
INFRARED
SPECTROSCOPY
(FTIR)
374
DYNAMIC
LIGHT
SCATTERING
(DLS)
AND
ZETA
POTENTIAL
374
SCANNING
ELECTRON
MICROSCOPE
(SEM)
AND
TRANSMISSION
ELECTRON
MICROSCOPE
(TEM)
WITH
ENERGY-DISPERSIVE
X-RAY
(EDX)
374
XX
CONTENTS
24.4.5
X-RAY
DIFFRACTION
(XRD)
375
24.5
APPLICATIONS
OF
BIOSYNTHESIZED
NANOPARTICLES
375
24.5.1
ANTIMICROBIAL
ACTIVITY
375
24.5.2
PHOTOCATALYSIS
375
24.5.3
REMOVAL
OF
ANTIBIOTIC
FROM
WATER
376
24.5.4
EFFECT
ON
ENZYME
ACTIVITY
376
24.5.5
NANOFERTILIZER
376
24.5.6
RADICAL
SCAVENGING
ACTIVITY
376
24.5.7
NANO
ADDITIVES
FOR
FUEL
377
REFERENCES
377
25
NANOBIOTECHNOLOGY
-
A
GREEN
SOLUTION
379
BAISHAKHI
DE
AND
TRIDIB
K.
GOSWAMI
25.1
INTRODUCTION
379
25.2
NANOTECHNOLOGY
AND
NANOBIOTECHNOLOGY
-
THE
GREEN
PROCESSES
AND
TECHNOLOGIES
381
25.2.1
GREEN
CHEMISTRY
382
25.2.1.1
ADVANTAGES
AND
CHALLENGES
384
25.3
THE
VERSATILE
ROLE
OF
NANOTECHNOLOGY
AND
NANOBIOTECHNOLOGY
385
25.3.1
AGRICULTURE,
POTABLE
WATER,
AND
FOOD
PROCESSING
385
25.3.2
HEALTH,
MEDICINE,
DRUG
DELIVERY,
AND
PHARMACEUTICALS
388
25.3.3
AUTOMOBILE,
AIRCRAFT,
SPACE
TRAVEL
389
25.3.4
SUSTAINABLE
ENERGY,
BUILDING
TECHNOLOGY
389
25.3.5
SOCIETY
AND
EDUCATION
390
25.4
NANOTECHNOLOGIES
IN
WASTE
REDUCTION
AND
MANAGEMENT
390
25.5
CONCLUSION
393
REFERENCES
393
26
NOVEL
BIOTECHNOLOGICAL
APPROACHES
FOR
REMOVAL
OF
EMERGING
CONTAMINANTS
397
SANGEETHA
GANDHI
SIVASUBRAMANIYAN,
SENTHILKUMAR
KANDASAMY,
AND
NAVEEN
KUMAR
MANICKAM
26.1
INTRODUCTION
397
26.2
CLASSIFICATION
OF
EMERGING
CONTAMINANTS
397
26.2.1
MICROFIBERS
AND
MICROPLASTICS
398
26.2.2
PHARMACEUTICAL
CONTAMINANTS
398
26.2.3
PERSONAL
CARE
PRODUCTS
AND
ITS
CONTAMINANTS
398
26.2.4
INORGANIC
METALS
IN
FOODS
AND
WATER
399
26.2.5
PERFLUORINATED
COMPOUNDS
399
26.2.6
DISINFECTION
BYPRODUCTS
399
26.3
VARIOUS
SOURCES
OF
ECS
399
26.3.1
DEPOSITION
OF
SOLID
AND
LIQUID
WASTE
ON
LAND
399
26.3.2
DEPOSITION
OF
SOLID
AND
LIQUID
WASTE
INTO
THE
WATER
SOURCES
400
26.4
NEED
OF
REMOVAL
OF
ECS
400
26.5
METHODS
OF
TREATMENT
OF
EC
400
CONTENTS
XXI
26.5.1
26.5.2
26.5.3
26.6
26.6.1
26.6.2
26.6.3
26.6.4
26.6.4.1
26.6.4.2
26.6.4.3
26.6.4.4
26.6.4.5
26.6.4.6
26.6.4.7
26.6.5
26.6.5.1
26.6.5.2
26.6.5.3
26.6.5.4
26.6.5.5
26.7
PHYSICAL
METHODS
400
CHEMICAL
METHODS
401
BIOTECHNOLOGICAL
APPROACH
401
BIOTECHNOLOGICAL
APPROACHES
FOR
THE
REMOVAL
OF
ECS
401
DIGESTION
BY
MEMBRANE
BIOREACTOR
401
ENZYMATIC
TREATMENT
401
BIOFILTRATION
402
BIOREMEDIATION
402
BIOAUGMENTATION
403
BIOREACTORS
403
BIOSTIMULATION
404
BIOVENTING
404
COMPOSTING
404
LAND
FARMING/LAND
TREATMENT
405
BIOPILING
405
PHYTOREMEDIATION
405
PHYTOEXTRACTION
AND
PHYTOACCUMULATION
406
PHYTOSTABILIZATION
406
PHYTOVOLATILIZATION
406
PHYTOFILTRATION
406
PHYTODEGRADATION
406
CONCLUSION
406
REFERENCES
407
PART
VIII
ECONOMICS
AND
COMMERCIALIZATION
OF
ZERO
WASTE
BIOTECHNOLOGIES
409
27
BIOCONVERSION
OF
WASTE
TO
WEALTH
AS
CIRCULAR
BIOECONOMY
APPROACH
411
DAYANAND
PETER,
LAYA
RATHINAM,
AND
RANGANATHAN
T.
VASUDEVAN
27.1
27.1.1
27.1.2
27.1.3
27.2
27.2.1
27.2.2
27.3
27.4
INTRODUCTION
411
CIRCULAR
ECONOMY
411
BIOECONOMY
412
CIRCULAR
BIOECONOMY
412
BIOVALORIZATION
OF
ORGANIC
WASTE
413
EXTRACTION
OF
BIOACTIVES
413
BIOENERGY
PRODUCTION
413
BIOECONOMY
WASTE
PRODUCTION
AND
MANAGEMENT
414
CONCERNS
ABOUT
MANAGING
FOOD
WASTE
IN
ACHIEVING
CIRCULAR
BIOECONOMY
POLICIES
416
27.5
27.6
27.6.1
27.7
ECONOMICS
OF
BIOECONOMY
417
ENTREPRENEURSHIP
IN
BIOECONOMY
417
CURRENT
TRENDS
IN
BIOECONOMY
418
CONCLUSION
418
XXII
|
CONTENTS
LIST
OF
ABBREVIATIONS
418
REFERENCES
418
28
BIOCONVERSION
OF
FOOD
WASTE
TO
WEALTH
-
CIRCULAR
BIOECONOMY
APPROACH
421
RAJAM
RAMASAMY
AND
PARTHASARATHI
SUBRAMANIAN
28.1
INTRODUCTION
421
28.2
CIRCULAR
BIOECONOTNY
422
28.3
FOOD
WASTE
MANAGEMENT
CURRENT
PRACTICES
424
28.4
TECHNIQUES
FOR
BIOCONVERSION
OF
FOOD
WASTE
TOWARD
CIRCULAR
BIOECONOMY
APPROACH
425
28.4.1
ANAEROBIC
DIGESTION
425
28.4.1.1
FACTORS
INFLUENCING
ANAEROBIC
DIGESTION
427
28.4.2
MICROBIAL
FERMENTATION
429
28.4.3
ENZYMATIC
TREATMENT
431
28.4.3.1
ENZYME
IMMOBILIZATION
TECHNOLOGY
434
28.5
CONCLUSION
435
REFERENCES
435
29
ZERO-WASTE
BIOREFINERIES
FOR
CIRCULAR
ECONOMY
439
PUNEET
K.
SINGH,
POOJA
SHUKLA,
SUNIL
K.
VERMA,
SNEHASISH
MISHRA,
AND
PANKAJ
K.
PARHI
29.1
INTRODUCTION
439
29.2
BIOENERGY,
BIOECONOMY,
AND
BIOREFINERIES
440
29.3
BIOECONOMIC
STRATEGIES
AROUND
THE
WORLD
443
29.3.1
MALAYSIA
444
29.3.2
BRAZIL
444
29.3.3
UNITED
STATES
444
29.3.4
CANADA
444
29.3.5
GERMANY
444
29.3.6
EUROPEAN
UNION
445
29.3.7
SCENARIO
OF
BIOECONOMY
IN
INDIA
445
29.4
CHALLENGING
FACTORS
AND
IMPACT
ON
BIOECONOMY
445
29.5
EFFECT
OF
INCREASED
CO
2
CONCENTRATION,
SEQUESTRATION,
AND
CIRCULAR
ECONOMY
447
29.6
CARBON
SEQUESTRATION
IN
INDIA
447
29.7
METHODS
FOR
CO
2
CAPTURE
448
29.7.1
SCENARIO
1.
PHOTOSYNTHETIC
BACTERIAL
MODEL
FOR
CO
2
SEQUESTRATION
448
29.7.2
SCENARIO
2.
BIOCHAR
MODEL
FOR
CO
2
SEQUESTRATION
448
29.7.3
SCENARIO
3.
BIOFUELS
449
29.7.4
BIOLOGICAL-BASED
METHODS
TO
CAPTURE
CO
2
449
29.7.4.1
PHOTOSYNTHETIC
MODEL
449
29.7.4.2
SUBSTRATE
IN
BIOREFINERY
AND
CARBON
MANAGEMENT
449
29.8
CONCLUSION
AND
FUTURE
APPROACH
451
REFERENCES
452
CONTENTS
XXIII
30
FEASIBILITY
AND
ECONOMICS
OF
BIOBUTANOL
FROM
LIGNOCELLULOSIC
AND
STARCHY
RESIDUES
457
SANDESH
KANTHAKERE
30.1
30.2
30.3
30.3.1
30.3.2
30.4
30.4.1
INTRODUCTION
457
OPPORTUNITIES
AND
FUTURE
OF
ZERO
WASTE
BIOBUTANOL
458
GENERATION
OF
LIGNOCELLULOSIC
AND
STARCHY
WASTES
459
TYPES
AND
SOURCES
OF
WASTE
GENERATION
460
COMPOSITION
OF
LIGNOCELLULOSE
AND
STARCHY
RESIDUES
461
VALUE
ADDED
PRODUCTS
FROM
LIGNOCELLULOSE
AND
STARCHY
RESIDUES
462
FEASIBILITY
OF
BIOBUTANOL
PRODUCTION
FROM
LIGNOCELLULOSE
AND
STARCHY
RESIDUES
463
30.4.2
30.4.3
30.5
PRETREATMENT
463
ECONOMICS
OF
BIOBUTANOL
PRODUCTION
465
CONCLUSION
468
REFERENCES
468
31
CRITICAL
ISSUES
THAT
CAN
UNDERPIN
THE
DRIVE
FOR
SUSTAINABLE
ANAEROBIC
BIOREFINERY
473
SPYRIDON
ACHINAS
31.1
31.2
31.3
31.4
31.4.1
31.4.2
31.4.3
31.5
INTRODUCTION
473
BIOGAS
-
AN
ENERGY
VECTOR
474
ANAEROBIC
BIOREFINERY
APPROACH
475
TECHNOLOGICAL
TRENDS
AND
CHALLENGES
IN
THE
ANAEROBIC
BIOREFINERY
477
PRETREATMENT
477
MULTISTAGE
AD
PROCESS
480
DYNAMICS
OF
METHANOGENIC
COMMUNITIES
480
PERSPECTIVES
TOWARD
THE
REVITALIZATION
OF
THE
ANAEROBIC
BIOREFINERIES
482
31.5.1
31.5.2
31.6
RECIPROCITY
BETWEEN
RESEARCH,
INDUSTRY,
AND
GOVERNMENT
482
TRANSITION
TO
THE
BIOGAS-BASED
GREEN
ECONOMY
483
CONCLUSION
485
CONFLICT
OF
INTEREST
485
REFERENCES
485
32
MICROBIOLOGY
OF
BIOGAS
PRODUCTION
FROM
FOOD
WASTE:
CURRENT
STATUS,
CHALLENGES,
AND
FUTURE
NEEDS
491
VANAJAKSHI
VASUDEVA,
INCHARA
CRASTA,
AND
SANDEEP
N.
MUDLIAR
32.1
32.2
32.3
32.4
32.4.1
32.4.2
32.4.3
32.5
INTRODUCTION
491
FUNDAMENTALS
FOR
ACCOMPLISHING
NATIONAL
BIOFUEL
POLICY
492
SIGNIFICANCES
OF
ANAEROBIC
MICROBIOLOGY
IN
BIOGAS
PROCESS
493
MICROBIOLOGY
AND
PHYSICO-CHEMICAL
PROCESS
IN
AD
493
HYDROLYSIS
AND
ACIDOGENESIS
493
ACETOGENESIS
494
METHANOGENESIS
AND
THE
ESSENTIAL
MICROBIAL
CONSORTIA
495
PRETREATMENT
496
XXIV
CONTENTS
32.6
VARIATIONS
IN
ANAEROBIC
DIGESTION
496
32.7
FACTORS
INFLUENCING
BIOGAS
PRODUCTION
497
32.7.1
TEMPERATURE
497
32.7.2
PH
497
32.7.3
VFA
498
32.7.4
MICROBIAL
CONSORTIA
IN
AD
498
32.7.5
RECIRCULATION
OF
LEACHATE
499
32.7.6
AMMONIA
499
32.7.7
FEEDSTOCK
COMPOSITION
500
32.7.7.1
PROTEIN-RICH
SUBSTRATE
500
32.7.7.2
LIPID-RICH
SUBSTRATE
500
32.7.7.3
CARBOHYDRATE-RICH
SUBSTRATE
500
32.7.8
TRACE
ELEMENT
SUPPLEMENTATION
500
32.7.9
ENVIRONMENT/ALKALINITY
501
32.7.10
TOXICITY
501
32.8
APPLICATION
OF
METAGENOMICS
502
32.9
CONCLUSIONS
AND
FUTURE
NEEDS
504
LIST
OF
ABBREVIATIONS
504
REFERENCES
505
PART
IX
GREEN
AND
SUSTAINABLE
FUTURE
(ZERO
WASTE
AND
ZERO
EMISSIONS)
507
33
VALORIZATION
OF
WASTE
COOKING
OIL
INTO
BIODIESEL,
BIOLUBRICANTS,
AND
OTHER
PRODUCTS
509
MURLIDHAR
MEGHWAL,
HARITA
DESAI,
SANCHITA
BAISYA,
ARPITA
DAS,
SANGHMITRA
GADE,
REKHA
RANI,
KALYAN
DAS,
AND
RAVI
KUMAR
KADEPPAGARI
33.1
INTRODUCTION
509
33.2
TREATMENT
510
33.2.1
CHEMICAL
TREATMENT
510
33.2.2
MICROBIOLOGICAL
AND
BIOTECHNOLOGICAL
TREATMENT
511
33.3
EVALUATION
OF
WASTE
COOKING
OIL
AND
VALORIZED
COOKING
OIL
511
33.4
VERSATILE
PRODUCTS
AS
AN
OUTCOME
OF
VALORIZED
WASTE
COOKING
OIL
512
33.4.1
BIOSURFACTANTS
AND
LIQUID
DETERGENTS
512
33.4.2
GREEN
CHEMICAL
LUBRICANTS
513
33.4.3
BIODIESEL
PRODUCTION
513
33.4.4
MICROBIAL
LIPIDS
513
33.4.5
VITAMINS
AND
NUTRACEUTICALS
514
33.4.6
BIOPOLYMER
SYNTHESIS
514
33.4.7
POLYHYDROXYALKANOATES
515
33.4.8
FEEDSTOCK
FOR
MICROBIAL
PROCESSES
515
33.4.9
BIOASPHALT
516
33.4.10
BIOPLASTICIZERS
516
33.4.11
BIOSOLVENT
516
CONTENTS
XXV
33.5
CONCLUSION
516
REFERENCES
517
34
AGRI
AND
FOOD
WASTE
VALORIZATION
THROUGH
THE
PRODUCTION
OF
BIOCHEMICALS
AND
PACKAGING
MATERIALS
521
A.
JAGANNATH
AND
POOJA
J.
RAO
34.1
34.2
34.3
34.4
34.5
34.5.1
34.5.2
34.5.3
34.5.4
34.6
34.7
34.7.1
34.7.2
34.7.3
34.7.4
34.7.4.1
34.7.4.2
34.7.4.3
34.8
34.9
INTRODUCTION
521
IMPORTANCE
522
WORLDWIDE
INITIATIVES
522
COMPOSITION-BASED SOLUTIONS
AND
APPROACHES
523
BIOCHEMICALS
523
FUNCTIONAL
PHYTOCHEMICALS
524
INDUSTRIAL-RELEVANT
BIOCHEMICALS
524
ENZYMES
525
FOODS/FEEDS/SUPPLEMENTS
525
BIOFUELS
526
PACKAGING
MATERIALS
AND
BIOPLASTICS
526
SCOPE
AND
FEATURES
527
POLYLACTIC
ACID
(PLA)
527
POLYHYDROXYALKANOATES
(PHAS)
529
REINFORCEMENT
IN
BIOPLASTIC
PROPERTIES
529
NATURAL
EXTRACT
529
COPOLYMERIZATION
530
GREEN
COMPOSITES
530
GREEN
VALORIZATION
531
CONCLUSION
531
REFERENCES
532
35
EDIBLE
COATINGS
AND
FILMS
FROM
AGRICULTURAL
AND
MARINE
FOOD
WASTES
543
C.
NAGA
DEEPIKA,
MURLIDHAR
MEGHWAL,
PRAMOD
K.
PRABHAKAR,
ANURAG
SINGH,
REKHA
RANI,
AND
RAVI
KUMAR
KADEPPAGARI
35.1
35.2
35.3
35.3.1
35.3.2
35.3.3
35.4
35.4.1
35.4.2
35.5
35.5.1
35.5.2
35.5.3
INTRODUCTION
543
SOURCES
OF
FOOD
WASTE
544
FILM/COATING
MADE
FROM
AGRI-FOOD
WASTE
545
BIOPOLYMERS
FROM
FRUITS
AND
VEGETABLES
WASTE
545
BIOPOLYMERS
FROM
GRAIN
WASTAGE
546
BIOACTIVE
COMPOUNDS
FROM
PLANT
RESIDUES
547
FILM/COATING
MATERIALS
FROM
MARINE
BIOWASTE
548
FISH
PROCESSING
BY-PRODUCTS
549
CRUSTACEAN
BY-PRODUCTS
549
FILM/COATING
FORMATION
METHODS
550
SOLVENT
CASTING
550
EXTRUSION
551
DIPPING
METHOD
552
XXVI
CONTENTS
INDEX
569
35.5.4
35.5.5
35.6
SPRAYING
METHOD
552
SPREADING
METHOD
552
CONCLUSION
552
REFERENCES
553
36
VALORIZATION
OF
BY-PRODUCTS
OF
MILK
FAT
PROCESSING
557
MENON
R.
RAVINDRA,
MONIKA
SHARMA,
RAJESH
KRISHNEGOWDA,
AND
AMANCHI
SANGMA
36.1
36.2
36.3
36.3.1
36.3.1.1
36.3.1.2
36.3.1.3
36.3.1.4
36.3.1.5
36.3.1.6
36.3.1.7
36.3.1.8
36.3.1.9
36.3.2
36.3.3
36.4
36.4.1
36.4.2
36.4.2.1
36.4.2.2
36.4.2.3
36.4.2.4
36.4.3
36.4.4
36.5
INTRODUCTION
557
PROCESSING
OF
MILK
FAT
AND
ITS
BY-PRODUCTS
558
VALORIZATION
OF
BUTTERMILK
558
BUTTERMILK
AS
AN
INGREDIENT
IN
FOOD
AND
DAIRY
PRODUCTS
559
MARKET
MILK
559
DAHI
559
YOGHURT
559
CHEESES
560
INDIAN
TRADITIONAL
DAIRY
PRODUCTS
560
BUTTERMILK
ICE
CREAM
560
DAIRY-BASED
BEVERAGES
560
PROBIOTIC
DRINKS
561
DRIED
BUTTERMILK
561
BUTTERMILK
AS
ENCAPSULATING
AGENT
561
BUTTERMILK
AS
A
SOURCE
OF
PHOSPHOLIPIDS
562
VALORIZATION
OF
GHEE
RESIDUE
562
UTILIZATION
OF
GHEE
RESIDUE
FOR
VALUE-ADDED
PRODUCTS
563
GHEE
RESIDUE
AS
AN
INGREDIENT
IN
DAIRY
AND
FOOD
INDUSTRY
563
BAKED
PRODUCTS
563
CHOCOLATE
AND
CONFECTIONERY
563
GHEE-RESIDUE-BASED
FLAVOR
ENHANCER
564
INDIAN
TRADITIONAL
SWEETMEAT
564
GHEE
RESIDUE
AS
ANIMAL
FEED
564
GHEE
RESIDUE
AS
SOURCE
OF
PHOSPHOLIPIDS
564
CONCLUSION
565
REFERENCES
565 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Hussain, Chaudhery Mustansar 1975- Kadeppagari, Ravi Kumar |
author2_role | edt edt |
author2_variant | c m h cm cmh r k k rk rkk |
author_GND | (DE-588)1124182330 |
author_facet | Hussain, Chaudhery Mustansar 1975- Kadeppagari, Ravi Kumar |
building | Verbundindex |
bvnumber | BV047604082 |
classification_rvk | VN 9400 |
ctrlnum | (OCoLC)1304473665 (DE-599)DNB1237122805 |
discipline | Chemie / Pharmazie |
discipline_str_mv | Chemie / Pharmazie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03146nam a22007578c 4500</leader><controlfield tag="001">BV047604082</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220913 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">211119s2022 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">21,N29</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1237122805</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527348985</subfield><subfield code="c">: circa EUR 129.00 (DE) (freier Preis)</subfield><subfield code="9">978-3-527-34898-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527348985</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 1134898 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1304473665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1237122805</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1028</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 9400</subfield><subfield code="0">(DE-625)147645:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">540</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biotechnology for zero waste</subfield><subfield code="b">emerging waste management techniques</subfield><subfield code="c">edited by Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxx, 594 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24.4 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abfallvermeidung</subfield><subfield code="0">(DE-588)4203674-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grüne Chemie</subfield><subfield code="0">(DE-588)7563215-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abfallbehandlung</subfield><subfield code="0">(DE-588)4124508-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Abfallvermeidung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biochemical Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biochemische Verfahrenstechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biotechnologie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biotechnologie i. d. Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CG20: Biochemische Verfahrenstechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CH31: Biotechnologie i. d. Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CHC0: Nachhaltige u. Grüne Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemical Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemische Verfahrenstechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nachhaltige u. Grüne Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sustainable Chemistry & Green Chemistry</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Abfallbehandlung</subfield><subfield code="0">(DE-588)4124508-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Abfallvermeidung</subfield><subfield code="0">(DE-588)4203674-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Grüne Chemie</subfield><subfield code="0">(DE-588)7563215-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hussain, Chaudhery Mustansar</subfield><subfield code="d">1975-</subfield><subfield code="0">(DE-588)1124182330</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kadeppagari, Ravi Kumar</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-83205-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-83207-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-527-83206-4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34898-5/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032989125&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032989125</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20210716</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV047604082 |
illustrated | Illustrated |
index_date | 2024-07-03T18:37:40Z |
indexdate | 2024-07-10T09:15:57Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527348985 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032989125 |
oclc_num | 1304473665 |
open_access_boolean | |
owner | DE-29T DE-634 DE-703 DE-1028 |
owner_facet | DE-29T DE-634 DE-703 DE-1028 |
physical | xxx, 594 Seiten Illustrationen, Diagramme 24.4 cm x 17 cm |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Biotechnology for zero waste emerging waste management techniques edited by Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari Weinheim Wiley-VCH [2022] xxx, 594 Seiten Illustrationen, Diagramme 24.4 cm x 17 cm txt rdacontent n rdamedia nc rdacarrier Biotechnologie (DE-588)4069491-4 gnd rswk-swf Abfallvermeidung (DE-588)4203674-4 gnd rswk-swf Grüne Chemie (DE-588)7563215-9 gnd rswk-swf Abfallbehandlung (DE-588)4124508-8 gnd rswk-swf Abfallvermeidung Biochemical Engineering Biochemische Verfahrenstechnik Biotechnologie Biotechnologie i. d. Chemie Biotechnology CG20: Biochemische Verfahrenstechnik CH31: Biotechnologie i. d. Chemie CHC0: Nachhaltige u. Grüne Chemie Chemical Engineering Chemie Chemische Verfahrenstechnik Chemistry Nachhaltige u. Grüne Chemie Sustainable Chemistry & Green Chemistry (DE-588)4143413-4 Aufsatzsammlung gnd-content Abfallbehandlung (DE-588)4124508-8 s Biotechnologie (DE-588)4069491-4 s DE-604 Abfallvermeidung (DE-588)4203674-4 s Grüne Chemie (DE-588)7563215-9 s Hussain, Chaudhery Mustansar 1975- (DE-588)1124182330 edt Kadeppagari, Ravi Kumar edt Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-83205-7 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-83207-1 Erscheint auch als Online-Ausgabe 978-3-527-83206-4 X:MVB http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34898-5/ DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032989125&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20210716 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Biotechnology for zero waste emerging waste management techniques Biotechnologie (DE-588)4069491-4 gnd Abfallvermeidung (DE-588)4203674-4 gnd Grüne Chemie (DE-588)7563215-9 gnd Abfallbehandlung (DE-588)4124508-8 gnd |
subject_GND | (DE-588)4069491-4 (DE-588)4203674-4 (DE-588)7563215-9 (DE-588)4124508-8 (DE-588)4143413-4 |
title | Biotechnology for zero waste emerging waste management techniques |
title_auth | Biotechnology for zero waste emerging waste management techniques |
title_exact_search | Biotechnology for zero waste emerging waste management techniques |
title_exact_search_txtP | Biotechnology for zero waste emerging waste management techniques |
title_full | Biotechnology for zero waste emerging waste management techniques edited by Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari |
title_fullStr | Biotechnology for zero waste emerging waste management techniques edited by Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari |
title_full_unstemmed | Biotechnology for zero waste emerging waste management techniques edited by Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari |
title_short | Biotechnology for zero waste |
title_sort | biotechnology for zero waste emerging waste management techniques |
title_sub | emerging waste management techniques |
topic | Biotechnologie (DE-588)4069491-4 gnd Abfallvermeidung (DE-588)4203674-4 gnd Grüne Chemie (DE-588)7563215-9 gnd Abfallbehandlung (DE-588)4124508-8 gnd |
topic_facet | Biotechnologie Abfallvermeidung Grüne Chemie Abfallbehandlung Aufsatzsammlung |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34898-5/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032989125&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hussainchaudherymustansar biotechnologyforzerowasteemergingwastemanagementtechniques AT kadeppagariravikumar biotechnologyforzerowasteemergingwastemanagementtechniques AT wileyvch biotechnologyforzerowasteemergingwastemanagementtechniques |