Attractors of Hamiltonian nonlinear partial differential equations:
This monograph is the first to present the theory of global attractors of Hamiltonian partial differential equations. A particular focus is placed on the results obtained in the last three decades, with chapters on the global attraction to stationary states, to solitons, and to stationary orbits. Th...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2022
|
Schriftenreihe: | Cambridge Tracts in Mathematics
224 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This monograph is the first to present the theory of global attractors of Hamiltonian partial differential equations. A particular focus is placed on the results obtained in the last three decades, with chapters on the global attraction to stationary states, to solitons, and to stationary orbits. The text includes many physically relevant examples and will be of interest to graduate students and researchers in both mathematics and physics. The proofs involve novel applications of methods of harmonic analysis, including Tauberian theorems, Titchmarsh's convolution theorem, and the theory of quasimeasures. As well as the underlying theory, the authors discuss the results of numerical simulations and formulate open problems to prompt further research |
Beschreibung: | Title from publisher's bibliographic system (viewed on 21 Sep 2021) |
Beschreibung: | 1 Online-Ressource (x, 218 Seiten) |
ISBN: | 9781009025454 |
DOI: | 10.1017/9781009025454 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047568872 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 211102s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781009025454 |c Online |9 978-1-00-902545-4 | ||
024 | 7 | |a 10.1017/9781009025454 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009025454 | ||
035 | |a (OCoLC)1284786883 | ||
035 | |a (DE-599)BVBBV047568872 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 530.1201/51539 | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
100 | 1 | |a Komeč, Aleksandr I. |d 1946- |0 (DE-588)120962063 |4 aut | |
245 | 1 | 0 | |a Attractors of Hamiltonian nonlinear partial differential equations |c Alexander Komech, Elena Kopylova |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (x, 218 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge Tracts in Mathematics | |
490 | 0 | |a 224 | |
500 | |a Title from publisher's bibliographic system (viewed on 21 Sep 2021) | ||
520 | |a This monograph is the first to present the theory of global attractors of Hamiltonian partial differential equations. A particular focus is placed on the results obtained in the last three decades, with chapters on the global attraction to stationary states, to solitons, and to stationary orbits. The text includes many physically relevant examples and will be of interest to graduate students and researchers in both mathematics and physics. The proofs involve novel applications of methods of harmonic analysis, including Tauberian theorems, Titchmarsh's convolution theorem, and the theory of quasimeasures. As well as the underlying theory, the authors discuss the results of numerical simulations and formulate open problems to prompt further research | ||
650 | 4 | |a Hamilton-Jacobi equations | |
650 | 4 | |a Hamiltonian operator | |
700 | 1 | |a Kopylova, Elena |d 1960- |0 (DE-588)1026237890 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-31-651691-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009025454 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032954537 | ||
966 | e | |u https://doi.org/10.1017/9781009025454 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009025454 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182913747517440 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Komeč, Aleksandr I. 1946- Kopylova, Elena 1960- |
author_GND | (DE-588)120962063 (DE-588)1026237890 |
author_facet | Komeč, Aleksandr I. 1946- Kopylova, Elena 1960- |
author_role | aut aut |
author_sort | Komeč, Aleksandr I. 1946- |
author_variant | a i k ai aik e k ek |
building | Verbundindex |
bvnumber | BV047568872 |
classification_rvk | SK 540 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009025454 (OCoLC)1284786883 (DE-599)BVBBV047568872 |
dewey-full | 530.1201/51539 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1201/51539 |
dewey-search | 530.1201/51539 |
dewey-sort | 3530.1201 551539 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
doi_str_mv | 10.1017/9781009025454 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02469nmm a2200445zc 4500</leader><controlfield tag="001">BV047568872</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">211102s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009025454</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-00-902545-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009025454</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009025454</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1284786883</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047568872</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1201/51539</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Komeč, Aleksandr I.</subfield><subfield code="d">1946-</subfield><subfield code="0">(DE-588)120962063</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Attractors of Hamiltonian nonlinear partial differential equations</subfield><subfield code="c">Alexander Komech, Elena Kopylova</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 218 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge Tracts in Mathematics</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">224</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 21 Sep 2021)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph is the first to present the theory of global attractors of Hamiltonian partial differential equations. A particular focus is placed on the results obtained in the last three decades, with chapters on the global attraction to stationary states, to solitons, and to stationary orbits. The text includes many physically relevant examples and will be of interest to graduate students and researchers in both mathematics and physics. The proofs involve novel applications of methods of harmonic analysis, including Tauberian theorems, Titchmarsh's convolution theorem, and the theory of quasimeasures. As well as the underlying theory, the authors discuss the results of numerical simulations and formulate open problems to prompt further research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hamilton-Jacobi equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hamiltonian operator</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kopylova, Elena</subfield><subfield code="d">1960-</subfield><subfield code="0">(DE-588)1026237890</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-31-651691-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009025454</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032954537</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009025454</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009025454</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047568872 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:29:41Z |
indexdate | 2024-07-10T09:15:06Z |
institution | BVB |
isbn | 9781009025454 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032954537 |
oclc_num | 1284786883 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 Online-Ressource (x, 218 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2022 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge Tracts in Mathematics 224 |
spelling | Komeč, Aleksandr I. 1946- (DE-588)120962063 aut Attractors of Hamiltonian nonlinear partial differential equations Alexander Komech, Elena Kopylova Cambridge Cambridge University Press 2022 1 Online-Ressource (x, 218 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge Tracts in Mathematics 224 Title from publisher's bibliographic system (viewed on 21 Sep 2021) This monograph is the first to present the theory of global attractors of Hamiltonian partial differential equations. A particular focus is placed on the results obtained in the last three decades, with chapters on the global attraction to stationary states, to solitons, and to stationary orbits. The text includes many physically relevant examples and will be of interest to graduate students and researchers in both mathematics and physics. The proofs involve novel applications of methods of harmonic analysis, including Tauberian theorems, Titchmarsh's convolution theorem, and the theory of quasimeasures. As well as the underlying theory, the authors discuss the results of numerical simulations and formulate open problems to prompt further research Hamilton-Jacobi equations Hamiltonian operator Kopylova, Elena 1960- (DE-588)1026237890 aut Erscheint auch als Druck-Ausgabe 978-1-31-651691-1 https://doi.org/10.1017/9781009025454 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Komeč, Aleksandr I. 1946- Kopylova, Elena 1960- Attractors of Hamiltonian nonlinear partial differential equations Hamilton-Jacobi equations Hamiltonian operator |
title | Attractors of Hamiltonian nonlinear partial differential equations |
title_auth | Attractors of Hamiltonian nonlinear partial differential equations |
title_exact_search | Attractors of Hamiltonian nonlinear partial differential equations |
title_exact_search_txtP | Attractors of Hamiltonian nonlinear partial differential equations |
title_full | Attractors of Hamiltonian nonlinear partial differential equations Alexander Komech, Elena Kopylova |
title_fullStr | Attractors of Hamiltonian nonlinear partial differential equations Alexander Komech, Elena Kopylova |
title_full_unstemmed | Attractors of Hamiltonian nonlinear partial differential equations Alexander Komech, Elena Kopylova |
title_short | Attractors of Hamiltonian nonlinear partial differential equations |
title_sort | attractors of hamiltonian nonlinear partial differential equations |
topic | Hamilton-Jacobi equations Hamiltonian operator |
topic_facet | Hamilton-Jacobi equations Hamiltonian operator |
url | https://doi.org/10.1017/9781009025454 |
work_keys_str_mv | AT komecaleksandri attractorsofhamiltoniannonlinearpartialdifferentialequations AT kopylovaelena attractorsofhamiltoniannonlinearpartialdifferentialequations |