Graphs and discrete dirichlet spaces:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
2021
|
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften
358 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xv, 668 Seiten |
ISBN: | 9783030814588 3030814580 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV047600743 | ||
003 | DE-604 | ||
005 | 20211206 | ||
007 | t | ||
008 | 211118s2021 |||| 00||| eng d | ||
020 | |a 9783030814588 |9 978-3-030-81458-8 | ||
020 | |a 3030814580 |9 3030814580 | ||
035 | |a (OCoLC)1282606237 | ||
035 | |a (DE-599)KXP1776180593 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-20 | ||
084 | |a SK 170 |0 (DE-625)143221: |2 rvk | ||
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
100 | 1 | |a Keller, Matthias |e Verfasser |4 aut | |
245 | 1 | 0 | |a Graphs and discrete dirichlet spaces |c Matthias Keller, Daniel Lenz, Radoslaw K. Wojciechowski |
264 | 1 | |a Cham, Switzerland |b Springer |c 2021 | |
300 | |a xv, 668 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Grundlehren der mathematischen Wissenschaften |v 358 | |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dirichletsche Form |0 (DE-588)4150137-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Dirichletsche Form |0 (DE-588)4150137-8 |D s |
689 | 0 | 1 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Lenz, Daniel |d 1970- |e Verfasser |0 (DE-588)13023172X |4 aut | |
700 | 1 | |a Wojciechowski, Radoslaw K. |d 1980- |e Verfasser |0 (DE-588)1208017357 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-030-81459-5 |
830 | 0 | |a Grundlehren der mathematischen Wissenschaften |v 358 |w (DE-604)BV000000395 |9 358 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032985865&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032985865 |
Datensatz im Suchindex
_version_ | 1804182960933437440 |
---|---|
adam_text | Matthias Keller + Daniel Lenz
Radostaw K Wojciechowski
Graphs and Discrete
Dirichlet Spaces
al Springer
Contents
Part 0 Prelude
Finite Graphs ::-222coeeeneesseeeeaeeesennennnn nun
0 1 Graphs, Laplacians and Dirichlet forms ------- -0000
0 2 Characterizing forms associated to graphs --- rer 0000
0 3 Characterizing Laplacians associated to graphs ---
0 4 Networks and electrostatics 1000 0c c cece e cece eee e eee
0 5 The heat equation and the Markov property ---- -2-0055
0 6 Resolvents and heat semigroups 4 0 0c eee eee e ee eee
07A Perron-Frobenius theorem and large time behavior
0 8 When there is no killing 0 c ccc eee eee eee eens
0 9 ‘Turning graphs into other graphs* -00 eee eee ee eee
0 10 Markov processes and the Feynman—Kac formula*
EX€rciS€S 2 0 cece ee eee eee ene nee ete eee n enter eenees
Notes 22222eeeesseeeeeeeneeeeenenennneer een nennen nennen
Part 1 Foundations and Fundamental Topics
Infinite Graphs — Key Concepts 000 e eee e cece eee eee eens
1 1 The setting ina nutshell 0 0 00 cece eee eee reese eeee
1 2 Graphs and (regular) Dirichlet forms - -----orcseeener
1 3 Approximation, domain monotonicity and the Markov property
1 4 Connectedness, irreducibility and positivity improving operators
1 5 Boundedness and compactly supported functions - -
1 6 Graphs with standard weights -+-- 60s es seer eee eee eee
EX€LciS€S 20 eee eben etn e een eee teneeeaee
NOteS 000 e cece cece nee teen e eens enn en ene eae eenes
xi
N
xii
Contents
Infinite Graphs ~ Toolbox 0 0 14
2 1 Generators, semigroups and resolvents on €? 0 000 n
2 2 Forms associated to graphs and restrictions to subsets 159
2 3 The curse of non-locality: Leibniz and chain rules 165
2 4 Creatures from the abyss* «1 200 eee eee eee eee eens 169
2 5 Markov processes and the Feynman—Kac formula redux* 173
EXxerciseS 0 0 cece ce een enn e rete teen teens IT?
Notes 2 00 ccc cece cece eee ene een e teen renee renege 184
Markov Uniqueness and Essential Self-Adjointness - ------ 185
3 1 Uniqueness of associated forms 0 + 220s eee rere renee 185
3 2 Essential self-adjointness - 0c eee eee e reece erent ete 189
3 3 Markov uniqueness 0 00 c eee eee erect tte 193
Exercises 22 enter eee eens enters sees 24
ce a 214
Agmon-Allegretto-Piepenbrink and Persson Theorems ------+- 215
41A local Harnack inequality and consequences - -- rec 216
42 The ground state transform 22 2 tee
4 3 The bottom of the spectrum 002e eee ee eee eee enter ee ee 228
4 4 The bottom of the essential spectrum - ---- 200s seers 230
Exercises 0 00000 coc c cece c ccc eect eect eee ee eee e eee LF
Notes 2000 eee eee ee ce ence n eee eneee 239
Large Time Behavior of the Heat Kernel 0 2 000- 241
5 1 Positivity improving semigroups and the ground state 24)
5 2 Theoremns of Chavel-Karp and Li 2 20 235
5 3 The Neumann Laplacian and finite measure 2 249
Exercises © +--+ 0-2-0 e ee eer ete 252
Notes - -- +1 seer r reer t errr ttt t tte eee 254
Recurtence 2 20 Heer
6 1 General preliminaries ec nerttreeen 253
6 2 The form perspective oo Treten 261
6 3 The superharmonic function perspective 00 7 ttt ee eee, 268
6 4 The Green’s function perspective ttt eee, 275
6 5 The Green’s formula perspective , Tr 5 ~
66 A probabilistic point of view* tte 281
Exercises Kane N 290
Notes creme Tr 293
elle „300
Contents
7 Stochastic Completeness 0 00 0 e cece cece te cee eee eees
7 1 The heat equation on (° 000 eee cee ence eens
7 2 Stochastic completeness at infinity 00 cece eee eee
7 3 The heat equation perspective 00 0 c eee eee eee eee
74 The Poisson equation perspective 0 e cece eee eee
7 5 The form perspective 00 c cece cece eee e eee eee
7 6 The Green’s formula perspective 00e cece eee eee ee
7 7 The Omori-Yau maximum principle - 2 cece e eee
78A stability criterion and Khasminskii’s criterion
79A probabilistic interpretation* 0 00 c eee eee
EX€MciSeS 2 eect eect et ence neretees
NOteS 00 6 e nee nent teen teentees
Part 2 Classes of Graphs
8 Uniformly Positive Measure 00 00c eee eee eeeeeees
81A Liouville theorem 0 000 c cece eee eee eee eee
8 2 Uniqueness of the form and essential self-adjointness
83A spectral inclusion 0 0 02 e cece cece ee eee eee eee
8 4 The heat equation on €? 000 cece cece ener eee eee
8 5 Graphs with standard weights 00 00 ccc cee eeeeeees
EXerciS€S 20 cece cece en eee e nett een a eeatenes
Notes 2 c ccc cece cece eee eet e cent e neta eeeennee
9 Weak Spherical Symmetry 200020 02 ccc cece cece eneee
9 | Symmetry of the heat kernel 0 0 000 20 e cece eee eee ee
9 2 The spectral gap 0 cece cece eee eee eee
9 3 Recurrence 6 cece cee eee teen cee tener eeene
9 4 Stochastic completeness at infinity 0 20 00- eee
Exercises een eee e cece nee ees e es eneeeeetennnenees
| (6) TV
10 Sparseness and Isoperimetric Inequalities 2 0065
10 1 Notions of sparseness 002 cece eee eee eee eeee ann
10 2 Co-area formulae 00 c cece eee eee nee eens
10 3 Weak sparseness and the form domain - - 0e000-
10 4 Approximate sparseness and first order eigenvalue asymptotics
10 5 Sparseness and second order eigenvalue asymptotics
10 6 Isoperimetric inequalities and Weyl asymptotics --
EXerciSeS 0 6c cee eect ee ee teen eee e ne eeee eens
Notes 202 ccc ccc ce te eee ee een nent reece ereeeees
xiv
Contents
Part 3 Geometry and Intrinsic Metrics
11 Intrinsic Metrics: Definition and Basie Facts ---- ern 443
11 1 Definition and motivation - --eeeeeeee nennen nenne 443
11 2 Path metrics and a Hopf-Rinow theorem - „reset 447
11 3 Examples and relations to other metrics -----+e0r seers 453
11 4 Geometric assumptions and cutoff functions - --++-+++500° 458
EXe€rciseS 0 0 cece cece eee ee ene eee e nent nn erent 463
Notes 2 00 cece ccc cece ce ee renee renee r er eeeeereene ene? 466
12 Harmonic Functions and Caccioppoli Theoty - --- 40 469
12 1 Caccioppoli inequalities -- 2 --ee nern ernennen nen 470
12 2 Liouville theorems 020e ee eee eee eee e reer ener 483
12 3 Applications of the Liouville theorems - +++0++0¢002 000° 489
12 4 Shnol’ theorems 0 000 c cece ee teen eee eens eneeee 493
Exercises © 00 c0cccceccecscccccucsceceeeeeeeseeeeeneees eres 1 500
Notes 2 00 00 ccc cece cee cence eee eee ernennen en nenne 504
13 Spectral Bounds - --- ---seeeeeeeesnneeneneenn ren 507
13 1 Cheeger constants and lower spectral bounds „+ 7 7 507
13 2 Volume growth and upper spectral bounds - ---2+--ee00+ 513
ExerciseS 2 00 cece cece ete etter eee e cree eeeeesenent 32
Notes 000 cccccececeeceeeeeeeeeveetecceeesstenteneereesees S24
14 Volume Growth Criterion for Stochastic Completeness and
Uniqueness Class 00 000 :0 cee cece eect etree nen eneeee 525
14 1 Uniqueness class ve nccceceteceeteeeteenccsenteeetser sense D6
14 2 Refinements 0 0 020 cce cence cece eee e teeters eee 538
14 3 Volume growth criterion for stochastic completeness - ------- 545
Exefcises „22 oeneeeeseeneeeeeenneeeee nennen nnnne nenn nn eer nenn 548
Notes 222@eeeeneeeeseeneennnenenen nennen een nenne nennen en 550
Appendix
A The Spectral Theorem 0000000eeeeeeee cece eee e eee eee SOS
B Closed Forms on Hilbert spaces 2 - 200 e cece reece eens 587
C Dirichlet Forms and Beurling-Deny Criteria 5%9
D Semigroups, Resolvents and their Generators --+ --: 605
Contents xv
E Aspects of Operator Theory weet e eee eee eee 623
E 1 Acharacterization of the resolvent 0 0 cece ee eee 623
E 2 The discrete and essential spectrum 0002 eeee 626
E 3 Reducing subspaces and commuting operators 638
E 4 The Riesz-Thorin interpolation theorem -000005 644
References 2000 cence eee eee een e rece e een eee 647
Index 22 een ene e nee ener rene et eee 663
|
adam_txt |
Matthias Keller + Daniel Lenz
Radostaw K Wojciechowski
Graphs and Discrete
Dirichlet Spaces
al Springer
Contents
Part 0 Prelude
Finite Graphs ::-222coeeeneesseeeeaeeesennennnn nun
0 1 Graphs, Laplacians and Dirichlet forms ------- -0000
0 2 Characterizing forms associated to graphs --- rer 0000
0 3 Characterizing Laplacians associated to graphs ---
0 4 Networks and electrostatics 1000 0c c cece e cece eee e eee
0 5 The heat equation and the Markov property ---- -2-0055
0 6 Resolvents and heat semigroups 4 0 0c eee eee e ee eee
07A Perron-Frobenius theorem and large time behavior
0 8 When there is no killing 0 c ccc eee eee eee eens
0 9 ‘Turning graphs into other graphs* -00 eee eee ee eee
0 10 Markov processes and the Feynman—Kac formula*
EX€rciS€S 2 0 cece ee eee eee ene nee ete eee n enter eenees
Notes 22222eeeesseeeeeeeneeeeenenennneer een nennen nennen
Part 1 Foundations and Fundamental Topics
Infinite Graphs — Key Concepts 000 e eee e cece eee eee eens
1 1 The setting ina nutshell 0 0 00 cece eee eee reese eeee
1 2 Graphs and (regular) Dirichlet forms - -----orcseeener
1 3 Approximation, domain monotonicity and the Markov property
1 4 Connectedness, irreducibility and positivity improving operators
1 5 Boundedness and compactly supported functions - -
1 6 Graphs with standard weights -+-- 60s es seer eee eee eee
EX€LciS€S 20 eee eben etn e een eee teneeeaee
NOteS 000 e cece cece nee teen e eens enn en ene eae eenes
xi
N
xii
Contents
Infinite Graphs ~ Toolbox 0 0 14
2 1 Generators, semigroups and resolvents on €? 0 000 n
2 2 Forms associated to graphs and restrictions to subsets 159
2 3 The curse of non-locality: Leibniz and chain rules 165
2 4 Creatures from the abyss* «1 200 eee eee eee eee eens 169
2 5 Markov processes and the Feynman—Kac formula redux* 173
EXxerciseS 0 0 cece ce een enn e rete teen teens IT?
Notes 2 00 ccc cece cece eee ene een e teen renee renege 184
Markov Uniqueness and Essential Self-Adjointness - ------ 185
3 1 Uniqueness of associated forms 0 + 220s eee rere renee 185
3 2 Essential self-adjointness - 0c eee eee e reece erent ete 189
3 3 Markov uniqueness 0 00 c eee eee erect tte 193
Exercises 22 enter eee eens enters sees 24
ce a 214
Agmon-Allegretto-Piepenbrink and Persson Theorems ------+- 215
41A local Harnack inequality and consequences - -- rec 216
42 The ground state transform 22 2 tee
4 3 The bottom of the spectrum 002e eee ee eee eee enter ee ee 228
4 4 The bottom of the essential spectrum - ---- 200s seers 230
Exercises 0 00000 coc c cece c ccc eect eect eee ee eee e eee LF
Notes 2000 eee eee ee ce ence n eee eneee 239
Large Time Behavior of the Heat Kernel 0 2 000- 241
5 1 Positivity improving semigroups and the ground state 24)
5 2 Theoremns of Chavel-Karp and Li 2 20 235
5 3 The Neumann Laplacian and finite measure 2 249
Exercises © +--+ 0-2-0 e ee eer ete 252
Notes - -- +1 seer r reer t errr ttt t tte eee 254
Recurtence 2 20 Heer
6 1 General preliminaries ec nerttreeen 253
6 2 The form perspective oo Treten 261
6 3 The superharmonic function perspective 00 7 ttt ee eee, 268
6 4 The Green’s function perspective ttt eee, 275
6 5 The Green’s formula perspective , Tr 5 ~
66 A probabilistic point of view* tte 281
Exercises Kane N 290
Notes creme Tr 293
elle „300
Contents
7 Stochastic Completeness 0 00 0 e cece cece te cee eee eees
7 1 The heat equation on (° 000 eee cee ence eens
7 2 Stochastic completeness at infinity 00 cece eee eee
7 3 The heat equation perspective 00 0 c eee eee eee eee
74 The Poisson equation perspective 0 e cece eee eee
7 5 The form perspective 00 c cece cece eee e eee eee
7 6 The Green’s formula perspective 00e cece eee eee ee
7 7 The Omori-Yau maximum principle - 2 cece e eee
78A stability criterion and Khasminskii’s criterion
79A probabilistic interpretation* 0 00 c eee eee
EX€MciSeS 2 eect eect et ence neretees
NOteS 00 6 e nee nent teen teentees
Part 2 Classes of Graphs
8 Uniformly Positive Measure 00 00c eee eee eeeeeees
81A Liouville theorem 0 000 c cece eee eee eee eee
8 2 Uniqueness of the form and essential self-adjointness
83A spectral inclusion 0 0 02 e cece cece ee eee eee eee
8 4 The heat equation on €? 000 cece cece ener eee eee
8 5 Graphs with standard weights 00 00 ccc cee eeeeeees
EXerciS€S 20 cece cece en eee e nett een a eeatenes
Notes 2 c ccc cece cece eee eet e cent e neta eeeennee
9 Weak Spherical Symmetry 200020 02 ccc cece cece eneee
9 | Symmetry of the heat kernel 0 0 000 20 e cece eee eee ee
9 2 The spectral gap 0 cece cece eee eee eee
9 3 Recurrence 6 cece cee eee teen cee tener eeene
9 4 Stochastic completeness at infinity 0 20 00- eee
Exercises een eee e cece nee ees e es eneeeeetennnenees
| (6) TV
10 Sparseness and Isoperimetric Inequalities 2 0065
10 1 Notions of sparseness 002 cece eee eee eee eeee ann
10 2 Co-area formulae 00 c cece eee eee nee eens
10 3 Weak sparseness and the form domain - - 0e000-
10 4 Approximate sparseness and first order eigenvalue asymptotics
10 5 Sparseness and second order eigenvalue asymptotics
10 6 Isoperimetric inequalities and Weyl asymptotics --
EXerciSeS 0 6c cee eect ee ee teen eee e ne eeee eens
Notes 202 ccc ccc ce te eee ee een nent reece ereeeees
xiv
Contents
Part 3 Geometry and Intrinsic Metrics
11 Intrinsic Metrics: Definition and Basie Facts ---- ern 443
11 1 Definition and motivation - --eeeeeeee nennen nenne 443
11 2 Path metrics and a Hopf-Rinow theorem - „reset 447
11 3 Examples and relations to other metrics -----+e0r seers 453
11 4 Geometric assumptions and cutoff functions - --++-+++500° 458
EXe€rciseS 0 0 cece cece eee ee ene eee e nent nn erent 463
Notes 2 00 cece ccc cece ce ee renee renee r er eeeeereene ene? 466
12 Harmonic Functions and Caccioppoli Theoty - --- 40 469
12 1 Caccioppoli inequalities -- 2 --ee nern ernennen nen 470
12 2 Liouville theorems 020e ee eee eee eee e reer ener 483
12 3 Applications of the Liouville theorems - +++0++0¢002 000° 489
12 4 Shnol’ theorems 0 000 c cece ee teen eee eens eneeee 493
Exercises © 00 c0cccceccecscccccucsceceeeeeeeseeeeeneees eres 1 500
Notes 2 00 00 ccc cece cee cence eee eee ernennen en nenne 504
13 Spectral Bounds - --- ---seeeeeeeesnneeneneenn ren 507
13 1 Cheeger constants and lower spectral bounds „+ 7 7 507
13 2 Volume growth and upper spectral bounds - ---2+--ee00+ 513
ExerciseS 2 00 cece cece ete etter eee e cree eeeeesenent 32
Notes 000 cccccececeeceeeeeeeeeveetecceeesstenteneereesees S24
14 Volume Growth Criterion for Stochastic Completeness and
Uniqueness Class 00 000 :0 cee cece eect etree nen eneeee 525
14 1 Uniqueness class ve nccceceteceeteeeteenccsenteeetser sense D6
14 2 Refinements 0 0 020 cce cence cece eee e teeters eee 538
14 3 Volume growth criterion for stochastic completeness - ------- 545
Exefcises „22 oeneeeeseeneeeeeenneeeee nennen nnnne nenn nn eer nenn 548
Notes 222@eeeeneeeeseeneennnenenen nennen een nenne nennen en 550
Appendix
A The Spectral Theorem 0000000eeeeeeee cece eee e eee eee SOS
B Closed Forms on Hilbert spaces 2 - 200 e cece reece eens 587
C Dirichlet Forms and Beurling-Deny Criteria 5%9
D Semigroups, Resolvents and their Generators --+ --: 605
Contents xv
E Aspects of Operator Theory weet e eee eee eee 623
E 1 Acharacterization of the resolvent 0 0 cece ee eee 623
E 2 The discrete and essential spectrum 0002 eeee 626
E 3 Reducing subspaces and commuting operators 638
E 4 The Riesz-Thorin interpolation theorem -000005 644
References 2000 cence eee eee een e rece e een eee 647
Index 22 een ene e nee ener rene et eee 663 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Keller, Matthias Lenz, Daniel 1970- Wojciechowski, Radoslaw K. 1980- |
author_GND | (DE-588)13023172X (DE-588)1208017357 |
author_facet | Keller, Matthias Lenz, Daniel 1970- Wojciechowski, Radoslaw K. 1980- |
author_role | aut aut aut |
author_sort | Keller, Matthias |
author_variant | m k mk d l dl r k w rk rkw |
building | Verbundindex |
bvnumber | BV047600743 |
classification_rvk | SK 170 SK 890 SK 540 |
ctrlnum | (OCoLC)1282606237 (DE-599)KXP1776180593 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01822nam a2200433 cb4500</leader><controlfield tag="001">BV047600743</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211206 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">211118s2021 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030814588</subfield><subfield code="9">978-3-030-81458-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3030814580</subfield><subfield code="9">3030814580</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1282606237</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1776180593</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Keller, Matthias</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Graphs and discrete dirichlet spaces</subfield><subfield code="c">Matthias Keller, Daniel Lenz, Radoslaw K. Wojciechowski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 668 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">358</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dirichletsche Form</subfield><subfield code="0">(DE-588)4150137-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dirichletsche Form</subfield><subfield code="0">(DE-588)4150137-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lenz, Daniel</subfield><subfield code="d">1970-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13023172X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wojciechowski, Radoslaw K.</subfield><subfield code="d">1980-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1208017357</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-81459-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">358</subfield><subfield code="w">(DE-604)BV000000395</subfield><subfield code="9">358</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032985865&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032985865</subfield></datafield></record></collection> |
id | DE-604.BV047600743 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:36:43Z |
indexdate | 2024-07-10T09:15:51Z |
institution | BVB |
isbn | 9783030814588 3030814580 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032985865 |
oclc_num | 1282606237 |
open_access_boolean | |
owner | DE-20 |
owner_facet | DE-20 |
physical | xv, 668 Seiten |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Springer |
record_format | marc |
series | Grundlehren der mathematischen Wissenschaften |
series2 | Grundlehren der mathematischen Wissenschaften |
spelling | Keller, Matthias Verfasser aut Graphs and discrete dirichlet spaces Matthias Keller, Daniel Lenz, Radoslaw K. Wojciechowski Cham, Switzerland Springer 2021 xv, 668 Seiten txt rdacontent n rdamedia nc rdacarrier Grundlehren der mathematischen Wissenschaften 358 Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Dirichletsche Form (DE-588)4150137-8 gnd rswk-swf Dirichletsche Form (DE-588)4150137-8 s Spektraltheorie (DE-588)4116561-5 s DE-604 Lenz, Daniel 1970- Verfasser (DE-588)13023172X aut Wojciechowski, Radoslaw K. 1980- Verfasser (DE-588)1208017357 aut Erscheint auch als Online-Ausgabe 978-3-030-81459-5 Grundlehren der mathematischen Wissenschaften 358 (DE-604)BV000000395 358 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032985865&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Keller, Matthias Lenz, Daniel 1970- Wojciechowski, Radoslaw K. 1980- Graphs and discrete dirichlet spaces Grundlehren der mathematischen Wissenschaften Spektraltheorie (DE-588)4116561-5 gnd Dirichletsche Form (DE-588)4150137-8 gnd |
subject_GND | (DE-588)4116561-5 (DE-588)4150137-8 |
title | Graphs and discrete dirichlet spaces |
title_auth | Graphs and discrete dirichlet spaces |
title_exact_search | Graphs and discrete dirichlet spaces |
title_exact_search_txtP | Graphs and discrete dirichlet spaces |
title_full | Graphs and discrete dirichlet spaces Matthias Keller, Daniel Lenz, Radoslaw K. Wojciechowski |
title_fullStr | Graphs and discrete dirichlet spaces Matthias Keller, Daniel Lenz, Radoslaw K. Wojciechowski |
title_full_unstemmed | Graphs and discrete dirichlet spaces Matthias Keller, Daniel Lenz, Radoslaw K. Wojciechowski |
title_short | Graphs and discrete dirichlet spaces |
title_sort | graphs and discrete dirichlet spaces |
topic | Spektraltheorie (DE-588)4116561-5 gnd Dirichletsche Form (DE-588)4150137-8 gnd |
topic_facet | Spektraltheorie Dirichletsche Form |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032985865&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000395 |
work_keys_str_mv | AT kellermatthias graphsanddiscretedirichletspaces AT lenzdaniel graphsanddiscretedirichletspaces AT wojciechowskiradoslawk graphsanddiscretedirichletspaces |