Factorization algebras in quantum field theory, Volume 2:
Factorization algebras are local-to-global objects that play a role in classical and quantum field theory that is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2021
|
Schriftenreihe: | New mathematical monographs
41 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Factorization algebras are local-to-global objects that play a role in classical and quantum field theory that is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this second volume, the authors show how factorization algebras arise from interacting field theories, both classical and quantum, and how they encode essential information such as operator product expansions, Noether currents, and anomalies. Along with a systematic reworking of the Batalin-Vilkovisky formalism via derived geometry and factorization algebras, this book offers concrete examples from physics, ranging from angular momentum and Virasoro symmetries to a five-dimensional gauge theory |
Beschreibung: | Title from publisher's bibliographic system (viewed on 14 Sep 2021) From Gaussian measures to factorization algebras -- Prefactorization algebras and basic examples -- Free field theories -- Holomorphic field theories and vertex algebras -- Factorization algebras: definitions and constructions -- Formal aspects of factorization algebras -- Factorization algebras: examples |
Beschreibung: | 1 Online-Ressource (xiii, 402 Seiten) |
ISBN: | 9781316678664 |
DOI: | 10.1017/9781316678664 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047568623 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 211102s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781316678664 |c Online |9 978-1-316-67866-4 | ||
024 | 7 | |a 10.1017/9781316678664 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316678664 | ||
035 | |a (OCoLC)1284794279 | ||
035 | |a (DE-599)BVBBV047568623 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 530.14/30151272 | |
084 | |a UO 4000 |0 (DE-625)146237: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Costello, Kevin |d 1977- |0 (DE-588)1020383682 |4 aut | |
245 | 1 | 0 | |a Factorization algebras in quantum field theory, Volume 2 |c Kevin Costello, Owen Gwilliam |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2021 | |
300 | |a 1 Online-Ressource (xiii, 402 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a New mathematical monographs | |
490 | 0 | |a 41 | |
500 | |a Title from publisher's bibliographic system (viewed on 14 Sep 2021) | ||
500 | |a From Gaussian measures to factorization algebras -- Prefactorization algebras and basic examples -- Free field theories -- Holomorphic field theories and vertex algebras -- Factorization algebras: definitions and constructions -- Formal aspects of factorization algebras -- Factorization algebras: examples | ||
520 | |a Factorization algebras are local-to-global objects that play a role in classical and quantum field theory that is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this second volume, the authors show how factorization algebras arise from interacting field theories, both classical and quantum, and how they encode essential information such as operator product expansions, Noether currents, and anomalies. Along with a systematic reworking of the Batalin-Vilkovisky formalism via derived geometry and factorization algebras, this book offers concrete examples from physics, ranging from angular momentum and Virasoro symmetries to a five-dimensional gauge theory | ||
650 | 4 | |a Quantum field theory / Mathematics | |
650 | 4 | |a Noncommutative algebras | |
650 | 4 | |a Geometric quantization | |
650 | 4 | |a Factors (Algebra) | |
650 | 4 | |a Factorization (Mathematics) | |
700 | 1 | |a Gwilliam, Owen |0 (DE-588)1127755161 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-16315-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781316678664 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032954291 | ||
966 | e | |u https://doi.org/10.1017/9781316678664 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316678664 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182913345912832 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Costello, Kevin 1977- Gwilliam, Owen |
author_GND | (DE-588)1020383682 (DE-588)1127755161 |
author_facet | Costello, Kevin 1977- Gwilliam, Owen |
author_role | aut aut |
author_sort | Costello, Kevin 1977- |
author_variant | k c kc o g og |
building | Verbundindex |
bvnumber | BV047568623 |
classification_rvk | UO 4000 SK 950 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316678664 (OCoLC)1284794279 (DE-599)BVBBV047568623 |
dewey-full | 530.14/30151272 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.14/30151272 |
dewey-search | 530.14/30151272 |
dewey-sort | 3530.14 830151272 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
doi_str_mv | 10.1017/9781316678664 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03073nmm a2200505zc 4500</leader><controlfield tag="001">BV047568623</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">211102s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316678664</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-67866-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781316678664</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316678664</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1284794279</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047568623</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.14/30151272</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Costello, Kevin</subfield><subfield code="d">1977-</subfield><subfield code="0">(DE-588)1020383682</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Factorization algebras in quantum field theory, Volume 2</subfield><subfield code="c">Kevin Costello, Owen Gwilliam</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 402 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">New mathematical monographs</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">41</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 14 Sep 2021)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">From Gaussian measures to factorization algebras -- Prefactorization algebras and basic examples -- Free field theories -- Holomorphic field theories and vertex algebras -- Factorization algebras: definitions and constructions -- Formal aspects of factorization algebras -- Factorization algebras: examples</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Factorization algebras are local-to-global objects that play a role in classical and quantum field theory that is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this second volume, the authors show how factorization algebras arise from interacting field theories, both classical and quantum, and how they encode essential information such as operator product expansions, Noether currents, and anomalies. Along with a systematic reworking of the Batalin-Vilkovisky formalism via derived geometry and factorization algebras, this book offers concrete examples from physics, ranging from angular momentum and Virasoro symmetries to a five-dimensional gauge theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noncommutative algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric quantization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Factors (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Factorization (Mathematics)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gwilliam, Owen</subfield><subfield code="0">(DE-588)1127755161</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-16315-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781316678664</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032954291</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316678664</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316678664</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047568623 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:29:39Z |
indexdate | 2024-07-10T09:15:06Z |
institution | BVB |
isbn | 9781316678664 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032954291 |
oclc_num | 1284794279 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 Online-Ressource (xiii, 402 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Cambridge University Press |
record_format | marc |
series2 | New mathematical monographs 41 |
spelling | Costello, Kevin 1977- (DE-588)1020383682 aut Factorization algebras in quantum field theory, Volume 2 Kevin Costello, Owen Gwilliam Cambridge Cambridge University Press 2021 1 Online-Ressource (xiii, 402 Seiten) txt rdacontent c rdamedia cr rdacarrier New mathematical monographs 41 Title from publisher's bibliographic system (viewed on 14 Sep 2021) From Gaussian measures to factorization algebras -- Prefactorization algebras and basic examples -- Free field theories -- Holomorphic field theories and vertex algebras -- Factorization algebras: definitions and constructions -- Formal aspects of factorization algebras -- Factorization algebras: examples Factorization algebras are local-to-global objects that play a role in classical and quantum field theory that is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this second volume, the authors show how factorization algebras arise from interacting field theories, both classical and quantum, and how they encode essential information such as operator product expansions, Noether currents, and anomalies. Along with a systematic reworking of the Batalin-Vilkovisky formalism via derived geometry and factorization algebras, this book offers concrete examples from physics, ranging from angular momentum and Virasoro symmetries to a five-dimensional gauge theory Quantum field theory / Mathematics Noncommutative algebras Geometric quantization Factors (Algebra) Factorization (Mathematics) Gwilliam, Owen (DE-588)1127755161 aut Erscheint auch als Druck-Ausgabe 978-1-107-16315-7 https://doi.org/10.1017/9781316678664 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Costello, Kevin 1977- Gwilliam, Owen Factorization algebras in quantum field theory, Volume 2 Quantum field theory / Mathematics Noncommutative algebras Geometric quantization Factors (Algebra) Factorization (Mathematics) |
title | Factorization algebras in quantum field theory, Volume 2 |
title_auth | Factorization algebras in quantum field theory, Volume 2 |
title_exact_search | Factorization algebras in quantum field theory, Volume 2 |
title_exact_search_txtP | Factorization algebras in quantum field theory, Volume 2 |
title_full | Factorization algebras in quantum field theory, Volume 2 Kevin Costello, Owen Gwilliam |
title_fullStr | Factorization algebras in quantum field theory, Volume 2 Kevin Costello, Owen Gwilliam |
title_full_unstemmed | Factorization algebras in quantum field theory, Volume 2 Kevin Costello, Owen Gwilliam |
title_short | Factorization algebras in quantum field theory, Volume 2 |
title_sort | factorization algebras in quantum field theory volume 2 |
topic | Quantum field theory / Mathematics Noncommutative algebras Geometric quantization Factors (Algebra) Factorization (Mathematics) |
topic_facet | Quantum field theory / Mathematics Noncommutative algebras Geometric quantization Factors (Algebra) Factorization (Mathematics) |
url | https://doi.org/10.1017/9781316678664 |
work_keys_str_mv | AT costellokevin factorizationalgebrasinquantumfieldtheoryvolume2 AT gwilliamowen factorizationalgebrasinquantumfieldtheoryvolume2 |