Inverse problems and Carleman estimates: global uniqueness, global convergence and experimentaldData
This book summarizes the main analytical and numerical results of Carleman estimates. In the analytical part, Carleman estimates for three main types of Partial Differential Equations (PDEs) are derived. In the numerical part, first numerical methods are proposed to solve ill-posed Cauchy problems f...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2021]
|
Schriftenreihe: | Inverse and ill-posed problems series
Volume 63 |
Schlagworte: | |
Online-Zugang: | FAW01 FCO01 FHA01 FHR01 FKE01 FLA01 TUM01 UBW01 UBY01 UPA01 Volltext |
Zusammenfassung: | This book summarizes the main analytical and numerical results of Carleman estimates. In the analytical part, Carleman estimates for three main types of Partial Differential Equations (PDEs) are derived. In the numerical part, first numerical methods are proposed to solve ill-posed Cauchy problems for both linear and quasilinear PDEs. Next, various versions of the convexification method are developed for a number of Coefficient Inverse Problems |
Beschreibung: | 1 online resource (XVI, 328 Seiten) |
ISBN: | 9783110745481 |
DOI: | 10.1515/9783110745481 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV047521492 | ||
003 | DE-604 | ||
005 | 20230525 | ||
007 | cr|uuu---uuuuu | ||
008 | 211019s2021 |||| o||u| ||||||eng d | ||
020 | |a 9783110745481 |9 978-3-11-074548-1 | ||
024 | 7 | |a 10.1515/9783110745481 |2 doi | |
035 | |a (ZDB-23-DGG)9783110745481 | ||
035 | |a (OCoLC)1284787851 | ||
035 | |a (DE-599)BVBBV047521492 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-858 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-91 |a DE-898 |a DE-706 |a DE-20 |a DE-11 | ||
100 | 1 | |a Klibanov, Michael V. |e Verfasser |0 (DE-588)124706977X |4 aut | |
245 | 1 | 0 | |a Inverse problems and Carleman estimates |b global uniqueness, global convergence and experimentaldData |c Michael V. Klibanov, Jingzhi Li |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 1 online resource (XVI, 328 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Inverse and ill-posed problems series |v Volume 63 | |
520 | |a This book summarizes the main analytical and numerical results of Carleman estimates. In the analytical part, Carleman estimates for three main types of Partial Differential Equations (PDEs) are derived. In the numerical part, first numerical methods are proposed to solve ill-posed Cauchy problems for both linear and quasilinear PDEs. Next, various versions of the convexification method are developed for a number of Coefficient Inverse Problems | ||
650 | 4 | |a Identifikationsverfahren | |
650 | 4 | |a Inverses Problem | |
650 | 4 | |a Numerische Mathematik | |
700 | 1 | |a Li, Jingzhi |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-074541-2 |
830 | 0 | |a Inverse and ill-posed problems series |v Volume 63 |w (DE-604)BV044966405 |9 63 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110745481 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032922219 | ||
966 | e | |u https://doi.org/10.1515/9783110745481 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110745481 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110745481 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110745481 |l FHR01 |p ZDB-23-DMA |q ZDB-23-DMA21 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110745481 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110745481 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110745481 |l TUM01 |p ZDB-23-DMA |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110745481 |l UBW01 |p ZDB-23-DMA |q UBW_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110745481 |l UBY01 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110745481 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182862629437440 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Klibanov, Michael V. Li, Jingzhi |
author_GND | (DE-588)124706977X |
author_facet | Klibanov, Michael V. Li, Jingzhi |
author_role | aut aut |
author_sort | Klibanov, Michael V. |
author_variant | m v k mv mvk j l jl |
building | Verbundindex |
bvnumber | BV047521492 |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9783110745481 (OCoLC)1284787851 (DE-599)BVBBV047521492 |
doi_str_mv | 10.1515/9783110745481 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03054nmm a2200529zcb4500</leader><controlfield tag="001">BV047521492</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230525 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">211019s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110745481</subfield><subfield code="9">978-3-11-074548-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110745481</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110745481</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1284787851</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047521492</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Klibanov, Michael V.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124706977X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inverse problems and Carleman estimates</subfield><subfield code="b">global uniqueness, global convergence and experimentaldData</subfield><subfield code="c">Michael V. Klibanov, Jingzhi Li</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (XVI, 328 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Inverse and ill-posed problems series</subfield><subfield code="v">Volume 63</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book summarizes the main analytical and numerical results of Carleman estimates. In the analytical part, Carleman estimates for three main types of Partial Differential Equations (PDEs) are derived. In the numerical part, first numerical methods are proposed to solve ill-posed Cauchy problems for both linear and quasilinear PDEs. Next, various versions of the convexification method are developed for a number of Coefficient Inverse Problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Identifikationsverfahren</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverses Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerische Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jingzhi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-074541-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Inverse and ill-posed problems series</subfield><subfield code="v">Volume 63</subfield><subfield code="w">(DE-604)BV044966405</subfield><subfield code="9">63</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110745481</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032922219</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110745481</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110745481</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110745481</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110745481</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA21</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110745481</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110745481</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110745481</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110745481</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">UBW_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110745481</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110745481</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047521492 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:23:38Z |
indexdate | 2024-07-10T09:14:18Z |
institution | BVB |
isbn | 9783110745481 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032922219 |
oclc_num | 1284787851 |
open_access_boolean | |
owner | DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-706 DE-20 DE-11 |
owner_facet | DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-706 DE-20 DE-11 |
physical | 1 online resource (XVI, 328 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA ZDB-23-DMA21 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf ZDB-23-DMA UBW_Paketkauf ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | De Gruyter |
record_format | marc |
series | Inverse and ill-posed problems series |
series2 | Inverse and ill-posed problems series |
spelling | Klibanov, Michael V. Verfasser (DE-588)124706977X aut Inverse problems and Carleman estimates global uniqueness, global convergence and experimentaldData Michael V. Klibanov, Jingzhi Li Berlin ; Boston De Gruyter [2021] © 2021 1 online resource (XVI, 328 Seiten) txt rdacontent c rdamedia cr rdacarrier Inverse and ill-posed problems series Volume 63 This book summarizes the main analytical and numerical results of Carleman estimates. In the analytical part, Carleman estimates for three main types of Partial Differential Equations (PDEs) are derived. In the numerical part, first numerical methods are proposed to solve ill-posed Cauchy problems for both linear and quasilinear PDEs. Next, various versions of the convexification method are developed for a number of Coefficient Inverse Problems Identifikationsverfahren Inverses Problem Numerische Mathematik Li, Jingzhi Verfasser aut Erscheint auch als Druck-Ausgabe 978-3-11-074541-2 Inverse and ill-posed problems series Volume 63 (DE-604)BV044966405 63 https://doi.org/10.1515/9783110745481 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Klibanov, Michael V. Li, Jingzhi Inverse problems and Carleman estimates global uniqueness, global convergence and experimentaldData Inverse and ill-posed problems series Identifikationsverfahren Inverses Problem Numerische Mathematik |
title | Inverse problems and Carleman estimates global uniqueness, global convergence and experimentaldData |
title_auth | Inverse problems and Carleman estimates global uniqueness, global convergence and experimentaldData |
title_exact_search | Inverse problems and Carleman estimates global uniqueness, global convergence and experimentaldData |
title_exact_search_txtP | Inverse problems and Carleman estimates global uniqueness, global convergence and experimentaldData |
title_full | Inverse problems and Carleman estimates global uniqueness, global convergence and experimentaldData Michael V. Klibanov, Jingzhi Li |
title_fullStr | Inverse problems and Carleman estimates global uniqueness, global convergence and experimentaldData Michael V. Klibanov, Jingzhi Li |
title_full_unstemmed | Inverse problems and Carleman estimates global uniqueness, global convergence and experimentaldData Michael V. Klibanov, Jingzhi Li |
title_short | Inverse problems and Carleman estimates |
title_sort | inverse problems and carleman estimates global uniqueness global convergence and experimentalddata |
title_sub | global uniqueness, global convergence and experimentaldData |
topic | Identifikationsverfahren Inverses Problem Numerische Mathematik |
topic_facet | Identifikationsverfahren Inverses Problem Numerische Mathematik |
url | https://doi.org/10.1515/9783110745481 |
volume_link | (DE-604)BV044966405 |
work_keys_str_mv | AT klibanovmichaelv inverseproblemsandcarlemanestimatesglobaluniquenessglobalconvergenceandexperimentalddata AT lijingzhi inverseproblemsandcarlemanestimatesglobaluniquenessglobalconvergenceandexperimentalddata |