Hyperbolic flows:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
European Mathematical Society
[2019]
|
Schriftenreihe: | Zurich lectures in advanced mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | xiv, 723 Seiten Illustrationen 24 cm x 17 cm |
ISBN: | 9783037192009 3037192003 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047601908 | ||
003 | DE-604 | ||
005 | 20211119 | ||
007 | t | ||
008 | 211118s2019 a||| |||| 00||| eng d | ||
015 | |a 19,N47 |2 dnb | ||
016 | 7 | |a 1199629170 |2 DE-101 | |
020 | |a 9783037192009 |c Broschur : EUR 78.00 (DE), EUR 80.20 (AT) |9 978-3-03719-200-9 | ||
020 | |a 3037192003 |9 3-03719-200-3 | ||
024 | 3 | |a 9783037192009 | |
035 | |a (OCoLC)1175885428 | ||
035 | |a (DE-599)DNB1199629170 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-19 | ||
084 | |a SK 810 |0 (DE-625)143257: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Fisher, Todd |e Verfasser |0 (DE-588)119901284X |4 aut | |
245 | 1 | 0 | |a Hyperbolic flows |c Todd Fisher, Boris Hasselblatt |
264 | 1 | |a Berlin |b European Mathematical Society |c [2019] | |
300 | |a xiv, 723 Seiten |b Illustrationen |c 24 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Zurich lectures in advanced mathematics | |
650 | 0 | 7 | |a Dynamisches System |0 (DE-588)4013396-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolisches Differentialgleichungssystem |0 (DE-588)4496581-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolisches System |0 (DE-588)4191897-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ergodische Kette |0 (DE-588)4402921-4 |2 gnd |9 rswk-swf |
653 | |a Anosov flow | ||
653 | |a Axiom A | ||
653 | |a Markov partitions | ||
653 | |a entropy | ||
653 | |a equilibrium states | ||
653 | |a ergodic theory | ||
653 | |a expansiveness | ||
653 | |a geodesic flow | ||
653 | |a hyperbolicity | ||
653 | |a rigidity | ||
653 | |a shadowing | ||
653 | |a specification | ||
653 | |a stable manifold | ||
653 | |a symbolic flows | ||
653 | |a topological dynamics | ||
653 | |a topological pressure | ||
689 | 0 | 0 | |a Dynamisches System |0 (DE-588)4013396-5 |D s |
689 | 0 | 1 | |a Ergodische Kette |0 (DE-588)4402921-4 |D s |
689 | 0 | 2 | |a Hyperbolisches System |0 (DE-588)4191897-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Hyperbolisches Differentialgleichungssystem |0 (DE-588)4496581-3 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Hasselblatt, Boris |d 1961- |e Verfasser |0 (DE-588)137987471 |4 aut | |
710 | 2 | |a European Mathematical Society Publishing House ETH-Zentrum SEW A27 |0 (DE-588)1066118477 |4 pbl | |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u http://digitale-objekte.hbz-nrw.de/storage2/2020/10/01/file_8/8922272.pdf |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032987005&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032987005 |
Datensatz im Suchindex
_version_ | 1804182962913148928 |
---|---|
adam_text | CONTENTS
ACKNOWLEDGMENTS
..................................................................................................
VII
0
INTRODUCTION
......................................................................................................
1
0.1
ABOUT
THIS
BOOK
.....................................................................................
1
0.2
CONTINUOUS
AND
DISCRETE
TIME
................................................................
3
0.3
HISTORICAL
SKETCH
..................................................................................
6
I
FLOWS
..................................................................................................................
15
1
TOPOLOGICAL
DYNAMICS
.....................................................................................
19
1.1
BASIC
PROPERTIES
.....................................................................................
19
1.2
TIME
CHANGE,
FLOW
UNDER
A
FUNCTION,
AND
SECTIONS
............................
34
1.3
CONJUGACY
AND
ORBIT
EQUIVALENCE
.........................................................
39
1.4
ATTRACTORS
AND
REPELLERS
.........................................................................
48
1.5
RECURRENCE
PROPERTIES
AND
CHAIN
DECOMPOSITION
................................
60
1.6
TRANSITIVITY,
MINIMALITY,
AND
TOPOLOGICAL
MIXING
................................
78
1.7
EXPANSIVE
FLOWS
.....................................................................................
88
1.8
WEAKENING
EXPANSIVITY*
.....................................................................
94
1.9
SYMBOLIC
FLOWS,
CODING
.........................................................................
98
2
HYPERBOLIC
GEODESIC
FLOW*
................................................................................
113
2.1
ISOMETRIES,
GEODESICS,
AND
HOROCYCLES
OF
THE
HYPERBOLIC
PLANE
AND
DISK
113
2.2
DYNAMICS
OF
THE
NATURAL
FLOWS
................................................................
120
2.3
COMPACT
FACTORS
.........................................................................................
129
2.4
THE
GEODESIC
FLOW
ON
COMPACT
HYPERBOLIC
SURFACES
.........................
131
2.5
SYMMETRIC
SPACES
......................................................................................
136
2.6
HAMILTONIAN
SYSTEMS
............................................................................
141
3
ERGODIC
THEORY
...................................................................................................
155
3.1
FLOW-INVARIANT
MEASURES
AND
MEASURE-PRESERVING
TRANSFORMATIONS
.
155
XII
CONTENTS
3.2
ERGODIC
THEOREMS
.......................................................................................
163
3.3
ERGODICITY
...............................................................................................
171
3.4
MIXING
......................................................................................................
179
3.5
INVARIANT
MEASURES
UNDER
TIME
CHANGE
....................................................
194
3.6
FLOWS
UNDER
A
FUNCTION
.............................................................................
196
3.7
SPECTRAL
THEORY*
.........................................................................................
203
4
ENTROPY,
PRESSURE,
AND
EQUILIBRIUM
STATES
..........................................................
211
4.1
MEASURE-THEORETIC
ENTROPY
.......................................................................
211
4.2
TOPOLOGICAL
ENTROPY
...................................................................................
216
4.3
TOPOLOGICAL
PRESSURE
AND
EQUILIBRIUM
STATES
..........................................
232
4.4
EQUILIBRIUM
STATES
FOR
TIME-T
MAPS*
.......................................................
243
II
HYPERBOLIC
FLOWS
...............................................................................................247
INTRODUCTION
TO
PART
II
................................................................................................
249
5
HYPERBOLICITY
......................................................................................................
251
5.1
HYPERBOLIC
SETS
AND
BASIC
PROPERTIES
......................................................
252
5.2
PHYSICAL
FLOWS:
GEODESIC
FLOWS,
MAGNETIC
FLOWS,
BILLIARDS,
GASES,
AND
LINKAGES
......................................................................................................
263
5.3
SHADOWING,
EXPANSIVITY,
CLOSING,
SPECIFICATION,
AND
AXIOM
A
....
293
5.4
THE
ANOSOV
SHADOWING
THEOREM,
STRUCTURAL
AND
Q-STABILITY
....
309
5.5
LOCAL
LINEARIZATION:
THE
HARTMAN-GROBMAN
THEOREM
.......................
322
5.6
THE
MATHER-MOSER
METHOD*
...................................................................324
6
INVARIANT
FOLIATIONS
.............................................................................................
331
6.1
STABLE
AND
UNSTABLE
FOLIATIONS
...................................................................332
6.2
GLOBAL
FOLIATIONS,
LOCAL
MAXIMALITY,
BOWEN
BRACKET
.............................336
6.3
LIVSHITZ
THEORY
.........................................................................................
348
6.4
HOLDER
CONTINUITY
OF
ORBIT
EQUIVALENCE
...................................................352
6.5
HORSESHOES
AND
ATTRACTORS
..........................................................................
355
6.6
MARKOV
PARTITIONS
......................................................................................
363
6.7
FAILURE
OF
LOCAL
MAXIMALITY*
...................................................................
371
6.8
SMOOTH
LINEARIZATION
AND
NORMAL
FORMS*
................................................374
6.9
DIFFERENTIABILITY
IN
THE
HARTMAN-GROBMAN
THEOREM*
..........................
390
7
ERGODIC
THEORY
OF
HYPERBOLIC
SETS
.......................................................................399
7.1
THE
HOPF
ARGUMENT,
ABSOLUTE
CONTINUITY,
MIXING
.....................................
400
CONTENTS
XIII
7.2
STABLE
ERGODICITY*
......................................................................................
410
7.3
SPECIFICATION,
UNIQUENESS
OF
EQUILIBRIUM
STATES
...................................
420
7.4
SINAI-RUELLE-BOWEN
MEASURES
................................................................435
7.5
HAMENSTADT-MARGULIS
MEASURE*
............................................................
446
7.6
ASYMPTOTIC
ORBIT
GROWTH*
......................................................................453
7.7
RATES
OF
MIXING*
......................................................................................
461
8
ANOSOV
FLOWS
......................................................................................................
471
8.1
ANOSOV
DIFFEOMORPHISMS,
SUSPENSIONS,
AND
MIXING
..............................
472
8.2
FOULON-HANDEL-THURSTON
SURGERY
.........................................................
476
8.3
ANOMALOUS
ANOSOV
FLOWS
.........................................................................
486
8.4
CODIMENSION-
1
ANOSOV
FLOWS
................................................................493
8.5
{^-COVERED
ANOSOV
3
-FLOWS
......................................................................
502
8.6
HOROCYCLE
AND
UNSTABLE
FLOWS*
................................................................509
9
RIGIDITY
...............................................................................................................
531
9.1
MULTIDIMENSIONAL
TIME:
COMMUTING
FLOWS
.............................................
533
9.2
CONJUGACIES
...............................................................................................
543
9.3
ENTROPY
AND
LYAPUNOV
EXPONENTS
.............................................................548
9.4
OPTIMAL
REGULARITY
OF
THE
INVARIANT
SUBBUNDLES
......................................
553
9.5
LONGITUDINAL
REGULARITY
............................................................................562
9.6
SHARPNESS
FOR
TRANSVERSELY
SYMPLECTIC
FLOWS,
THREADING
.......................
566
9.7
SMOOTH
INVARIANT
FOLIATIONS
......................................................................
572
9.8
GODBILLON-VEY
INVARIANTS*
......................................................................
582
APPENDICES
A
MEASURE-THEORETIC
ENTROPY
OF
MAPS
...................................................................
591
A.L
LEBESGUE
SPACES
.....................................................................................
591
A.2
ENTROPY
AND
CONDITIONAL
ENTROPY
............................................................
595
A.
3
PROPERTIES
OF
ENTROPY
...............................................................................
606
B
HYPERBOLIC
MAPS
AND
INVARIANT
MANIFOLDS
......................................................
625
B.
L
THE
CONTRACTION
MAPPING
PRINCIPLE
.....................................................
625
B.2
GENERALIZED
EIGENSPACES
........................................................................628
B.3
THE
SPECTRUM
OF
A
LINEAR
MAP
..................................................................
630
B.4
HYPERBOLIC
LINEAR
MAPS
............................................................................
633
B.5
ADMISSIBLE
MANIFOLDS:
THE
HADAMARD
METHOD
......................................638
B.6
THE
INCLINATION
LEMMA
AND
HOMOCLINIC
TANGLES
....................................
655
CONTENTS
XIV
B.7
ABSOLUTE
CONTINUITY
...................................................................................659
HINTS
AND
ANSWERS
TO
THE
EXERCISES
...........................................................................
671
BIBLIOGRAPHY
............................................................................................................679
INDEX
OF
PERSONS
.........................................................................................................703
INDEX
............................................................................................................................
707
INDEX
OF
THEOREMS
......................................................................................................
721
|
adam_txt |
CONTENTS
ACKNOWLEDGMENTS
.
VII
0
INTRODUCTION
.
1
0.1
ABOUT
THIS
BOOK
.
1
0.2
CONTINUOUS
AND
DISCRETE
TIME
.
3
0.3
HISTORICAL
SKETCH
.
6
I
FLOWS
.
15
1
TOPOLOGICAL
DYNAMICS
.
19
1.1
BASIC
PROPERTIES
.
19
1.2
TIME
CHANGE,
FLOW
UNDER
A
FUNCTION,
AND
SECTIONS
.
34
1.3
CONJUGACY
AND
ORBIT
EQUIVALENCE
.
39
1.4
ATTRACTORS
AND
REPELLERS
.
48
1.5
RECURRENCE
PROPERTIES
AND
CHAIN
DECOMPOSITION
.
60
1.6
TRANSITIVITY,
MINIMALITY,
AND
TOPOLOGICAL
MIXING
.
78
1.7
EXPANSIVE
FLOWS
.
88
1.8
WEAKENING
EXPANSIVITY*
.
94
1.9
SYMBOLIC
FLOWS,
CODING
.
98
2
HYPERBOLIC
GEODESIC
FLOW*
.
113
2.1
ISOMETRIES,
GEODESICS,
AND
HOROCYCLES
OF
THE
HYPERBOLIC
PLANE
AND
DISK
113
2.2
DYNAMICS
OF
THE
NATURAL
FLOWS
.
120
2.3
COMPACT
FACTORS
.
129
2.4
THE
GEODESIC
FLOW
ON
COMPACT
HYPERBOLIC
SURFACES
.
131
2.5
SYMMETRIC
SPACES
.
136
2.6
HAMILTONIAN
SYSTEMS
.
141
3
ERGODIC
THEORY
.
155
3.1
FLOW-INVARIANT
MEASURES
AND
MEASURE-PRESERVING
TRANSFORMATIONS
.
155
XII
CONTENTS
3.2
ERGODIC
THEOREMS
.
163
3.3
ERGODICITY
.
171
3.4
MIXING
.
179
3.5
INVARIANT
MEASURES
UNDER
TIME
CHANGE
.
194
3.6
FLOWS
UNDER
A
FUNCTION
.
196
3.7
SPECTRAL
THEORY*
.
203
4
ENTROPY,
PRESSURE,
AND
EQUILIBRIUM
STATES
.
211
4.1
MEASURE-THEORETIC
ENTROPY
.
211
4.2
TOPOLOGICAL
ENTROPY
.
216
4.3
TOPOLOGICAL
PRESSURE
AND
EQUILIBRIUM
STATES
.
232
4.4
EQUILIBRIUM
STATES
FOR
TIME-T
MAPS*
.
243
II
HYPERBOLIC
FLOWS
.247
INTRODUCTION
TO
PART
II
.
249
5
HYPERBOLICITY
.
251
5.1
HYPERBOLIC
SETS
AND
BASIC
PROPERTIES
.
252
5.2
PHYSICAL
FLOWS:
GEODESIC
FLOWS,
MAGNETIC
FLOWS,
BILLIARDS,
GASES,
AND
LINKAGES
.
263
5.3
SHADOWING,
EXPANSIVITY,
CLOSING,
SPECIFICATION,
AND
AXIOM
A
.
293
5.4
THE
ANOSOV
SHADOWING
THEOREM,
STRUCTURAL
AND
Q-STABILITY
.
309
5.5
LOCAL
LINEARIZATION:
THE
HARTMAN-GROBMAN
THEOREM
.
322
5.6
THE
MATHER-MOSER
METHOD*
.324
6
INVARIANT
FOLIATIONS
.
331
6.1
STABLE
AND
UNSTABLE
FOLIATIONS
.332
6.2
GLOBAL
FOLIATIONS,
LOCAL
MAXIMALITY,
BOWEN
BRACKET
.336
6.3
LIVSHITZ
THEORY
.
348
6.4
HOLDER
CONTINUITY
OF
ORBIT
EQUIVALENCE
.352
6.5
HORSESHOES
AND
ATTRACTORS
.
355
6.6
MARKOV
PARTITIONS
.
363
6.7
FAILURE
OF
LOCAL
MAXIMALITY*
.
371
6.8
SMOOTH
LINEARIZATION
AND
NORMAL
FORMS*
.374
6.9
DIFFERENTIABILITY
IN
THE
HARTMAN-GROBMAN
THEOREM*
.
390
7
ERGODIC
THEORY
OF
HYPERBOLIC
SETS
.399
7.1
THE
HOPF
ARGUMENT,
ABSOLUTE
CONTINUITY,
MIXING
.
400
CONTENTS
XIII
7.2
STABLE
ERGODICITY*
.
410
7.3
SPECIFICATION,
UNIQUENESS
OF
EQUILIBRIUM
STATES
.
420
7.4
SINAI-RUELLE-BOWEN
MEASURES
.435
7.5
HAMENSTADT-MARGULIS
MEASURE*
.
446
7.6
ASYMPTOTIC
ORBIT
GROWTH*
.453
7.7
RATES
OF
MIXING*
.
461
8
ANOSOV
FLOWS
.
471
8.1
ANOSOV
DIFFEOMORPHISMS,
SUSPENSIONS,
AND
MIXING
.
472
8.2
FOULON-HANDEL-THURSTON
SURGERY
.
476
8.3
ANOMALOUS
ANOSOV
FLOWS
.
486
8.4
CODIMENSION-
1
ANOSOV
FLOWS
.493
8.5
{^-COVERED
ANOSOV
3
-FLOWS
.
502
8.6
HOROCYCLE
AND
UNSTABLE
FLOWS*
.509
9
RIGIDITY
.
531
9.1
MULTIDIMENSIONAL
TIME:
COMMUTING
FLOWS
.
533
9.2
CONJUGACIES
.
543
9.3
ENTROPY
AND
LYAPUNOV
EXPONENTS
.548
9.4
OPTIMAL
REGULARITY
OF
THE
INVARIANT
SUBBUNDLES
.
553
9.5
LONGITUDINAL
REGULARITY
.562
9.6
SHARPNESS
FOR
TRANSVERSELY
SYMPLECTIC
FLOWS,
THREADING
.
566
9.7
SMOOTH
INVARIANT
FOLIATIONS
.
572
9.8
GODBILLON-VEY
INVARIANTS*
.
582
APPENDICES
A
MEASURE-THEORETIC
ENTROPY
OF
MAPS
.
591
A.L
LEBESGUE
SPACES
.
591
A.2
ENTROPY
AND
CONDITIONAL
ENTROPY
.
595
A.
3
PROPERTIES
OF
ENTROPY
.
606
B
HYPERBOLIC
MAPS
AND
INVARIANT
MANIFOLDS
.
625
B.
L
THE
CONTRACTION
MAPPING
PRINCIPLE
.
625
B.2
GENERALIZED
EIGENSPACES
.628
B.3
THE
SPECTRUM
OF
A
LINEAR
MAP
.
630
B.4
HYPERBOLIC
LINEAR
MAPS
.
633
B.5
ADMISSIBLE
MANIFOLDS:
THE
HADAMARD
METHOD
.638
B.6
THE
INCLINATION
LEMMA
AND
HOMOCLINIC
TANGLES
.
655
CONTENTS
XIV
B.7
ABSOLUTE
CONTINUITY
.659
HINTS
AND
ANSWERS
TO
THE
EXERCISES
.
671
BIBLIOGRAPHY
.679
INDEX
OF
PERSONS
.703
INDEX
.
707
INDEX
OF
THEOREMS
.
721 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Fisher, Todd Hasselblatt, Boris 1961- |
author_GND | (DE-588)119901284X (DE-588)137987471 |
author_facet | Fisher, Todd Hasselblatt, Boris 1961- |
author_role | aut aut |
author_sort | Fisher, Todd |
author_variant | t f tf b h bh |
building | Verbundindex |
bvnumber | BV047601908 |
classification_rvk | SK 810 |
ctrlnum | (OCoLC)1175885428 (DE-599)DNB1199629170 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02718nam a2200697 c 4500</leader><controlfield tag="001">BV047601908</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211119 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">211118s2019 a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">19,N47</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1199629170</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783037192009</subfield><subfield code="c">Broschur : EUR 78.00 (DE), EUR 80.20 (AT)</subfield><subfield code="9">978-3-03719-200-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3037192003</subfield><subfield code="9">3-03719-200-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783037192009</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1175885428</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1199629170</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fisher, Todd</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119901284X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hyperbolic flows</subfield><subfield code="c">Todd Fisher, Boris Hasselblatt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">European Mathematical Society</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 723 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">24 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Zurich lectures in advanced mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolisches Differentialgleichungssystem</subfield><subfield code="0">(DE-588)4496581-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ergodische Kette</subfield><subfield code="0">(DE-588)4402921-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Anosov flow</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Axiom A</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Markov partitions</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">entropy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">equilibrium states</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ergodic theory</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">expansiveness</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">geodesic flow</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">hyperbolicity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">rigidity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">shadowing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">specification</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">stable manifold</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">symbolic flows</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">topological dynamics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">topological pressure</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ergodische Kette</subfield><subfield code="0">(DE-588)4402921-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hyperbolisches Differentialgleichungssystem</subfield><subfield code="0">(DE-588)4496581-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hasselblatt, Boris</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137987471</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">European Mathematical Society Publishing House ETH-Zentrum SEW A27</subfield><subfield code="0">(DE-588)1066118477</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://digitale-objekte.hbz-nrw.de/storage2/2020/10/01/file_8/8922272.pdf</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032987005&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032987005</subfield></datafield></record></collection> |
id | DE-604.BV047601908 |
illustrated | Illustrated |
index_date | 2024-07-03T18:36:59Z |
indexdate | 2024-07-10T09:15:53Z |
institution | BVB |
institution_GND | (DE-588)1066118477 |
isbn | 9783037192009 3037192003 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032987005 |
oclc_num | 1175885428 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | xiv, 723 Seiten Illustrationen 24 cm x 17 cm |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | European Mathematical Society |
record_format | marc |
series2 | Zurich lectures in advanced mathematics |
spelling | Fisher, Todd Verfasser (DE-588)119901284X aut Hyperbolic flows Todd Fisher, Boris Hasselblatt Berlin European Mathematical Society [2019] xiv, 723 Seiten Illustrationen 24 cm x 17 cm txt rdacontent n rdamedia nc rdacarrier Zurich lectures in advanced mathematics Dynamisches System (DE-588)4013396-5 gnd rswk-swf Hyperbolisches Differentialgleichungssystem (DE-588)4496581-3 gnd rswk-swf Hyperbolisches System (DE-588)4191897-6 gnd rswk-swf Ergodische Kette (DE-588)4402921-4 gnd rswk-swf Anosov flow Axiom A Markov partitions entropy equilibrium states ergodic theory expansiveness geodesic flow hyperbolicity rigidity shadowing specification stable manifold symbolic flows topological dynamics topological pressure Dynamisches System (DE-588)4013396-5 s Ergodische Kette (DE-588)4402921-4 s Hyperbolisches System (DE-588)4191897-6 s DE-604 Hyperbolisches Differentialgleichungssystem (DE-588)4496581-3 s Hasselblatt, Boris 1961- Verfasser (DE-588)137987471 aut European Mathematical Society Publishing House ETH-Zentrum SEW A27 (DE-588)1066118477 pbl B:DE-101 application/pdf http://digitale-objekte.hbz-nrw.de/storage2/2020/10/01/file_8/8922272.pdf Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032987005&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Fisher, Todd Hasselblatt, Boris 1961- Hyperbolic flows Dynamisches System (DE-588)4013396-5 gnd Hyperbolisches Differentialgleichungssystem (DE-588)4496581-3 gnd Hyperbolisches System (DE-588)4191897-6 gnd Ergodische Kette (DE-588)4402921-4 gnd |
subject_GND | (DE-588)4013396-5 (DE-588)4496581-3 (DE-588)4191897-6 (DE-588)4402921-4 |
title | Hyperbolic flows |
title_auth | Hyperbolic flows |
title_exact_search | Hyperbolic flows |
title_exact_search_txtP | Hyperbolic flows |
title_full | Hyperbolic flows Todd Fisher, Boris Hasselblatt |
title_fullStr | Hyperbolic flows Todd Fisher, Boris Hasselblatt |
title_full_unstemmed | Hyperbolic flows Todd Fisher, Boris Hasselblatt |
title_short | Hyperbolic flows |
title_sort | hyperbolic flows |
topic | Dynamisches System (DE-588)4013396-5 gnd Hyperbolisches Differentialgleichungssystem (DE-588)4496581-3 gnd Hyperbolisches System (DE-588)4191897-6 gnd Ergodische Kette (DE-588)4402921-4 gnd |
topic_facet | Dynamisches System Hyperbolisches Differentialgleichungssystem Hyperbolisches System Ergodische Kette |
url | http://digitale-objekte.hbz-nrw.de/storage2/2020/10/01/file_8/8922272.pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032987005&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT fishertodd hyperbolicflows AT hasselblattboris hyperbolicflows AT europeanmathematicalsocietypublishinghouseethzentrumsewa27 hyperbolicflows |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis