Perovskite solar cells: materials, processes, and devices
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2022]
|
Schlagworte: | |
Online-Zugang: | Kurzbeschreibung Inhaltsverzeichnis |
Beschreibung: | xvi, 559 Seiten Illustrationen, Diagramme 24.4 cm x 17 cm |
ISBN: | 3527347151 9783527347155 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047560638 | ||
003 | DE-604 | ||
005 | 20221012 | ||
007 | t | ||
008 | 211026s2022 gw a||| |||| 00||| eng d | ||
015 | |a 21,N33 |2 dnb | ||
016 | 7 | |a 1238911889 |2 DE-101 | |
020 | |a 3527347151 |9 3-527-34715-1 | ||
020 | |a 9783527347155 |c hbk. |9 978-3-527-34715-5 | ||
024 | 3 | |a 9783527347155 | |
035 | |a (OCoLC)1289778866 | ||
035 | |a (DE-599)DNB1238911889 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-29T |a DE-20 |a DE-11 |a DE-83 |a DE-523 |a DE-634 |a DE-19 |a DE-703 | ||
084 | |a VN 6050 |0 (DE-625)147593:253 |2 rvk | ||
084 | |a ZM 6000 |0 (DE-625)157068: |2 rvk | ||
084 | |a ZP 3730 |0 (DE-625)157971: |2 rvk | ||
084 | |a ZN 5160 |0 (DE-625)157437: |2 rvk | ||
084 | |a ZP 3730 |0 (DE-625)157971: |2 rvk | ||
245 | 1 | 0 | |a Perovskite solar cells |b materials, processes, and devices |c edited by Shahzada Ahmad, Samrana Kazim, and Michael Grätzel |
264 | 1 | |a Weinheim |b Wiley-VCH |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a xvi, 559 Seiten |b Illustrationen, Diagramme |c 24.4 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Fotovoltaik |0 (DE-588)4121476-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bauelement |0 (DE-588)4004741-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Solarzelle |0 (DE-588)4181740-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Perowskit |0 (DE-588)4173836-6 |2 gnd |9 rswk-swf |
653 | |a Components & Devices | ||
653 | |a EE60: Komponenten u. Bauelemente | ||
653 | |a EG34: Solarenergie u. Photovoltaik | ||
653 | |a Electrical & Electronics Engineering | ||
653 | |a Elektrotechnik u. Elektronik | ||
653 | |a Energie | ||
653 | |a Energy | ||
653 | |a Komponenten u. Bauelemente | ||
653 | |a MSL0: Materialien f. Energiesysteme | ||
653 | |a Materialien f. Energiesysteme | ||
653 | |a Materials Science | ||
653 | |a Materials for Energy Systems | ||
653 | |a Materialwissenschaften | ||
653 | |a Solar Energy & Photovoltaics | ||
653 | |a Solarenergie u. Photovoltaik | ||
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Fotovoltaik |0 (DE-588)4121476-6 |D s |
689 | 0 | 1 | |a Perowskit |0 (DE-588)4173836-6 |D s |
689 | 0 | 2 | |a Bauelement |0 (DE-588)4004741-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Solarzelle |0 (DE-588)4181740-0 |D s |
689 | 1 | 1 | |a Perowskit |0 (DE-588)4173836-6 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Fotovoltaik |0 (DE-588)4121476-6 |D s |
689 | 2 | 1 | |a Perowskit |0 (DE-588)4173836-6 |D s |
689 | 2 | 2 | |a Bauelement |0 (DE-588)4004741-6 |D s |
689 | 2 | 3 | |a Solarzelle |0 (DE-588)4181740-0 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Ahmad, Shahzada |0 (DE-588)1247003507 |4 edt | |
700 | 1 | |a Kazim, Samrana |0 (DE-588)1247004406 |4 edt | |
700 | 1 | |a Grätzel, Michael |d 1944- |0 (DE-588)172106435 |4 edt | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-82578-3 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-82580-6 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-527-82579-0 |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34715-5/ |3 Kurzbeschreibung |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032936081&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032936081 |
Datensatz im Suchindex
_version_ | 1804182887385268225 |
---|---|
adam_text | CONTENTS
FOREWORD
XV
1
CHEMICAL
PROCESSING
OF
MIXED-CATION
HYBRID
PEROVSKITES:
STABILIZING
EFFECTS
OF
CONFIGURATIONAL
ENTROPY
1
FERAY
UNLU,
EUNHWAN
JUNG,
SENOL
OZ,
HEECHAE
CHOI,
THOMAS
FISCHER,
AND
SANJAY
MATHUR
1.1
INTRODUCTION
1
1.1.1
STABILITY
ISSUES
OF
ORGANIC-INORGANIC
HYBRID
PEROVSKITES
2
1.2
CRYSTAL
STRUCTURE
OF
PEROVSKITES
4
1.2.1
GOLDSCHMIDT
TOLERANCE
FACTOR
FOR
3D
STRUCTURE
5
1.2.2
OCTAHEDRAL
FACTOR
5
1.2.3
ROLE
OF
A-SITE
CATION
7
1.2.4
THEORETICAL
CALCULATIONS:
MOLECULAR
DYNAMICS
OF
A-SITE
CATION
8
1.2.5
ENTROPY
OF
MIXING:
CONFIGURATIONAL
EFFECTS
IN
MIXED-CATION
PEROVSKITES
11
1.3
MULTIPLE
A-SITE
CATION
PEROVSKITES
12
1.3.1
FA
+
/MA
+
ALLOYING
FOR
HIGHER
PHASE
STABILITY
AND
PHOTOVOLTAIC
EFFICIENCY
12
1.3.2
CESIUM
INCLUSION
FOR
THERMAL
STABILITY
13
1.3.3
RB
+
SMALL-CATION
INFLUENCE
ON
PEROVSKITE
STRUCTURE
FOR
THERMAL
STABILITY
15
1.3.4
GUANIDINIUM
LARGE-CATION
INFLUENCE
ON
PEROVSKITE
STRUCTURE
FOR
STABILITY
16
1.3.5
TRIPLE
AND
QUADRUPLE-CATION
HYBRID
PEROVSKITES
FOR
STABILITY
AND
OPTIMUM
PERFORMANCE
17
1.3.6
LARGER
ORGANIC
CATIONS:
REDUCING
DIMENSIONALITY
FOR
IMPROVED
THERMAL
STABILITY
20
1.4
CONCLUSION
AND
PERSPECTIVES
22
ACKNOWLEDGMENTS
24
REFERENCES
24
VI
CONTENTS
2
FLASH
INFRARED
ANNEALING
FOR
PROCESSING
OF
PEROVSKITE
SOLAR
CELLS
33
SANDY
SANCHEZ
AND
ANDERS
HAGFELDT
2.1
INTRODUCTION
33
2.2
PEROVSKITE
CRYSTAL
NUCLEATION
AND
GROWTH
FROM
SOLUTION
34
2.2.1
THE
ANTISOLVENT
DRIPPING
METHOD
34
2.2.2
THERMODYNAMICS
OF
NUCLEATION
AND
CRYSTAL
GROWTH
34
2.2.3
KINETIC
PROCESS
FOR
RAPID
THERMAL
GROWTH
36
2.3
RAPID
THERMAL
ANNEALING
37
2.3.1
THE
FIRA
METHOD
37
2.3.2
FIRA
AND
ANTISOLVENT
39
2.3.3
PEROVSKITE
FILM
CRYSTALLIZATION
FOR
A
SINGLE
IR
PULSE
40
2.3.4
PEROVSKITE
CRYSTALLIZATION
WITH
PULSE
DURATION
42
2.3.5
PULSED
FIRA
METHOD
FOR
INORGANIC
PEROVSKITE
COMPOSITION
45
2.3.6
WARMED-PULSED
FIRA
METHOD
46
2.3.7
CRYSTALLIZATION
BEHAVIOR
OF
MIXED
PEROVSKITE
SOLUTIONS
47
2.4
STRUCTURAL
ANALYSIS
OF
FIRA-ANNEALED
PEROVSKITE
FILMS
WITH
VARIABLE
PULSE
TIME
50
2.4.1
PLANAR
AND
MESOPOROUS
SUBSTRATES
50
2.4.2
CRYSTAL
STRUCTURE
ANALYSIS
51
2.4.3
STRUCTURE
OF
THE
INTERMEDIATE
PHASES
53
2.4.4
INTERNAL
CRYSTAL
DOMAIN
STRUCTURE
56
2.5
A
COST-EFFECTIVE
AND
ENVIRONMENTALLY
FRIENDLY
METHOD
57
2.5.1
LIFE-CYCLE
ASSESSMENT
(LCA)
OF
THE
PEROVSKITE
FILM
SYNTHESIS
METHODS
57
2.5.2
RELATIVE
COST
AND
ENVIRONMENTAL
IMPACT
OF
THE
AS
AND
FIRA
METHODS
58
2.6
APPLICATION
FOR
MAPI
3
PEROVSKITE
SOLAR
CELLS
60
2.6.1
SINGLE
IR
PULSE
AND
MAPBI
3
PEROVSKITE
COMPOSITION
60
2.6.2
LARGE-AREA
DEVICES
60
2.7
PLANAR
DEVICES
ARCHITECTURE
AND
MIXED
PEROVSKITE
COMPOSITION
64
2.7.1
THIN
FILM
ANALYSIS
64
2.7.2
PV
PERFORMANCE
AND
ELECTRONIC
CHARACTERISTIC
OF
THE
DEVICES
64
2.8
PULSED
FIRA
FOR
INORGANIC
PEROVSKITE
SOLAR
CELLS
67
2.8.1
THIN
FILM
ANALYSIS
67
2.8.2
PV
PERFORMANCE
68
2.9
RAPID
MANUFACTURING
OF
PSCS
WITH
AN
ADAPTED
PEROVSKITE
CHEMICAL
COMPOSITION
71
2.9.1
RAPID
ANNEALED
TIO
2
MESOSCOPIC
FILM
71
2.9.2
FCG
PEROVSKITE
STABILIZED
WITH
TBAI
72
2.9.3
PV
PERFORMANCE
OF
THE
MANUFACTURED
PSCS
73
2.10
OUTLOOK
AND
TECHNICAL
DETAILS
75
2.10.1
OPTIMIZATION
OF
FIRA
PROCESS
FOR
TANDEM
SOLAR
CELLS
75
2.10.2
AUTOMATIC
ROLL-TO-ROLL
SYSTEM
FOR
THE
FIRA
MANUFACTURE
OF
PEROVSKITE
SOLAR
CELLS
77
CONTENTS
VII
2.10.3
2.10.4
2.11
2.11.1
2.11.2
2.11.3
2.11.4
2.11.5
2.11.6
2.11.7
2.11.8
ELECTRONIC
SETUP
78
LABVIEW
INTERFACE
78
EXPERIMENTAL
METHODS
80
MANUFACTURE
OF
PEROVSKITE
SOLAR
CELLS
80
PEROVSKITE
SOLUTION
PREPARATION
80
ANTISOLVENT
METHOD
81
FIRA
METHOD
81
HTM
DEPOSITION
AND
BACK
CONTACT
EVAPORATION
81
DEVICE
CHARACTERIZATION
82
MATERIAL
CHARACTERIZATION
82
TEMPERATURE
MEASUREMENT
83
LIST
OF
ABBREVIATIONS
83
ACKNOWLEDGMENTS
84
REFERENCES
84
3
PASSIVATION
OF
HYBRID/LNORGANIC
PEROVSKITE
SOLAR
CELLS
91
MUHAMMAD
AKMAL
KAMARUDIN
AND
SHUZI
HAYASE
3.1
3.1.1
3.1.1.1
3.1.1.2
3.1.2
3.1.2.1
3.1.2.2
3.1.2.3
3.1.2.4
3.1.2.5
3.1.2.6
3.1.2.7
3.1.2.8
3.1.2.9
3.1.2.10
3.2
INTRODUCTION
91
TYPES
OF
PASSIVATION
93
BULK
PASSIVATION
93
SURFACE
PASSIVATION
93
PASSIVATING
MATERIALS
95
METAL
HALIDES
95
ORGANIC
ACIDS
(
-COOH,
-
SOOH,
AND
-
POOH)
96
ORGANOSULFIIR
COMPOUND
98
AMINES
98
GRAPHENE
100
METAL
OXIDES
100
ORGANIC
HALIDES
102
QUANTUM
DOTS
104
POLYMERS
104
ZWITTERIONS
107
CONCLUSION
107
REFERENCES
108
4
TUNING
INTERFACIAL
EFFECTS
IN
HYBRID
PEROVSKITE
SOLAR
CELLS
113
RAFAEL
S.
SANCHEZ,
LIONEL
HIRSCH,
AND
DARIO
M.
BASSANI
4.1
4.1.1
STRATEGIES
FOR
INTERFACIAL
DEPOSITION
AND
ANALYSIS
113
TAILORING
THE
PS
PROPERTIES
AND
MICROSTRUCTURAL
INTERFACE
THROUGH
SOLVENT
ENGINEERING
114
4.1.2
TAILORING
THE
PS
PROPERTIES
AND
MICROSTRUCTURAL
INTERFACE
THROUGH
NON-SOLVENT
METHODS
117
4.2
4.2.1
DEFECT
FORMATION
IN
PS
FILMS
AND
INTERFACES
118
DEFECT
FORMATION
IN
THE
PS
BULK
AND
AT
THE
SURFACE
DURING
FILM
CRYSTALLIZATION
119
VIII
CONTENTS
4.2.2
DEFECT
FORMATION
AND
DYNAMICS
OF
PSC
UNDER
WORKING
CONDITIONS
122
4.3
PASSIVATION
STRATEGIES
OF
PS
126
4.4
MEASURING
AND
TUNING
THE
WORK
FUNCTION
AND
SURFACE
POTENTIAL
IN
PSC
130
4.5
TUNING
THE
WETTABILITY
AND
COMPATIBILITY
BETWEEN
LAYERS
138
4.6
EFFECT
ON
DEVICE
EFFICIENCY
AND
LIFETIME
142
4.6.1
MOISTURE
EFFECTS
ON
PS
FILMS
AND
PSC
142
4.6.2
PHOTOINDUCED
DEGRADATION
OF
PS
FILMS
AND
PSC
146
4.6.3
THERMAL
DEGRADATION
OF
PS
FILMS
AND
PSC
149
4.6.4
OTHER
SOURCES
OF
DEGRADATION
IN
PSC
150
4.7
CONCLUSIONS
AND
PROSPECTS
153
REFERENCES
154
5
ALL-INORGANIC
PEROVSKITE
SOLAR
CELLS
175
YAOWEN
LI
AND
YONGFANG
LI
5.1
INTRODUCTION
175
5.2
BASIC
KNOWLEDGE
OF
ALL-INORGANIC
PERO-SCS
176
5.2.1
CRYSTALLINE
STRUCTURE
176
5.2.2
STABILITY
177
5.2.2.1
THERMAL
STABILITY
177
5.2.2.2
PHASE
STABILITY
177
5.2.23
LIGHT
STABILITY
178
5.2.3
WORKING
PRINCIPLE
178
5.3
LEAD-BASED
INORGANIC
PERO-SCS
179
5.3.1
CSPBI
3
179
5.3.1.1
ADDITIVE
ENGINEERING
181
5.3.1.2
ORGANIC
COMPOUND
TREATMENT
181
5.3.1.3
CRYSTAL
SIZE
REDUCTION
AND
MORPHOLOGY
OPTIMIZATION
183
5.3.1.4
CURRENT
DENSITY
INCREASE
185
5.3.2
CSPBI
2
BR
185
5.3.2.1
FABRICATION
METHODS
185
53.2.2
IONIC
INCORPORATION
189
53.23
INTERFACE
ENGINEERING
191
5.3.3
CSPBIBR
2
193
5.3.3.1
CRYSTAL
GROWTH
194
53.3.2
IONIC
INCORPORATION
195
5333
INTERFACE
ENGINEERING
196
5.3.4
CSPBBR
3
196
5.3.4.1
FABRICATION
METHOD
197
53.4.2
IONIC
INCORPORATION
199
5.3.4.3
INTERFACE
ENGINEERING
199
5.4
TIN-BASED
INORGANIC
PERO-SCS
200
5.4.1
CSSNI
3
200
5.4.1.1
FABRICATION
METHODS
201
5.4.1.2
ADDITIVE
ENGINEERING
203
CONTENTS
IX
5.4.1.3
5.4.2
5.5
5.5.1
5.5.2
5.5.3
5.5.3.1
5.5.3.2
5.5.4
5.6
SUBSTRATE
CONTROL
203
CSSNI
X
BR
3
_X
204
OTHER
INORGANIC
PERO-SCS
204
GE-BASED
INORGANIC
PERO-SCS
205
SB-BASED
INORGANIC
PERO-SCS
205
BI-BASED
INORGANIC
PERO-SCS
206
A
3
B
2
I
9
STRUCTURE
206
OTHER
STRUCTURES
207
DOUBLE
B
SITE
CATION
PEROVSKITE
207
CONCLUSION
209
REFERENCES
210
6
TIN
HALIDE
PEROVSKITE
SOLAR
CELLS
223
THOMAS
STERGIOPOULOS
6.1
6.2
6.2.1
6.2.2
6.2.2.1
6.2.2.2
6.2.2.3
6.3
6.3.1
6.3.2
6.4
6.4.1
6.4.2
6.4.3
6.4.3.1
6.4.3.2
6.4.3.3
6.5
6.5.1
6.5.1.1
6.5.1.2
6.5.2
6.6
6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.8
INTRODUCTION
223
WHY
TIN
HALIDE
PEROVSKITES?
223
TIN
AS
THE
SOLE
VIABLE
ALTERNATIVE
223
FAVORABLE
OPTOELECTRONIC
PROPERTIES
OF
TIN
PEROVSKITES
224
LOW
BANDGAP
224
HIGH
CHARGE
CARRIER
MOBILITY
224
SIMILAR
PROPERTIES
WITH
LEAD
PEROVSKITES
225
CONCERNS
ABOUT
TIN-BASED
PEROVSKITES
225
SEVERE
NON-RADIATIVE
RECOMBINATION
225
POOR
STABILITY
226
CONTROL
OF
HOLE
DOPING
227
SN
2+
COMPENSATION/NECESSITY
OF
ADDING
SNF
2
227
ADDITIVES
TO
IMPROVE
SNF
2
DISPERSION
227
ELIMINATION
OF
SN
4+
IMPURITIES
229
SNL
2
PURIFICATION
229
REACTION
OF
SN
POWDER
WITH
SN
4+
RESIDUALS
229
ADDITION
OF
REDUCING
AGENTS
230
FILMS
DEPOSITION
231
CRYSTALLIZATION
TUNING
231
SOLVENT
ENGINEERING
231
ADDITIVES
TO
SLOW
DOWN
CRYSTALLIZATION
KINETICS
232
POSTTREATMENT
STRATEGIES/SURFACE
TRAP
PASSIVATION
233
CONTACTS/INTERFACE
ENGINEERING
234
ONGOING
CHALLENGES
235
EFFICIENCY
235
STABILITY
238
PERFORMANCE
OVER
THE
S-Q
LIMIT/TOWARD
MULTIJUNCTION
SOLAR
CELLS
238
SUSTAINABILITY
241
CONCLUSION
241
ACKNOWLEDGMENTS
242
REFERENCES
242
X
CONTENTS
7
LOW-TEMPERATURE
AND
FACILE
SOLUTION-PROCESSED
TWO-DIMENSIONAL
MATERIALS
AS
ELECTRON
TRANSPORT
LAYER
FOR
HIGHLY
EFFICIENT
PEROVSKITE
SOLAR
CELLS
247
SHAO
HUI,
NAJIB
H.
LADI,
HAN
PAN,
YAN
SHEN,
AND
MINGKUI
WANG
7.1
INTRODUCTION
247
7.2
CHARGE
TRANSPORT
IN
PEROVSKITE
SOLAR
CELLS
249
7.3
BRIEF
DEVELOPMENT
OF
PEROVSKITE
SOLAR
CELLS
251
7.4
FUNCTIONS
AND
REQUIREMENTS
OF
ELECTRON
TRANSPORT
LAYER
253
7.5
FEATURES
AND
ADVANTAGES
OF
TWO-DIMENSIONAL
ELECTRON
TRANSPORT
MATERIALS
256
7.6
VAN
DERWAALS
HETEROJUNCTIONS
256
7.7
QUANTUM
CONFINEMENT
EFFECT
IN
TWO-DIMENSIONAL
ELECTRON
TRANSPORT
MATERIALS
AND
ITS
APPLICATION
258
7.8
OTHER
PHYSICAL
PROPERTIES
OF
TWO-DIMENSIONAL
ELECTRON
TRANSPORT
MATERIALS
259
7.9
SYNTHESIS
OFVARIOUS
TWO-DIMENSIONAL
MATERIALS
260
7.10
APPLICATION
OF
TWO-DIMENSIONAL
MATERIAL
AS
AN
ELECTRON
TRANSPORT
LAYER
IN
PEROVSKITE
SOLAR CELLS
262
7.11
CONCLUSION
AND
OUTLOOK
266
LIST
OF
ABBREVIATIONS
267
REFERENCES
268
8
METAL
OXIDES
IN
STABLE
AND
FLEXIBLE
HALIDE
PEROVSKITE
SOLAR
CELLS:
TOWARD
SELF-POWERED
INTERNET
OF
THINGS
273
CARLOS
PEREYRA,
HAIBING
XIE,
AMIR
N.
SHANDY,
VANESSA
MARTINEZ,
HENCK
PIERRE,
ELIA
SANTIGOSA,
DANIEL
A.
ACUNA-LEAL,
LAIA
CAPDEVILA,
QUENTIN
BILLON,
LOIS
MERGNY,
MARIA
RAMOS-PAYAN,
MONICA
GOMEZ,
BINDU
KRISHNAN,
MARIA
MUNOZ,
DAVID
M.
TANENBAUM,
ANDERS
HAGFELDT,
AND
MONICA
LIRA-CANTU
8.1
INTRODUCTION
273
8.2
METAL
OXIDES
IN
NORMAL
(N-I-P),
INVERTED
(P-I-N)
AND
OXIDE-SANDWICH
HALIDE
PEROVSKITE
SOLAR
CELLS
275
8.3
MESOPOROUS
METAL
OXIDE
BILAYERS
IN
HIGHLY
STABLE
CARBON-BASED
PEROVSKITE
SOLAR
CELLS
277
8.4
SOLUTION-PROCESSABLE
METAL
OXIDES
FOR
FLEXIBLE
HALIDE
PEROVSKITE
SOLAR
CELLS
288
8.5
CHARACTERIZATION
OF
PSC
BY
ELECTROCHEMICAL
IMPEDANCE
SPECTROSCOPY
(EIS)
294
8.6
CONCLUSIONS
299
ACKNOWLEDGMENTS
299
REFERENCES
300
9
ELECTRON
TRANSPORT
LAYERS
IN
PEROVSKITE
SOLAR
CELLS
311
FATEMEH
JAFARI,
MEHRAD
AHMADPOUR,
UM
KANTA
ARYAL,
MARIAM
AHMAD,
MICHELA
PRETE,
NAEIMEH
TORABI,
VIDA
TURKOVIC,
HORST-GUNTER
RUBAHN,
ABBAS
BEHJAT,
AND
MORTEN
MADSEN
9.1
INTRODUCTION
311
9.2
REQUIREMENTS
OF
IDEAL
ELECTRON
TRANSPORT
LAYERS
(ETL)
312
CONTENTS
XI
9.3
OVERVIEW
OF
ELECTRON
TRANSPORT
MATERIALS
314
9.3.1
METAL
OXIDE
ELECTRON
TRANSPORT
MATERIALS
314
9.3.2
ORGANIC
ELECTRON
TRANSPORT
MATERIALS
317
9.4
THE
ARCHITECTURES
OF
PEROVSKITE
SOLAR
CELLS
321
9.4.1
MESOSCOPIC
PEROVSKITE
SOLAR
CELLS
321
9.4.2
PLANAR
PEROVSKITE
SOLAR
CELLS
323
ACKNOWLEDGMENTS
324
REFERENCES
324
10
DOPANT-FREE
HOLE-TRANSPORTING
MATERIALS
FOR
PEROVSKITE
SOLAR
CELLS
331
MEENAKSHI
PEGU,
SHAHZADA
AHMAD,
AND
SAMRANA
KAZIM
10.1
INTRODUCTION
331
10.1.1
DEVICE
STRUCTURE
OF
PEROVSKITE
SOLAR
CELLS
332
10.1.2
CHARGE
TRANSPORT
IN
PEROVSKITE
SOLAR
CELLS
AND
ROLE
OF
HTM
333
10.2
HOLE-TRANSPORTING
MATERIAL
FOR
PEROVSKITE
SOLAR
CELLS
334
10.2.1
CHARACTERISTICS
OF
AN
HTM
AND
INTERACTION
WITH
PEROVSKITE
334
10.2.2
NATURE
OF
HTM:
ORGANOMETALLIC,
INORGANIC,
AND
ORGANIC
(SMALL
MOLECULES
AND
POLYMERS)
336
10.2.3
DOPING
OF
HOLE-TRANSPORTING
MATERIALS
IN
PSCS
337
10.3
DOPANT-FREE
ORGANIC
HTMS
FOR
PEROVSKITE
SOLAR CELLS
340
10.3.1
DOPANT-FREE
ORGANIC
POLYMER
AS
HTM
340
10.3.2
DOPANT-FREE
SMALL
MOLECULES
AS
HTM
340
10.3.2.1
TRIAIYLAMINE-BASED
HTM
340
10.3.2.2
CARBAZOLE-BASED
HTMS
348
10.3.2.3
THIOPHENE-BASED
HTMS
349
10.3.2.4
ACENE-BASED
HTMS
350
10.3.2.5
TRIAZATRUXENE-BASED
HTMS
350
10.3.2.6
TETRATHIAFULVALENE-BASED
HTM
353
10.3.2.7
ORGANOMETALLIC
COMPOUNDS
AND
OTHER
MOLECULES
AS
HTM
353
10.4
CONCLUSION
AND
OUTLOOK
356
ACKNOWLEDGMENTS
356
LIST
OF
ABBREVIATIONS
356
REFERENCES
359
11
IMPACT
OF
MONOVALENT
METAL
HALIDES
ON
THE
STRUCTURAL
AND
PHOTOPHYSICAL
PROPERTIES
OF
HALIDE
PEROVSKITE
369
MOJTABA
ABDI-LALEBI
AND
M.
IBRAHIM
DAR
11.1
INTRODUCTION
369
11.2
METAL
HALIDES
369
11.3
MONOVALENT
METAL
HALIDES
370
11.4
IMPACT
OF
MONOVALENT
METAL
HALIDES
ON
THE
MORPHOLOGICAL,
STRUCTURAL
AND
OPTOELECTRONIC
PROPERTIES
OF
PEROVSKITES
372
11.5
IMPACT
OF
MONOVALENT
METAL
HALIDES
ON
PHOTOVOLTAIC
DEVICE
CHARACTERIZATIONS
378
REFERENCES
384
XII
CONTENTS
12
CHARGE
CARRIER
DYNAMICS
IN
PEROVSKITE
SOLAR
CELLS
389
MOHD
T.
KHAN,
ABDULLAH
ALMOHAMMEDI,
SAMRANA
KAZIM,
AND
SHAHZADA
AHMAD
12.1
12.2
12.3
12.3.1
12.3.2
12.3.2.1
12.3.2.2
INTRODUCTION
389
SPACE
CHARGE-LIMITED
CONDUCTION
390
IMMITANCE
SPECTROSCOPY
395
IMPEDANCE
SPECTROSCOPY
395
CAPACITANCE
SPECTROSCOPY
402
CAPACITANCE
VS.
FREQUENCY
(C-F
)
MEASUREMENTS
403
CAPACITANCE
VS.
VOLTAGE
(C-V)
MEASUREMENTS
AND
MOTT-SCHOTTKY
ANALYSIS
406
12.3.2.3
12.4
12.4.1
12.4.2
12.4.3
12.5
THERMAL
ADMITTANCE
SPECTROSCOPY
409
TRANSIENT
SPECTROSCOPY
413
TIME-RESOLVED
MICROWAVE
CONDUCTIVITY
MEASUREMENTS
413
TRANSIENT
ABSORPTION
SPECTROSCOPY
41
7
TIME-RESOLVED
PHOTOLUMINESCENCE
420
CONCLUSION
423
ACKNOWLEDGMENTS
424
REFERENCES
424
13
PRINTABLE
MESOSCOPIC
PEROVSKITE
SOLAR
CELLS
431
DAIYU
LI,
YAOGUANG
RANG,
YUE
HU,
ANYI
MEI,
AND
HONGWEI
HAN
13.1
13.2
13.3
13.4
13.4.1
13.4.2
INTRODUCTION
431
DEVICE
STRUCTURES
AND
WORKING
PRINCIPLES
432
PROGRESS
OF
EFFICIENCY
AND
STABILITY
433
SCALING-UP
OF
PRINTABLE
MESOSCOPIC
PEROVSKITE
SOLAR
CELLS
438
THE
STRUCTURE
OF
PRINTABLE
MESOSCOPIC
PSC
MODULES
438
SOLUTION
DEPOSITION
METHODS
OF
PRINTABLE
MESOSCOPIC
PSC
MODULES
440
13.4.3
13.4.4
13.4.5
13.4.6
13.4.7
13.5
ENCAPSULATION
OF
PRINTABLE
MESOSCOPIC
PSCS
442
THE
RECYCLING
OF
PRINTABLE
MESOSCOPIC
PSCS
442
MASS-PRODUCTION
OF
PRINTABLE
MESOSCOPIC
PSC
MODULES
444
STANDARDIZING
THE
EVALUATION
OF
PSC
MODULES
445
STANDARDIZING
THE
AGING
MEASUREMENTS
OF
PSC
MODULES
447
CONCLUSIONS
449
REFERENCES
449
14
UPSCALING
OF
PEROVSKITE
PHOTOVOLTAICS
453
DONGJU
JANG,
FU
YANG,
LIRONG
DONG,
CHRISTOPH
J.
BRABEC,
AND
HANS-JOACHIM
EGELHAAF
14.1
14.2
14.3
14.4
14.4.1
INTRODUCTION
453
TECHNIQUES
FOR
UPSCALING
457
STATE-OF-THE-ART
OF
LARGE-AREA
HIGH-QUALITY
PEROVSKITE
DEVICES
467
STRATEGIES
OF
UPSCALING
OF
PEROVSKITE
DEVICES
471
STRATEGIES
FOR
UP-SCALING
PEROVSKITE
LAYERS
473
CONTENTS
XIII
14.4.1.1
PHYSICAL
METHODS
473
14.4.1.2
CHEMICAL
METHODS
476
14.4.1.3
POST-GROWTH
TREATMENT
477
14.4.2
SCALABLE
CHARGE
EXTRACTION
LAYERS
478
14.4.3
SCALABLE
ELECTRODES
479
14.4.3.1
BOTTOM
ELECTRODE
479
14.4.3.2
TOP
ELECTRODE
481
14.5
MODULE
LAYOUT
481
14.6
LIFETIME
ASPECTS
484
14.7
SUMMARY
AND
OUTLOOK
486
REFERENCES
489
15
SCALABLE
ARCHITECTURES
AND
FABRICATION
PROCESSES
OF
PEROVSKITE
SOLAR
CELL
TECHNOLOGY
497
GHUFRAN
S.
HASHMI
15.1
BACKGROUND
497
15.1.1
CONFIGURATIONS
AND
DEVICE
ARCHITECTURES
OF
PEROVSKITE
SOLAR
CELLS
498
15.1.2
HTM-FREE
DEVICE
CONFIGURATIONS
FOR
PEROVSKITE
SOLAR
CELLS
499
15.1.3
PEROVSKITES-BASED
TANDEM
SOLAR CELLS
500
15.2
SCALABLE
DEVICE
DESIGNS
OF
PEROVSKITE
SOLAR
CELLS
501
15.2.1
SCALABLE
N-I-P
CONFIGURATION-BASED
PEROVSKITE
SOLAR
MODULES
501
15.2.2
SCALABLE
P-I-N
CONFIGURATION-BASED
PEROVSKITE
SOLAR
MODULES
504
15.2.3
SCALABLE
N-I-P
AND
P-I-N
CONFIGURATION-BASED
FLEXIBLE
PEROVSKITE
SOLAR
MODULES
504
15.2.4
HTM-FREE
PEROVSKITE
SOLAR
MODULES
508
15.3
CRITICAL
OVERVIEW
ON
SCALABLE
MATERIALS
DEPOSITION
METHODS
509
15.4
NUTSHELL
OF
LONG-TERM
DEVICE
STABILITY
OF
PEROVSKITE
SOLAR
CELLS
AND
MODULES
513
15.5
CONCLUSIVE
SUMMARY
AND
FUTURISTIC
OUTLOOK
514
REFERENCES
515
16
MULTI-JUNCTION
PEROVSKITE
SOLAR
CELLS
521
SUHAS
MAHESH
AND
BERNARD
WENGER
16.1
INTRODUCTION
521
16.1.1
HOW
EFFICIENT
CAN
SOLAR
CELLS
BE?
523
16.1.2
HOW
DO
MULTI-JUNCTION
SOLAR CELLS
WORK?
525
16.1.3
MULTI-JUNCTION:
TWO-TERMINAL,
THREE-TERMINAL,
AND
FOUR-TERMINAL
MULTI-JUNCTIONS
525
16.1.4
WHY
PEROVSKITES
FOR
MULTI-JUNCTIONS?
528
16.2
PEROVSKITE-SILICON
TANDEMS
529
16.2.1
BANDGAP
ENGINEERING
530
16.2.2
PARASITIC
ABSORPTION
532
16.2.3
OPTICAL
MANAGEMENT
535
16.3
PEROVSKITE-PEROVSKITE
TANDEMS
536
16.4
CHARACTERIZING
TANDEMS
538
XIV
CONTENTS
16.5
COMMERCIALIZATION
16.5.1
RELIABILITY
540
16.5.2
SCALABILITY
540
16.5.3
COST
541
16.6
OUTLOOK
542
REFERENCES
543
INDEX
549
539
|
adam_txt |
CONTENTS
FOREWORD
XV
1
CHEMICAL
PROCESSING
OF
MIXED-CATION
HYBRID
PEROVSKITES:
STABILIZING
EFFECTS
OF
CONFIGURATIONAL
ENTROPY
1
FERAY
UNLU,
EUNHWAN
JUNG,
SENOL
OZ,
HEECHAE
CHOI,
THOMAS
FISCHER,
AND
SANJAY
MATHUR
1.1
INTRODUCTION
1
1.1.1
STABILITY
ISSUES
OF
ORGANIC-INORGANIC
HYBRID
PEROVSKITES
2
1.2
CRYSTAL
STRUCTURE
OF
PEROVSKITES
4
1.2.1
GOLDSCHMIDT
TOLERANCE
FACTOR
FOR
3D
STRUCTURE
5
1.2.2
OCTAHEDRAL
FACTOR
5
1.2.3
ROLE
OF
A-SITE
CATION
7
1.2.4
THEORETICAL
CALCULATIONS:
MOLECULAR
DYNAMICS
OF
A-SITE
CATION
8
1.2.5
ENTROPY
OF
MIXING:
CONFIGURATIONAL
EFFECTS
IN
MIXED-CATION
PEROVSKITES
11
1.3
MULTIPLE
A-SITE
CATION
PEROVSKITES
12
1.3.1
FA
+
/MA
+
ALLOYING
FOR
HIGHER
PHASE
STABILITY
AND
PHOTOVOLTAIC
EFFICIENCY
12
1.3.2
CESIUM
INCLUSION
FOR
THERMAL
STABILITY
13
1.3.3
RB
+
SMALL-CATION
INFLUENCE
ON
PEROVSKITE
STRUCTURE
FOR
THERMAL
STABILITY
15
1.3.4
GUANIDINIUM
LARGE-CATION
INFLUENCE
ON
PEROVSKITE
STRUCTURE
FOR
STABILITY
16
1.3.5
TRIPLE
AND
QUADRUPLE-CATION
HYBRID
PEROVSKITES
FOR
STABILITY
AND
OPTIMUM
PERFORMANCE
17
1.3.6
LARGER
ORGANIC
CATIONS:
REDUCING
DIMENSIONALITY
FOR
IMPROVED
THERMAL
STABILITY
20
1.4
CONCLUSION
AND
PERSPECTIVES
22
ACKNOWLEDGMENTS
24
REFERENCES
24
VI
CONTENTS
2
FLASH
INFRARED
ANNEALING
FOR
PROCESSING
OF
PEROVSKITE
SOLAR
CELLS
33
SANDY
SANCHEZ
AND
ANDERS
HAGFELDT
2.1
INTRODUCTION
33
2.2
PEROVSKITE
CRYSTAL
NUCLEATION
AND
GROWTH
FROM
SOLUTION
34
2.2.1
THE
ANTISOLVENT
DRIPPING
METHOD
34
2.2.2
THERMODYNAMICS
OF
NUCLEATION
AND
CRYSTAL
GROWTH
34
2.2.3
KINETIC
PROCESS
FOR
RAPID
THERMAL
GROWTH
36
2.3
RAPID
THERMAL
ANNEALING
37
2.3.1
THE
FIRA
METHOD
37
2.3.2
FIRA
AND
ANTISOLVENT
39
2.3.3
PEROVSKITE
FILM
CRYSTALLIZATION
FOR
A
SINGLE
IR
PULSE
40
2.3.4
PEROVSKITE
CRYSTALLIZATION
WITH
PULSE
DURATION
42
2.3.5
PULSED
FIRA
METHOD
FOR
INORGANIC
PEROVSKITE
COMPOSITION
45
2.3.6
WARMED-PULSED
FIRA
METHOD
46
2.3.7
CRYSTALLIZATION
BEHAVIOR
OF
MIXED
PEROVSKITE
SOLUTIONS
47
2.4
STRUCTURAL
ANALYSIS
OF
FIRA-ANNEALED
PEROVSKITE
FILMS
WITH
VARIABLE
PULSE
TIME
50
2.4.1
PLANAR
AND
MESOPOROUS
SUBSTRATES
50
2.4.2
CRYSTAL
STRUCTURE
ANALYSIS
51
2.4.3
STRUCTURE
OF
THE
INTERMEDIATE
PHASES
53
2.4.4
INTERNAL
CRYSTAL
DOMAIN
STRUCTURE
56
2.5
A
COST-EFFECTIVE
AND
ENVIRONMENTALLY
FRIENDLY
METHOD
57
2.5.1
LIFE-CYCLE
ASSESSMENT
(LCA)
OF
THE
PEROVSKITE
FILM
SYNTHESIS
METHODS
57
2.5.2
RELATIVE
COST
AND
ENVIRONMENTAL
IMPACT
OF
THE
AS
AND
FIRA
METHODS
58
2.6
APPLICATION
FOR
MAPI
3
PEROVSKITE
SOLAR
CELLS
60
2.6.1
SINGLE
IR
PULSE
AND
MAPBI
3
PEROVSKITE
COMPOSITION
60
2.6.2
LARGE-AREA
DEVICES
60
2.7
PLANAR
DEVICES
ARCHITECTURE
AND
MIXED
PEROVSKITE
COMPOSITION
64
2.7.1
THIN
FILM
ANALYSIS
64
2.7.2
PV
PERFORMANCE
AND
ELECTRONIC
CHARACTERISTIC
OF
THE
DEVICES
64
2.8
PULSED
FIRA
FOR
INORGANIC
PEROVSKITE
SOLAR
CELLS
67
2.8.1
THIN
FILM
ANALYSIS
67
2.8.2
PV
PERFORMANCE
68
2.9
RAPID
MANUFACTURING
OF
PSCS
WITH
AN
ADAPTED
PEROVSKITE
CHEMICAL
COMPOSITION
71
2.9.1
RAPID
ANNEALED
TIO
2
MESOSCOPIC
FILM
71
2.9.2
FCG
PEROVSKITE
STABILIZED
WITH
TBAI
72
2.9.3
PV
PERFORMANCE
OF
THE
MANUFACTURED
PSCS
73
2.10
OUTLOOK
AND
TECHNICAL
DETAILS
75
2.10.1
OPTIMIZATION
OF
FIRA
PROCESS
FOR
TANDEM
SOLAR
CELLS
75
2.10.2
AUTOMATIC
ROLL-TO-ROLL
SYSTEM
FOR
THE
FIRA
MANUFACTURE
OF
PEROVSKITE
SOLAR
CELLS
77
CONTENTS
VII
2.10.3
2.10.4
2.11
2.11.1
2.11.2
2.11.3
2.11.4
2.11.5
2.11.6
2.11.7
2.11.8
ELECTRONIC
SETUP
78
LABVIEW
INTERFACE
78
EXPERIMENTAL
METHODS
80
MANUFACTURE
OF
PEROVSKITE
SOLAR
CELLS
80
PEROVSKITE
SOLUTION
PREPARATION
80
ANTISOLVENT
METHOD
81
FIRA
METHOD
81
HTM
DEPOSITION
AND
BACK
CONTACT
EVAPORATION
81
DEVICE
CHARACTERIZATION
82
MATERIAL
CHARACTERIZATION
82
TEMPERATURE
MEASUREMENT
83
LIST
OF
ABBREVIATIONS
83
ACKNOWLEDGMENTS
84
REFERENCES
84
3
PASSIVATION
OF
HYBRID/LNORGANIC
PEROVSKITE
SOLAR
CELLS
91
MUHAMMAD
AKMAL
KAMARUDIN
AND
SHUZI
HAYASE
3.1
3.1.1
3.1.1.1
3.1.1.2
3.1.2
3.1.2.1
3.1.2.2
3.1.2.3
3.1.2.4
3.1.2.5
3.1.2.6
3.1.2.7
3.1.2.8
3.1.2.9
3.1.2.10
3.2
INTRODUCTION
91
TYPES
OF
PASSIVATION
93
BULK
PASSIVATION
93
SURFACE
PASSIVATION
93
PASSIVATING
MATERIALS
95
METAL
HALIDES
95
ORGANIC
ACIDS
(
-COOH,
-
SOOH,
AND
-
POOH)
96
ORGANOSULFIIR
COMPOUND
98
AMINES
98
GRAPHENE
100
METAL
OXIDES
100
ORGANIC
HALIDES
102
QUANTUM
DOTS
104
POLYMERS
104
ZWITTERIONS
107
CONCLUSION
107
REFERENCES
108
4
TUNING
INTERFACIAL
EFFECTS
IN
HYBRID
PEROVSKITE
SOLAR
CELLS
113
RAFAEL
S.
SANCHEZ,
LIONEL
HIRSCH,
AND
DARIO
M.
BASSANI
4.1
4.1.1
STRATEGIES
FOR
INTERFACIAL
DEPOSITION
AND
ANALYSIS
113
TAILORING
THE
PS
PROPERTIES
AND
MICROSTRUCTURAL
INTERFACE
THROUGH
SOLVENT
ENGINEERING
114
4.1.2
TAILORING
THE
PS
PROPERTIES
AND
MICROSTRUCTURAL
INTERFACE
THROUGH
NON-SOLVENT
METHODS
117
4.2
4.2.1
DEFECT
FORMATION
IN
PS
FILMS
AND
INTERFACES
118
DEFECT
FORMATION
IN
THE
PS
BULK
AND
AT
THE
SURFACE
DURING
FILM
CRYSTALLIZATION
119
VIII
CONTENTS
4.2.2
DEFECT
FORMATION
AND
DYNAMICS
OF
PSC
UNDER
WORKING
CONDITIONS
122
4.3
PASSIVATION
STRATEGIES
OF
PS
126
4.4
MEASURING
AND
TUNING
THE
WORK
FUNCTION
AND
SURFACE
POTENTIAL
IN
PSC
130
4.5
TUNING
THE
WETTABILITY
AND
COMPATIBILITY
BETWEEN
LAYERS
138
4.6
EFFECT
ON
DEVICE
EFFICIENCY
AND
LIFETIME
142
4.6.1
MOISTURE
EFFECTS
ON
PS
FILMS
AND
PSC
142
4.6.2
PHOTOINDUCED
DEGRADATION
OF
PS
FILMS
AND
PSC
146
4.6.3
THERMAL
DEGRADATION
OF
PS
FILMS
AND
PSC
149
4.6.4
OTHER
SOURCES
OF
DEGRADATION
IN
PSC
150
4.7
CONCLUSIONS
AND
PROSPECTS
153
REFERENCES
154
5
ALL-INORGANIC
PEROVSKITE
SOLAR
CELLS
175
YAOWEN
LI
AND
YONGFANG
LI
5.1
INTRODUCTION
175
5.2
BASIC
KNOWLEDGE
OF
ALL-INORGANIC
PERO-SCS
176
5.2.1
CRYSTALLINE
STRUCTURE
176
5.2.2
STABILITY
177
5.2.2.1
THERMAL
STABILITY
177
5.2.2.2
PHASE
STABILITY
177
5.2.23
LIGHT
STABILITY
178
5.2.3
WORKING
PRINCIPLE
178
5.3
LEAD-BASED
INORGANIC
PERO-SCS
179
5.3.1
CSPBI
3
179
5.3.1.1
ADDITIVE
ENGINEERING
181
5.3.1.2
ORGANIC
COMPOUND
TREATMENT
181
5.3.1.3
CRYSTAL
SIZE
REDUCTION
AND
MORPHOLOGY
OPTIMIZATION
183
5.3.1.4
CURRENT
DENSITY
INCREASE
185
5.3.2
CSPBI
2
BR
185
5.3.2.1
FABRICATION
METHODS
185
53.2.2
IONIC
INCORPORATION
189
53.23
INTERFACE
ENGINEERING
191
5.3.3
CSPBIBR
2
193
5.3.3.1
CRYSTAL
GROWTH
194
53.3.2
IONIC
INCORPORATION
195
5333
INTERFACE
ENGINEERING
196
5.3.4
CSPBBR
3
196
5.3.4.1
FABRICATION
METHOD
197
53.4.2
IONIC
INCORPORATION
199
5.3.4.3
INTERFACE
ENGINEERING
199
5.4
TIN-BASED
INORGANIC
PERO-SCS
200
5.4.1
CSSNI
3
200
5.4.1.1
FABRICATION
METHODS
201
5.4.1.2
ADDITIVE
ENGINEERING
203
CONTENTS
IX
5.4.1.3
5.4.2
5.5
5.5.1
5.5.2
5.5.3
5.5.3.1
5.5.3.2
5.5.4
5.6
SUBSTRATE
CONTROL
203
CSSNI
X
BR
3
_X
204
OTHER
INORGANIC
PERO-SCS
204
GE-BASED
INORGANIC
PERO-SCS
205
SB-BASED
INORGANIC
PERO-SCS
205
BI-BASED
INORGANIC
PERO-SCS
206
A
3
B
2
I
9
STRUCTURE
206
OTHER
STRUCTURES
207
DOUBLE
B
SITE
CATION
PEROVSKITE
207
CONCLUSION
209
REFERENCES
210
6
TIN
HALIDE
PEROVSKITE
SOLAR
CELLS
223
THOMAS
STERGIOPOULOS
6.1
6.2
6.2.1
6.2.2
6.2.2.1
6.2.2.2
6.2.2.3
6.3
6.3.1
6.3.2
6.4
6.4.1
6.4.2
6.4.3
6.4.3.1
6.4.3.2
6.4.3.3
6.5
6.5.1
6.5.1.1
6.5.1.2
6.5.2
6.6
6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.8
INTRODUCTION
223
WHY
TIN
HALIDE
PEROVSKITES?
223
TIN
AS
THE
SOLE
VIABLE
ALTERNATIVE
223
FAVORABLE
OPTOELECTRONIC
PROPERTIES
OF
TIN
PEROVSKITES
224
LOW
BANDGAP
224
HIGH
CHARGE
CARRIER
MOBILITY
224
SIMILAR
PROPERTIES
WITH
LEAD
PEROVSKITES
225
CONCERNS
ABOUT
TIN-BASED
PEROVSKITES
225
SEVERE
NON-RADIATIVE
RECOMBINATION
225
POOR
STABILITY
226
CONTROL
OF
HOLE
DOPING
227
SN
2+
COMPENSATION/NECESSITY
OF
ADDING
SNF
2
227
ADDITIVES
TO
IMPROVE
SNF
2
DISPERSION
227
ELIMINATION
OF
SN
4+
IMPURITIES
229
SNL
2
PURIFICATION
229
REACTION
OF
SN
POWDER
WITH
SN
4+
RESIDUALS
229
ADDITION
OF
REDUCING
AGENTS
230
FILMS
DEPOSITION
231
CRYSTALLIZATION
TUNING
231
SOLVENT
ENGINEERING
231
ADDITIVES
TO
SLOW
DOWN
CRYSTALLIZATION
KINETICS
232
POSTTREATMENT
STRATEGIES/SURFACE
TRAP
PASSIVATION
233
CONTACTS/INTERFACE
ENGINEERING
234
ONGOING
CHALLENGES
235
EFFICIENCY
235
STABILITY
238
PERFORMANCE
OVER
THE
S-Q
LIMIT/TOWARD
MULTIJUNCTION
SOLAR
CELLS
238
SUSTAINABILITY
241
CONCLUSION
241
ACKNOWLEDGMENTS
242
REFERENCES
242
X
CONTENTS
7
LOW-TEMPERATURE
AND
FACILE
SOLUTION-PROCESSED
TWO-DIMENSIONAL
MATERIALS
AS
ELECTRON
TRANSPORT
LAYER
FOR
HIGHLY
EFFICIENT
PEROVSKITE
SOLAR
CELLS
247
SHAO
HUI,
NAJIB
H.
LADI,
HAN
PAN,
YAN
SHEN,
AND
MINGKUI
WANG
7.1
INTRODUCTION
247
7.2
CHARGE
TRANSPORT
IN
PEROVSKITE
SOLAR
CELLS
249
7.3
BRIEF
DEVELOPMENT
OF
PEROVSKITE
SOLAR
CELLS
251
7.4
FUNCTIONS
AND
REQUIREMENTS
OF
ELECTRON
TRANSPORT
LAYER
253
7.5
FEATURES
AND
ADVANTAGES
OF
TWO-DIMENSIONAL
ELECTRON
TRANSPORT
MATERIALS
256
7.6
VAN
DERWAALS
HETEROJUNCTIONS
256
7.7
QUANTUM
CONFINEMENT
EFFECT
IN
TWO-DIMENSIONAL
ELECTRON
TRANSPORT
MATERIALS
AND
ITS
APPLICATION
258
7.8
OTHER
PHYSICAL
PROPERTIES
OF
TWO-DIMENSIONAL
ELECTRON
TRANSPORT
MATERIALS
259
7.9
SYNTHESIS
OFVARIOUS
TWO-DIMENSIONAL
MATERIALS
260
7.10
APPLICATION
OF
TWO-DIMENSIONAL
MATERIAL
AS
AN
ELECTRON
TRANSPORT
LAYER
IN
PEROVSKITE
SOLAR CELLS
262
7.11
CONCLUSION
AND
OUTLOOK
266
LIST
OF
ABBREVIATIONS
267
REFERENCES
268
8
METAL
OXIDES
IN
STABLE
AND
FLEXIBLE
HALIDE
PEROVSKITE
SOLAR
CELLS:
TOWARD
SELF-POWERED
INTERNET
OF
THINGS
273
CARLOS
PEREYRA,
HAIBING
XIE,
AMIR
N.
SHANDY,
VANESSA
MARTINEZ,
HENCK
PIERRE,
ELIA
SANTIGOSA,
DANIEL
A.
ACUNA-LEAL,
LAIA
CAPDEVILA,
QUENTIN
BILLON,
LOIS
MERGNY,
MARIA
RAMOS-PAYAN,
MONICA
GOMEZ,
BINDU
KRISHNAN,
MARIA
MUNOZ,
DAVID
M.
TANENBAUM,
ANDERS
HAGFELDT,
AND
MONICA
LIRA-CANTU
8.1
INTRODUCTION
273
8.2
METAL
OXIDES
IN
NORMAL
(N-I-P),
INVERTED
(P-I-N)
AND
"
OXIDE-SANDWICH
"
HALIDE
PEROVSKITE
SOLAR
CELLS
275
8.3
MESOPOROUS
METAL
OXIDE
BILAYERS
IN
HIGHLY
STABLE
CARBON-BASED
PEROVSKITE
SOLAR
CELLS
277
8.4
SOLUTION-PROCESSABLE
METAL
OXIDES
FOR
FLEXIBLE
HALIDE
PEROVSKITE
SOLAR
CELLS
288
8.5
CHARACTERIZATION
OF
PSC
BY
ELECTROCHEMICAL
IMPEDANCE
SPECTROSCOPY
(EIS)
294
8.6
CONCLUSIONS
299
ACKNOWLEDGMENTS
299
REFERENCES
300
9
ELECTRON
TRANSPORT
LAYERS
IN
PEROVSKITE
SOLAR
CELLS
311
FATEMEH
JAFARI,
MEHRAD
AHMADPOUR,
UM
KANTA
ARYAL,
MARIAM
AHMAD,
MICHELA
PRETE,
NAEIMEH
TORABI,
VIDA
TURKOVIC,
HORST-GUNTER
RUBAHN,
ABBAS
BEHJAT,
AND
MORTEN
MADSEN
9.1
INTRODUCTION
311
9.2
REQUIREMENTS
OF
IDEAL
ELECTRON
TRANSPORT
LAYERS
(ETL)
312
CONTENTS
XI
9.3
OVERVIEW
OF
ELECTRON
TRANSPORT
MATERIALS
314
9.3.1
METAL
OXIDE
ELECTRON
TRANSPORT
MATERIALS
314
9.3.2
ORGANIC
ELECTRON
TRANSPORT
MATERIALS
317
9.4
THE
ARCHITECTURES
OF
PEROVSKITE
SOLAR
CELLS
321
9.4.1
MESOSCOPIC
PEROVSKITE
SOLAR
CELLS
321
9.4.2
PLANAR
PEROVSKITE
SOLAR
CELLS
323
ACKNOWLEDGMENTS
324
REFERENCES
324
10
DOPANT-FREE
HOLE-TRANSPORTING
MATERIALS
FOR
PEROVSKITE
SOLAR
CELLS
331
MEENAKSHI
PEGU,
SHAHZADA
AHMAD,
AND
SAMRANA
KAZIM
10.1
INTRODUCTION
331
10.1.1
DEVICE
STRUCTURE
OF
PEROVSKITE
SOLAR
CELLS
332
10.1.2
CHARGE
TRANSPORT
IN
PEROVSKITE
SOLAR
CELLS
AND
ROLE
OF
HTM
333
10.2
HOLE-TRANSPORTING
MATERIAL
FOR
PEROVSKITE
SOLAR
CELLS
334
10.2.1
CHARACTERISTICS
OF
AN
HTM
AND
INTERACTION
WITH
PEROVSKITE
334
10.2.2
NATURE
OF
HTM:
ORGANOMETALLIC,
INORGANIC,
AND
ORGANIC
(SMALL
MOLECULES
AND
POLYMERS)
336
10.2.3
DOPING
OF
HOLE-TRANSPORTING
MATERIALS
IN
PSCS
337
10.3
DOPANT-FREE
ORGANIC
HTMS
FOR
PEROVSKITE
SOLAR CELLS
340
10.3.1
DOPANT-FREE
ORGANIC
POLYMER
AS
HTM
340
10.3.2
DOPANT-FREE
SMALL
MOLECULES
AS
HTM
340
10.3.2.1
TRIAIYLAMINE-BASED
HTM
340
10.3.2.2
CARBAZOLE-BASED
HTMS
348
10.3.2.3
THIOPHENE-BASED
HTMS
349
10.3.2.4
ACENE-BASED
HTMS
350
10.3.2.5
TRIAZATRUXENE-BASED
HTMS
350
10.3.2.6
TETRATHIAFULVALENE-BASED
HTM
353
10.3.2.7
ORGANOMETALLIC
COMPOUNDS
AND
OTHER
MOLECULES
AS
HTM
353
10.4
CONCLUSION
AND
OUTLOOK
356
ACKNOWLEDGMENTS
356
LIST
OF
ABBREVIATIONS
356
REFERENCES
359
11
IMPACT
OF
MONOVALENT
METAL
HALIDES
ON
THE
STRUCTURAL
AND
PHOTOPHYSICAL
PROPERTIES
OF
HALIDE
PEROVSKITE
369
MOJTABA
ABDI-LALEBI
AND
M.
IBRAHIM
DAR
11.1
INTRODUCTION
369
11.2
METAL
HALIDES
369
11.3
MONOVALENT
METAL
HALIDES
370
11.4
IMPACT
OF
MONOVALENT
METAL
HALIDES
ON
THE
MORPHOLOGICAL,
STRUCTURAL
AND
OPTOELECTRONIC
PROPERTIES
OF
PEROVSKITES
372
11.5
IMPACT
OF
MONOVALENT
METAL
HALIDES
ON
PHOTOVOLTAIC
DEVICE
CHARACTERIZATIONS
378
REFERENCES
384
XII
CONTENTS
12
CHARGE
CARRIER
DYNAMICS
IN
PEROVSKITE
SOLAR
CELLS
389
MOHD
T.
KHAN,
ABDULLAH
ALMOHAMMEDI,
SAMRANA
KAZIM,
AND
SHAHZADA
AHMAD
12.1
12.2
12.3
12.3.1
12.3.2
12.3.2.1
12.3.2.2
INTRODUCTION
389
SPACE
CHARGE-LIMITED
CONDUCTION
390
IMMITANCE
SPECTROSCOPY
395
IMPEDANCE
SPECTROSCOPY
395
CAPACITANCE
SPECTROSCOPY
402
CAPACITANCE
VS.
FREQUENCY
(C-F
)
MEASUREMENTS
403
CAPACITANCE
VS.
VOLTAGE
(C-V)
MEASUREMENTS
AND
MOTT-SCHOTTKY
ANALYSIS
406
12.3.2.3
12.4
12.4.1
12.4.2
12.4.3
12.5
THERMAL
ADMITTANCE
SPECTROSCOPY
409
TRANSIENT
SPECTROSCOPY
413
TIME-RESOLVED
MICROWAVE
CONDUCTIVITY
MEASUREMENTS
413
TRANSIENT
ABSORPTION
SPECTROSCOPY
41
7
TIME-RESOLVED
PHOTOLUMINESCENCE
420
CONCLUSION
423
ACKNOWLEDGMENTS
424
REFERENCES
424
13
PRINTABLE
MESOSCOPIC
PEROVSKITE
SOLAR
CELLS
431
DAIYU
LI,
YAOGUANG
RANG,
YUE
HU,
ANYI
MEI,
AND
HONGWEI
HAN
13.1
13.2
13.3
13.4
13.4.1
13.4.2
INTRODUCTION
431
DEVICE
STRUCTURES
AND
WORKING
PRINCIPLES
432
PROGRESS
OF
EFFICIENCY
AND
STABILITY
433
SCALING-UP
OF
PRINTABLE
MESOSCOPIC
PEROVSKITE
SOLAR
CELLS
438
THE
STRUCTURE
OF
PRINTABLE
MESOSCOPIC
PSC
MODULES
438
SOLUTION
DEPOSITION
METHODS
OF
PRINTABLE
MESOSCOPIC
PSC
MODULES
440
13.4.3
13.4.4
13.4.5
13.4.6
13.4.7
13.5
ENCAPSULATION
OF
PRINTABLE
MESOSCOPIC
PSCS
442
THE
RECYCLING
OF
PRINTABLE
MESOSCOPIC
PSCS
442
MASS-PRODUCTION
OF
PRINTABLE
MESOSCOPIC
PSC
MODULES
444
STANDARDIZING
THE
EVALUATION
OF
PSC
MODULES
445
STANDARDIZING
THE
AGING
MEASUREMENTS
OF
PSC
MODULES
447
CONCLUSIONS
449
REFERENCES
449
14
UPSCALING
OF
PEROVSKITE
PHOTOVOLTAICS
453
DONGJU
JANG,
FU
YANG,
LIRONG
DONG,
CHRISTOPH
J.
BRABEC,
AND
HANS-JOACHIM
EGELHAAF
14.1
14.2
14.3
14.4
14.4.1
INTRODUCTION
453
TECHNIQUES
FOR
UPSCALING
457
STATE-OF-THE-ART
OF
LARGE-AREA
HIGH-QUALITY
PEROVSKITE
DEVICES
467
STRATEGIES
OF
UPSCALING
OF
PEROVSKITE
DEVICES
471
STRATEGIES
FOR
UP-SCALING
PEROVSKITE
LAYERS
473
CONTENTS
XIII
14.4.1.1
PHYSICAL
METHODS
473
14.4.1.2
CHEMICAL
METHODS
476
14.4.1.3
POST-GROWTH
TREATMENT
477
14.4.2
SCALABLE
CHARGE
EXTRACTION
LAYERS
478
14.4.3
SCALABLE
ELECTRODES
479
14.4.3.1
BOTTOM
ELECTRODE
479
14.4.3.2
TOP
ELECTRODE
481
14.5
MODULE
LAYOUT
481
14.6
LIFETIME
ASPECTS
484
14.7
SUMMARY
AND
OUTLOOK
486
REFERENCES
489
15
SCALABLE
ARCHITECTURES
AND
FABRICATION
PROCESSES
OF
PEROVSKITE
SOLAR
CELL
TECHNOLOGY
497
GHUFRAN
S.
HASHMI
15.1
BACKGROUND
497
15.1.1
CONFIGURATIONS
AND
DEVICE
ARCHITECTURES
OF
PEROVSKITE
SOLAR
CELLS
498
15.1.2
HTM-FREE
DEVICE
CONFIGURATIONS
FOR
PEROVSKITE
SOLAR
CELLS
499
15.1.3
PEROVSKITES-BASED
TANDEM
SOLAR CELLS
500
15.2
SCALABLE
DEVICE
DESIGNS
OF
PEROVSKITE
SOLAR
CELLS
501
15.2.1
SCALABLE
N-I-P
CONFIGURATION-BASED
PEROVSKITE
SOLAR
MODULES
501
15.2.2
SCALABLE
P-I-N
CONFIGURATION-BASED
PEROVSKITE
SOLAR
MODULES
504
15.2.3
SCALABLE
N-I-P
AND
P-I-N
CONFIGURATION-BASED
FLEXIBLE
PEROVSKITE
SOLAR
MODULES
504
15.2.4
HTM-FREE
PEROVSKITE
SOLAR
MODULES
508
15.3
CRITICAL
OVERVIEW
ON
SCALABLE
MATERIALS
DEPOSITION
METHODS
509
15.4
NUTSHELL
OF
LONG-TERM
DEVICE
STABILITY
OF
PEROVSKITE
SOLAR
CELLS
AND
MODULES
513
15.5
CONCLUSIVE
SUMMARY
AND
FUTURISTIC
OUTLOOK
514
REFERENCES
515
16
MULTI-JUNCTION
PEROVSKITE
SOLAR
CELLS
521
SUHAS
MAHESH
AND
BERNARD
WENGER
16.1
INTRODUCTION
521
16.1.1
HOW
EFFICIENT
CAN
SOLAR
CELLS
BE?
523
16.1.2
HOW
DO
MULTI-JUNCTION
SOLAR CELLS
WORK?
525
16.1.3
MULTI-JUNCTION:
TWO-TERMINAL,
THREE-TERMINAL,
AND
FOUR-TERMINAL
MULTI-JUNCTIONS
525
16.1.4
WHY
PEROVSKITES
FOR
MULTI-JUNCTIONS?
528
16.2
PEROVSKITE-SILICON
TANDEMS
529
16.2.1
BANDGAP
ENGINEERING
530
16.2.2
PARASITIC
ABSORPTION
532
16.2.3
OPTICAL
MANAGEMENT
535
16.3
PEROVSKITE-PEROVSKITE
TANDEMS
536
16.4
CHARACTERIZING
TANDEMS
538
XIV
CONTENTS
16.5
COMMERCIALIZATION
16.5.1
RELIABILITY
540
16.5.2
SCALABILITY
540
16.5.3
COST
541
16.6
OUTLOOK
542
REFERENCES
543
INDEX
549
539 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Ahmad, Shahzada Kazim, Samrana Grätzel, Michael 1944- |
author2_role | edt edt edt |
author2_variant | s a sa s k sk m g mg |
author_GND | (DE-588)1247003507 (DE-588)1247004406 (DE-588)172106435 |
author_facet | Ahmad, Shahzada Kazim, Samrana Grätzel, Michael 1944- |
building | Verbundindex |
bvnumber | BV047560638 |
classification_rvk | VN 6050 ZM 6000 ZP 3730 ZN 5160 |
ctrlnum | (OCoLC)1289778866 (DE-599)DNB1238911889 |
discipline | Chemie / Pharmazie Werkstoffwissenschaften / Fertigungstechnik Energietechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Chemie / Pharmazie Werkstoffwissenschaften / Fertigungstechnik Energietechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03490nam a2200865 c 4500</leader><controlfield tag="001">BV047560638</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221012 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">211026s2022 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">21,N33</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1238911889</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527347151</subfield><subfield code="9">3-527-34715-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527347155</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-3-527-34715-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527347155</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1289778866</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1238911889</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 6050</subfield><subfield code="0">(DE-625)147593:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 6000</subfield><subfield code="0">(DE-625)157068:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 3730</subfield><subfield code="0">(DE-625)157971:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 5160</subfield><subfield code="0">(DE-625)157437:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 3730</subfield><subfield code="0">(DE-625)157971:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Perovskite solar cells</subfield><subfield code="b">materials, processes, and devices</subfield><subfield code="c">edited by Shahzada Ahmad, Samrana Kazim, and Michael Grätzel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 559 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24.4 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fotovoltaik</subfield><subfield code="0">(DE-588)4121476-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bauelement</subfield><subfield code="0">(DE-588)4004741-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Solarzelle</subfield><subfield code="0">(DE-588)4181740-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Perowskit</subfield><subfield code="0">(DE-588)4173836-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Components & Devices</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">EE60: Komponenten u. Bauelemente</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">EG34: Solarenergie u. Photovoltaik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electrical & Electronics Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Elektrotechnik u. Elektronik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Komponenten u. Bauelemente</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MSL0: Materialien f. Energiesysteme</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materialien f. Energiesysteme</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materials Science</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materials for Energy Systems</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materialwissenschaften</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Solar Energy & Photovoltaics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Solarenergie u. Photovoltaik</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fotovoltaik</subfield><subfield code="0">(DE-588)4121476-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Perowskit</subfield><subfield code="0">(DE-588)4173836-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Bauelement</subfield><subfield code="0">(DE-588)4004741-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Solarzelle</subfield><subfield code="0">(DE-588)4181740-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Perowskit</subfield><subfield code="0">(DE-588)4173836-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Fotovoltaik</subfield><subfield code="0">(DE-588)4121476-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Perowskit</subfield><subfield code="0">(DE-588)4173836-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Bauelement</subfield><subfield code="0">(DE-588)4004741-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="3"><subfield code="a">Solarzelle</subfield><subfield code="0">(DE-588)4181740-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ahmad, Shahzada</subfield><subfield code="0">(DE-588)1247003507</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kazim, Samrana</subfield><subfield code="0">(DE-588)1247004406</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grätzel, Michael</subfield><subfield code="d">1944-</subfield><subfield code="0">(DE-588)172106435</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-82578-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-82580-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-527-82579-0</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34715-5/</subfield><subfield code="3">Kurzbeschreibung</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032936081&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032936081</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV047560638 |
illustrated | Illustrated |
index_date | 2024-07-03T18:27:22Z |
indexdate | 2024-07-10T09:14:41Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 3527347151 9783527347155 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032936081 |
oclc_num | 1289778866 |
open_access_boolean | |
owner | DE-29T DE-20 DE-11 DE-83 DE-523 DE-634 DE-19 DE-BY-UBM DE-703 |
owner_facet | DE-29T DE-20 DE-11 DE-83 DE-523 DE-634 DE-19 DE-BY-UBM DE-703 |
physical | xvi, 559 Seiten Illustrationen, Diagramme 24.4 cm x 17 cm |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Perovskite solar cells materials, processes, and devices edited by Shahzada Ahmad, Samrana Kazim, and Michael Grätzel Weinheim Wiley-VCH [2022] © 2022 xvi, 559 Seiten Illustrationen, Diagramme 24.4 cm x 17 cm txt rdacontent n rdamedia nc rdacarrier Fotovoltaik (DE-588)4121476-6 gnd rswk-swf Bauelement (DE-588)4004741-6 gnd rswk-swf Solarzelle (DE-588)4181740-0 gnd rswk-swf Perowskit (DE-588)4173836-6 gnd rswk-swf Components & Devices EE60: Komponenten u. Bauelemente EG34: Solarenergie u. Photovoltaik Electrical & Electronics Engineering Elektrotechnik u. Elektronik Energie Energy Komponenten u. Bauelemente MSL0: Materialien f. Energiesysteme Materialien f. Energiesysteme Materials Science Materials for Energy Systems Materialwissenschaften Solar Energy & Photovoltaics Solarenergie u. Photovoltaik (DE-588)4143413-4 Aufsatzsammlung gnd-content Fotovoltaik (DE-588)4121476-6 s Perowskit (DE-588)4173836-6 s Bauelement (DE-588)4004741-6 s DE-604 Solarzelle (DE-588)4181740-0 s Ahmad, Shahzada (DE-588)1247003507 edt Kazim, Samrana (DE-588)1247004406 edt Grätzel, Michael 1944- (DE-588)172106435 edt Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-82578-3 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-82580-6 Erscheint auch als Online-Ausgabe 978-3-527-82579-0 X:MVB http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34715-5/ Kurzbeschreibung DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032936081&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Perovskite solar cells materials, processes, and devices Fotovoltaik (DE-588)4121476-6 gnd Bauelement (DE-588)4004741-6 gnd Solarzelle (DE-588)4181740-0 gnd Perowskit (DE-588)4173836-6 gnd |
subject_GND | (DE-588)4121476-6 (DE-588)4004741-6 (DE-588)4181740-0 (DE-588)4173836-6 (DE-588)4143413-4 |
title | Perovskite solar cells materials, processes, and devices |
title_auth | Perovskite solar cells materials, processes, and devices |
title_exact_search | Perovskite solar cells materials, processes, and devices |
title_exact_search_txtP | Perovskite solar cells materials, processes, and devices |
title_full | Perovskite solar cells materials, processes, and devices edited by Shahzada Ahmad, Samrana Kazim, and Michael Grätzel |
title_fullStr | Perovskite solar cells materials, processes, and devices edited by Shahzada Ahmad, Samrana Kazim, and Michael Grätzel |
title_full_unstemmed | Perovskite solar cells materials, processes, and devices edited by Shahzada Ahmad, Samrana Kazim, and Michael Grätzel |
title_short | Perovskite solar cells |
title_sort | perovskite solar cells materials processes and devices |
title_sub | materials, processes, and devices |
topic | Fotovoltaik (DE-588)4121476-6 gnd Bauelement (DE-588)4004741-6 gnd Solarzelle (DE-588)4181740-0 gnd Perowskit (DE-588)4173836-6 gnd |
topic_facet | Fotovoltaik Bauelement Solarzelle Perowskit Aufsatzsammlung |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34715-5/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032936081&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ahmadshahzada perovskitesolarcellsmaterialsprocessesanddevices AT kazimsamrana perovskitesolarcellsmaterialsprocessesanddevices AT gratzelmichael perovskitesolarcellsmaterialsprocessesanddevices AT wileyvch perovskitesolarcellsmaterialsprocessesanddevices |