Blockchain and Machine Learning for e-Healthcare Systems:
Blockchain and machine learning technologies can mitigate the issues such as slow access of medical data, system interoperability, patient agency, improved data quality and quantity for medical research. Blockchain technology facilitates to store information in such a way that doctors can see a pati...
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
<<The>> Institution of Engineering and Technology, IET
2020
|
Schriftenreihe: | Healthcare technologies series
29 |
Online-Zugang: | UBY01 UER01 Volltext |
Zusammenfassung: | Blockchain and machine learning technologies can mitigate the issues such as slow access of medical data, system interoperability, patient agency, improved data quality and quantity for medical research. Blockchain technology facilitates to store information in such a way that doctors can see a patient's entire medical history, but researchers see only statistical data instead of any personal information. The ultra-secure and immutable ledgers, strong, consensus mechanisms, decentralization and self-sovereign identity of blockchain technologies have tremendous potential to rebalance and improve machine learning algorithms. In healthcare, blockchain is used to store correct information that is unaltered and permanent, and machine learning can make use of this data to notice patterns and give accurate predictions. This provides more support for the patients and also in research-related fields where there is a need for accurate data to predict credible results. The book explores the concepts and techniques of blockchain and machine learning. Also, the possibility of applying blockchain and machine learning for the enhancement of e-healthcare system is discussed. The specific highlight of the book is on the application of blockchain technology in any area of supply chain, drug verification, reimbursement, control access and clinical trials of healthcare |
Beschreibung: | 1 Online-Ressource (481 Seiten) |
ISBN: | 9781839531156 |
DOI: | 10.1049/PBHE029E |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV047561009 | ||
003 | DE-604 | ||
005 | 20220218 | ||
007 | cr|uuu---uuuuu | ||
008 | 211027s2020 xxk|||| o||u| ||||||eng d | ||
020 | |a 9781839531156 |9 978-1-83953-115-6 | ||
024 | 7 | |a 10.1049/PBHE029E |2 doi | |
035 | |a (ZDB-100-IET)9781839531156 | ||
035 | |a (OCoLC)1284789580 | ||
035 | |a (DE-599)BVBBV047561009 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxk |c XA-GB | ||
049 | |a DE-706 |a DE-29 | ||
245 | 1 | 0 | |a Blockchain and Machine Learning for e-Healthcare Systems |c edited by Balamurugan Balusamy, Naveen Chilamkurti, Lucia Agnes Beena T, Poongodi T |
264 | 1 | |a London |b <<The>> Institution of Engineering and Technology, IET |c 2020 | |
300 | |a 1 Online-Ressource (481 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Healthcare technologies series |v 29 | |
520 | 3 | |a Blockchain and machine learning technologies can mitigate the issues such as slow access of medical data, system interoperability, patient agency, improved data quality and quantity for medical research. Blockchain technology facilitates to store information in such a way that doctors can see a patient's entire medical history, but researchers see only statistical data instead of any personal information. The ultra-secure and immutable ledgers, strong, consensus mechanisms, decentralization and self-sovereign identity of blockchain technologies have tremendous potential to rebalance and improve machine learning algorithms. In healthcare, blockchain is used to store correct information that is unaltered and permanent, and machine learning can make use of this data to notice patterns and give accurate predictions. This provides more support for the patients and also in research-related fields where there is a need for accurate data to predict credible results. The book explores the concepts and techniques of blockchain and machine learning. Also, the possibility of applying blockchain and machine learning for the enhancement of e-healthcare system is discussed. The specific highlight of the book is on the application of blockchain technology in any area of supply chain, drug verification, reimbursement, control access and clinical trials of healthcare | |
700 | 1 | |a Balusamy, Balamurugan |0 (DE-588)123627511X |4 edt | |
700 | 1 | |a Chilamkurti, Naveen |d 1974- |0 (DE-588)112606114X |4 edt | |
700 | 1 | |a Beena, Lucia Agnes T. |4 edt | |
700 | 1 | |a Poongodi, T. |0 (DE-588)1230498648 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-83953-114-9 |
830 | 0 | |a Healthcare technologies series |v 29 |w (DE-604)BV047152860 |9 29 | |
856 | 4 | 0 | |u https://doi.org/10.1049/PBHE029E |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-100-IET | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032936442 | ||
966 | e | |u https://doi.org/10.1049/PBHE029E |l UBY01 |p ZDB-100-IET |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1049/PBHE029E |l UER01 |p ZDB-100-IET |q UER_Paketkauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182887924236288 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Balusamy, Balamurugan Chilamkurti, Naveen 1974- Beena, Lucia Agnes T. Poongodi, T. |
author2_role | edt edt edt edt |
author2_variant | b b bb n c nc l a t b lat latb t p tp |
author_GND | (DE-588)123627511X (DE-588)112606114X (DE-588)1230498648 |
author_facet | Balusamy, Balamurugan Chilamkurti, Naveen 1974- Beena, Lucia Agnes T. Poongodi, T. |
building | Verbundindex |
bvnumber | BV047561009 |
collection | ZDB-100-IET |
ctrlnum | (ZDB-100-IET)9781839531156 (OCoLC)1284789580 (DE-599)BVBBV047561009 |
doi_str_mv | 10.1049/PBHE029E |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03053nmm a2200421 cb4500</leader><controlfield tag="001">BV047561009</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220218 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">211027s2020 xxk|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781839531156</subfield><subfield code="9">978-1-83953-115-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/PBHE029E</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-100-IET)9781839531156</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1284789580</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047561009</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Blockchain and Machine Learning for e-Healthcare Systems</subfield><subfield code="c">edited by Balamurugan Balusamy, Naveen Chilamkurti, Lucia Agnes Beena T, Poongodi T</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b"><<The>> Institution of Engineering and Technology, IET</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (481 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Healthcare technologies series</subfield><subfield code="v">29</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Blockchain and machine learning technologies can mitigate the issues such as slow access of medical data, system interoperability, patient agency, improved data quality and quantity for medical research. Blockchain technology facilitates to store information in such a way that doctors can see a patient's entire medical history, but researchers see only statistical data instead of any personal information. The ultra-secure and immutable ledgers, strong, consensus mechanisms, decentralization and self-sovereign identity of blockchain technologies have tremendous potential to rebalance and improve machine learning algorithms. In healthcare, blockchain is used to store correct information that is unaltered and permanent, and machine learning can make use of this data to notice patterns and give accurate predictions. This provides more support for the patients and also in research-related fields where there is a need for accurate data to predict credible results. The book explores the concepts and techniques of blockchain and machine learning. Also, the possibility of applying blockchain and machine learning for the enhancement of e-healthcare system is discussed. The specific highlight of the book is on the application of blockchain technology in any area of supply chain, drug verification, reimbursement, control access and clinical trials of healthcare</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balusamy, Balamurugan</subfield><subfield code="0">(DE-588)123627511X</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chilamkurti, Naveen</subfield><subfield code="d">1974-</subfield><subfield code="0">(DE-588)112606114X</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beena, Lucia Agnes T.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Poongodi, T.</subfield><subfield code="0">(DE-588)1230498648</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-83953-114-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Healthcare technologies series</subfield><subfield code="v">29</subfield><subfield code="w">(DE-604)BV047152860</subfield><subfield code="9">29</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/PBHE029E</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-100-IET</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032936442</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1049/PBHE029E</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-100-IET</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1049/PBHE029E</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-100-IET</subfield><subfield code="q">UER_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047561009 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:27:28Z |
indexdate | 2024-07-10T09:14:42Z |
institution | BVB |
isbn | 9781839531156 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032936442 |
oclc_num | 1284789580 |
open_access_boolean | |
owner | DE-706 DE-29 |
owner_facet | DE-706 DE-29 |
physical | 1 Online-Ressource (481 Seiten) |
psigel | ZDB-100-IET ZDB-100-IET UER_Paketkauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | <<The>> Institution of Engineering and Technology, IET |
record_format | marc |
series | Healthcare technologies series |
series2 | Healthcare technologies series |
spelling | Blockchain and Machine Learning for e-Healthcare Systems edited by Balamurugan Balusamy, Naveen Chilamkurti, Lucia Agnes Beena T, Poongodi T London <<The>> Institution of Engineering and Technology, IET 2020 1 Online-Ressource (481 Seiten) txt rdacontent c rdamedia cr rdacarrier Healthcare technologies series 29 Blockchain and machine learning technologies can mitigate the issues such as slow access of medical data, system interoperability, patient agency, improved data quality and quantity for medical research. Blockchain technology facilitates to store information in such a way that doctors can see a patient's entire medical history, but researchers see only statistical data instead of any personal information. The ultra-secure and immutable ledgers, strong, consensus mechanisms, decentralization and self-sovereign identity of blockchain technologies have tremendous potential to rebalance and improve machine learning algorithms. In healthcare, blockchain is used to store correct information that is unaltered and permanent, and machine learning can make use of this data to notice patterns and give accurate predictions. This provides more support for the patients and also in research-related fields where there is a need for accurate data to predict credible results. The book explores the concepts and techniques of blockchain and machine learning. Also, the possibility of applying blockchain and machine learning for the enhancement of e-healthcare system is discussed. The specific highlight of the book is on the application of blockchain technology in any area of supply chain, drug verification, reimbursement, control access and clinical trials of healthcare Balusamy, Balamurugan (DE-588)123627511X edt Chilamkurti, Naveen 1974- (DE-588)112606114X edt Beena, Lucia Agnes T. edt Poongodi, T. (DE-588)1230498648 edt Erscheint auch als Druck-Ausgabe 978-1-83953-114-9 Healthcare technologies series 29 (DE-604)BV047152860 29 https://doi.org/10.1049/PBHE029E Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Blockchain and Machine Learning for e-Healthcare Systems Healthcare technologies series |
title | Blockchain and Machine Learning for e-Healthcare Systems |
title_auth | Blockchain and Machine Learning for e-Healthcare Systems |
title_exact_search | Blockchain and Machine Learning for e-Healthcare Systems |
title_exact_search_txtP | Blockchain and Machine Learning for e-Healthcare Systems |
title_full | Blockchain and Machine Learning for e-Healthcare Systems edited by Balamurugan Balusamy, Naveen Chilamkurti, Lucia Agnes Beena T, Poongodi T |
title_fullStr | Blockchain and Machine Learning for e-Healthcare Systems edited by Balamurugan Balusamy, Naveen Chilamkurti, Lucia Agnes Beena T, Poongodi T |
title_full_unstemmed | Blockchain and Machine Learning for e-Healthcare Systems edited by Balamurugan Balusamy, Naveen Chilamkurti, Lucia Agnes Beena T, Poongodi T |
title_short | Blockchain and Machine Learning for e-Healthcare Systems |
title_sort | blockchain and machine learning for e healthcare systems |
url | https://doi.org/10.1049/PBHE029E |
volume_link | (DE-604)BV047152860 |
work_keys_str_mv | AT balusamybalamurugan blockchainandmachinelearningforehealthcaresystems AT chilamkurtinaveen blockchainandmachinelearningforehealthcaresystems AT beenaluciaagnest blockchainandmachinelearningforehealthcaresystems AT poongodit blockchainandmachinelearningforehealthcaresystems |