Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing
2021
Cham Springer |
Ausgabe: | 1st ed. 2021 |
Schriftenreihe: | Lecture Notes in Mathematics
2294 |
Schlagworte: | |
Online-Zugang: | BTU01 FAB01 FHD01 FHN01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBM01 UBT01 UBW01 UBY01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (X, 242 p. 17 illus., 9 illus. in color) |
ISBN: | 9783030837853 |
ISSN: | 1617-9692 |
DOI: | 10.1007/978-3-030-83785-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV047580443 | ||
003 | DE-604 | ||
005 | 20211115 | ||
007 | cr|uuu---uuuuu | ||
008 | 211110s2021 |||| o||u| ||||||eng d | ||
020 | |a 9783030837853 |c Online |9 978-3-030-83785-3 | ||
024 | 7 | |a 10.1007/978-3-030-83785-3 |2 doi | |
035 | |a (ZDB-2-SMA)9783030837853 | ||
035 | |a (ZDB-2-LNM)9783030837853 | ||
035 | |a (OCoLC)1286873055 | ||
035 | |a (DE-599)BVBBV047580443 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-1043 |a DE-898 |a DE-861 |a DE-188 |a DE-523 |a DE-863 |a DE-1050 |a DE-20 |a DE-862 |a DE-92 |a DE-824 |a DE-703 |a DE-706 |a DE-739 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Markfelder, Simon |e Verfasser |4 aut | |
245 | 1 | 0 | |a Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations |c by Simon Markfelder |
250 | |a 1st ed. 2021 | ||
264 | 1 | |a Cham |b Springer International Publishing |c 2021 | |
264 | 1 | |a Cham |b Springer | |
300 | |a 1 Online-Ressource (X, 242 p. 17 illus., 9 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Mathematics |v 2294 |x 1617-9692 | |
650 | 4 | |a Analysis | |
650 | 4 | |a Classical and Continuum Physics | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Mathematical analysis | |
650 | 4 | |a Analysis (Mathematics) | |
650 | 4 | |a Continuum physics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Manifolds (Mathematics) | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-030-83784-6 |w (DE-604)BV047585788 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-030-83786-0 |w (DE-604)BV047585788 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-030-83785-3 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-LNM | ||
940 | 1 | |q ZDB-2-SMA_2021 | |
940 | 1 | |q ZDB-2-LNM_2021 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032965830 | ||
966 | e | |u https://doi.org/10.1007/978-3-030-83785-3 |l BTU01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-83785-3 |l FAB01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-83785-3 |l FHD01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-83785-3 |l FHN01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-83785-3 |l FHR01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-83785-3 |l FRO01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-83785-3 |l FWS01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-83785-3 |l FWS02 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-83785-3 |l HTW01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-83785-3 |l TUM01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-83785-3 |l UBM01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-83785-3 |l UBT01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-83785-3 |l UBW01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-83785-3 |l UBY01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-83785-3 |l UEI01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-83785-3 |l UPA01 |p ZDB-2-LNM |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 929652 |
---|---|
_version_ | 1806194921124659200 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Markfelder, Simon |
author_facet | Markfelder, Simon |
author_role | aut |
author_sort | Markfelder, Simon |
author_variant | s m sm |
building | Verbundindex |
bvnumber | BV047580443 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-LNM |
ctrlnum | (ZDB-2-SMA)9783030837853 (ZDB-2-LNM)9783030837853 (OCoLC)1286873055 (DE-599)BVBBV047580443 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1007/978-3-030-83785-3 |
edition | 1st ed. 2021 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03483nmm a2200709zcb4500</leader><controlfield tag="001">BV047580443</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211115 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">211110s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030837853</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-030-83785-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-030-83785-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783030837853</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-LNM)9783030837853</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1286873055</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047580443</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Markfelder, Simon</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations</subfield><subfield code="c">by Simon Markfelder</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2021</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 242 p. 17 illus., 9 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Mathematics</subfield><subfield code="v">2294</subfield><subfield code="x">1617-9692</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classical and Continuum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-83784-6</subfield><subfield code="w">(DE-604)BV047585788</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-83786-0</subfield><subfield code="w">(DE-604)BV047585788</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-030-83785-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-LNM</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2021</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-LNM_2021</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032965830</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-83785-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-83785-3</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-83785-3</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-83785-3</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-83785-3</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-83785-3</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-83785-3</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-83785-3</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-83785-3</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-83785-3</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-83785-3</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-83785-3</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-83785-3</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-83785-3</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-83785-3</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-83785-3</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047580443 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:33:13Z |
indexdate | 2024-08-01T16:15:06Z |
institution | BVB |
isbn | 9783030837853 |
issn | 1617-9692 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032965830 |
oclc_num | 1286873055 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1043 DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-1050 DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-703 DE-706 DE-739 DE-634 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1043 DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-1050 DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-703 DE-706 DE-739 DE-634 |
physical | 1 Online-Ressource (X, 242 p. 17 illus., 9 illus. in color) |
psigel | ZDB-2-SMA ZDB-2-LNM ZDB-2-SMA_2021 ZDB-2-LNM_2021 |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Springer International Publishing Springer |
record_format | marc |
series2 | Lecture Notes in Mathematics |
spellingShingle | Markfelder, Simon Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations Analysis Classical and Continuum Physics Global Analysis and Analysis on Manifolds Mathematical analysis Analysis (Mathematics) Continuum physics Global analysis (Mathematics) Manifolds (Mathematics) |
title | Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations |
title_auth | Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations |
title_exact_search | Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations |
title_exact_search_txtP | Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations |
title_full | Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations by Simon Markfelder |
title_fullStr | Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations by Simon Markfelder |
title_full_unstemmed | Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations by Simon Markfelder |
title_short | Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations |
title_sort | convex integration applied to the multi dimensional compressible euler equations |
topic | Analysis Classical and Continuum Physics Global Analysis and Analysis on Manifolds Mathematical analysis Analysis (Mathematics) Continuum physics Global analysis (Mathematics) Manifolds (Mathematics) |
topic_facet | Analysis Classical and Continuum Physics Global Analysis and Analysis on Manifolds Mathematical analysis Analysis (Mathematics) Continuum physics Global analysis (Mathematics) Manifolds (Mathematics) |
url | https://doi.org/10.1007/978-3-030-83785-3 |
work_keys_str_mv | AT markfeldersimon convexintegrationappliedtothemultidimensionalcompressibleeulerequations |