Artificial intelligent techniques for electric and hybrid electric vehicles:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Beverly, MA
Scrivener Publishing
2020
Hoboken, NJ Wiley |
Schlagworte: | |
Beschreibung: | Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 IoT-Based Battery Management System for Hybrid Electric Vehicle -- 1.1 Introduction -- 1.2 Battery Configurations -- 1.3 Types of Batteries for HEV and EV -- 1.4 Functional Blocks of BMS -- 1.4.1 Components of BMS System -- 1.5 IoT-Based Battery Monitoring System -- References -- Chapter 2 A Noble Control Approach for Brushless Direct Current Motor Drive Using Artificial Intelligence for Optimum Operation of the E -- 2.1 Introduction -- 2.2 Introduction of Electric Vehicle -- 2.2.1 Historical Background of Electric Vehicle -- 2.2.2 Advantages of Electric Vehicle -- 2.2.2.1 Environmental -- 2.2.2.2 Mechanical -- 2.2.2.3 Energy Efficiency -- 2.2.2.4 Cost of Charging Electric Vehicles -- 2.2.2.5 The Grid Stabilization -- 2.2.2.6 Range -- 2.2.2.7 Heating of EVs -- 2.2.3 Artificial Intelligence -- 2.2.4 Basics of Artificial Intelligence -- 2.2.5 Advantages of Artificial Intelligence in Electric Vehicle -- 2.3 Brushless DC Motor -- 2.4 Mathematical Representation Brushless DC Motor -- 2.5 Closed-Loop Model of BLDC Motor Drive -- 2.5.1 P-I Controller & -- I-P Controller -- 2.6 PID Controller -- 2.7 Fuzzy Control -- 2.8 Auto-Tuning Type Fuzzy PID Controller -- 2.9 Genetic Algorithm -- 2.10 Artificial Neural Network-Based Controller -- 2.11 BLDC Motor Speed Controller With ANN-Based PID Controller -- 2.11.1 PID Controller-Based on Neuro Action -- 2.11.2 ANN-Based on PID Controller -- 2.12 Analysis of Different Speed Controllers -- 2.13 Conclusion -- References -- Chapter 3 Optimization Techniques Used in Active Magnetic Bearing System for Electric Vehicles -- 3.1 Introduction -- 3.2 Basic Components of an Active Magnetic Bearing (AMB) -- 3.2.1 Electromagnet Actuator -- 3.2.2 Rotor -- 3.2.3 Controller -- 3.2.3.1 Position Controller -- 3.2.3.2 Current Controller -- 3.2.4 Sensors 3.2.4.1 Position Sensor -- 3.2.4.2 Current Sensor -- 3.2.5 Power Amplifier -- 3.3 Active Magnetic Bearing in Electric Vehicles System -- 3.4 Control Strategies of Active Magnetic Bearing for Electric Vehicles System -- 3.4.1 Fuzzy Logic Controller (FLC) -- 3.4.1.1 Designing of Fuzzy Logic Controller (FLC) Using MATLAB -- 3.4.2 Artificial Neural Network (ANN) -- 3.4.2.1 Artificial Neural Network Using MATLAB -- 3.4.3 Particle Swarm Optimization (PSO) -- 3.4.4 Particle Swarm Optimization (PSO) Algorithm -- 3.4.4.1 Implementation of Particle Swarm Optimization for Electric Vehicles System -- 3.5 Conclusion -- References -- Chapter 4 Small-Signal Modelling Analysis of Three-Phase Power Converters for EV Applications -- 4.1 Introduction -- 4.2 Overall System Modelling -- 4.2.1 PMSM Dynamic Model -- 4.2.2 VSI-Fed SPMSM Mathematical Model -- 4.3 Mathematical Analysis and Derivation of the Small-Signal Model -- 4.3.1 The Small-Signal Model of the System -- 4.3.2 Small-Signal Model Transfer Functions -- 4.3.3 Bode Diagram Verification -- 4.4 Conclusion -- References -- Chapter 5 Energy Management of Hybrid Energy Storage System in PHEV With Various Driving Mode -- 5.1 Introduction -- 5.1.1 Architecture of PHEV -- 5.1.2 Energy Storage System -- 5.2 Problem Description and Formulation -- 5.2.1 Problem Description -- 5.2.2 Objective -- 5.2.3 Problem Formulation -- 5.3 Modeling of HESS -- 5.4 Results and Discussion -- 5.4.1 Case 1: Gradual Acceleration of Vehicle -- 5.4.2 Case 2: Gradual Deceleration of Vehicle -- 5.4.3 Case 3: Unsystematic Acceleration and Deceleration of Vehicle -- 5.5 Conclusion -- References -- Chapter 6 Reliability Approach for the Power Semiconductor Devices in EV Applications -- 6.1 Introduction -- 6.2 Conventional Methods for Prediction of Reliability for Power Converters -- 6.3 Calculation Process of the Electronic Component 6.4 Reliability Prediction for MOSFETs -- 6.5 Example: Reliability Prediction for Power Semiconductor Device -- 6.6 Example: Reliability Prediction for Resistor -- 6.7 Conclusions -- References -- Chapter 7 Modeling, Simulation and Analysis of Drive Cycles for PMSM-Based HEV With Optimal Battery Type -- 7.1 Introduction -- 7.2 Modeling of Hybrid Electric Vehicle -- 7.2.1 Architectures Available for HEV -- 7.3 Series-Parallel Hybrid Architecture -- 7.4 Analysis With Different Drive Cycles -- 7.4.1 Acceleration Drive Cycle -- 7.4.1.1 For 30% State of Charge -- 7.4.1.2 For 60% State of Charge -- 7.4.1.3 For 90% State of Charge -- 7.5 Cruising Drive Cycle -- 7.6 Deceleration Drive Cycle -- 7.6.1 For 30% State of Charge -- 7.6.2 For 60% State of Charge -- 7.6.3 For 90% State of Charge -- 7.7 Analysis of Battery Types -- 7.8 Conclusion -- References -- Chapter 8 Modified Firefly-Based Maximum Power Point Tracking Algorithm for PV Systems Under Partial Shading Conditions -- 8.1 Introduction -- 8.2 System Block Diagram Specifications -- 8.3 Photovoltaic System Modeling -- 8.4 Boost Converter Design -- 8.5 Incremental Conductance Algorithm -- 8.6 Under Partial Shading Conditions -- 8.7 Firefly Algorithm -- 8.8 Implementation Procedure -- 8.9 Modified Firefly Logic -- 8.10 Results and Discussions -- 8.11 Conclusion -- References -- Chapter 9 Induction Motor Control Schemes for Hybrid Electric Vehicles/Electric Vehicles -- 9.1 Introduction -- 9.2 Control Schemes of IM -- 9.2.1 Scalar Control -- 9.3 Vector Control -- 9.4 Modeling of Induction Machine -- 9.5 Controller Design -- 9.6 Simulations and Results -- 9.7 Conclusions -- References -- Chapter 10 Intelligent Hybrid Battery Management System for Electric Vehicle -- 10.1 Introduction -- 10.2 Energy Storage System (ESS) -- 10.2.1 Lithium-Ion Batteries -- 10.2.1.1 Lithium Battery Challenges 10.2.2 Lithium-Ion Cell Modeling -- 10.2.3 Nickel-Metal Hydride Batteries -- 10.2.4 Lead-Acid Batteries -- 10.2.5 Ultracapacitors (UC) -- 10.2.5.1 Ultracapacitor Equivalent Circuit -- 10.2.6 Other Battery Technologies -- 10.3 Battery Management System -- 10.3.1 Need for BMS -- 10.3.2 BMS Components -- 10.3.3 BMS Architecture/Topology -- 10.3.4 SOC/SOH Determination -- 10.3.5 Cell Balancing Algorithms -- 10.3.6 Data Communication -- 10.3.7 The Logic and Safety Control -- 10.3.7.1 Power Up/Down Control -- 10.3.7.2 Charging and Discharging Control -- 10.4 Intelligent Battery Management System -- 10.4.1 Rule-Based Control -- 10.4.2 Optimization-Based Control -- 10.4.3 AI-Based Control -- 10.4.4 Traffic (Look Ahead Method)-Based Control -- 10.5 Conclusion -- References -- Chapter 11 A Comprehensive Study on Various Topologies of Permanent Magnet Motor Drives for Electric Vehicles Application -- 11.1 Introduction -- 11.2 Proposed Design Considerations of PMSM for Electric Vehicle -- 11.3 Impact of Digital Controllers -- 11.3.1 DSP-Based Digital Controller -- 11.3.2 FPGA-Based Digital Controller -- 11.4 Electric Vehicles Smart Infrastructure -- 11.5 Conclusion -- References -- Chapter 12 A New Approach for Flux Computation Using Intelligent Technique for Direct Flux Oriented Control of Asynchronous Motor -- 12.1 Introduction -- 12.2 Direct Field-Oriented Control of IM Drive -- 12.3 Conventional Flux Estimator -- 12.4 Rotor Flux Estimator Using CFBP-NN -- 12.5 Comparison of Proposed CFBP-NN With Existing CFBP-NN for Flux Estimation -- 12.6 Performance Study of Proposed CFBP-NN Using MATLAB/SIMULINK -- 12.7 Practical Implementation Aspects of CFBP-NNBased Flux Estimator -- 12.8 Conclusion -- References -- Chapter 13 A Review on Isolated DC-DC Converters Used in Renewable Power Generation Applications -- 13.1 Introduction 13.2 Isolated DC-DC Converter for Electric Vehicle Applications -- 13.3 Three-Phase DC-DC Converter -- 13.4 Conclusion -- References -- Chapter 14 Basics of Vector Control of Asynchronous Induction Motor and Introduction to Fuzzy Controller -- 14.1 Introduction -- 14.2 Dynamics of Separately Excited DC Machine -- 14.3 Clarke and Park Transforms -- 14.4 Model Explanation -- 14.5 Motor Parameters -- 14.6 PI Regulators Tuning -- 14.7 Future Scope to Include Fuzzy Control in Place of PI Controller -- 14.8 Conclusion -- References -- Index -- EULA. |
Beschreibung: | xvi, 261 Seiten Illustrationen, Diagramme |
ISBN: | 9781119681908 1119681901 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047498232 | ||
003 | DE-604 | ||
005 | 20211210 | ||
007 | t | ||
008 | 211006s2020 a||| |||| 00||| eng d | ||
020 | |a 9781119681908 |c hbk. : ca. EUR 178.37 (DE) |9 978-1-119-68190-8 | ||
020 | |a 1119681901 |c hbk. |9 1-119-68190-1 | ||
035 | |a (OCoLC)1225192329 | ||
035 | |a (DE-599)BVBBV047498232 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-860 |a DE-1043 | ||
082 | 0 | |a 629.272 | |
084 | |a ZO 4480 |0 (DE-625)157736: |2 rvk | ||
084 | |a ZO 4490 |0 (DE-625)157737: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
245 | 1 | 0 | |a Artificial intelligent techniques for electric and hybrid electric vehicles |c edited by Chitra A., P. Sanjeevikumar, Jens Bo Holm-Nielsen and S. Himavathi |
264 | 1 | |a Beverly, MA |b Scrivener Publishing |c 2020 | |
264 | 1 | |a Hoboken, NJ |b Wiley | |
300 | |a xvi, 261 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 IoT-Based Battery Management System for Hybrid Electric Vehicle -- 1.1 Introduction -- 1.2 Battery Configurations -- 1.3 Types of Batteries for HEV and EV -- 1.4 Functional Blocks of BMS -- 1.4.1 Components of BMS System -- 1.5 IoT-Based Battery Monitoring System -- References -- Chapter 2 A Noble Control Approach for Brushless Direct Current Motor Drive Using Artificial Intelligence for Optimum Operation of the E -- 2.1 Introduction -- 2.2 Introduction of Electric Vehicle -- 2.2.1 Historical Background of Electric Vehicle -- 2.2.2 Advantages of Electric Vehicle -- 2.2.2.1 Environmental -- 2.2.2.2 Mechanical -- 2.2.2.3 Energy Efficiency -- 2.2.2.4 Cost of Charging Electric Vehicles -- 2.2.2.5 The Grid Stabilization -- 2.2.2.6 Range -- 2.2.2.7 Heating of EVs -- 2.2.3 Artificial Intelligence -- 2.2.4 Basics of Artificial Intelligence -- 2.2.5 Advantages of Artificial Intelligence in Electric Vehicle -- 2.3 Brushless DC Motor -- 2.4 Mathematical Representation Brushless DC Motor -- 2.5 Closed-Loop Model of BLDC Motor Drive -- 2.5.1 P-I Controller & -- I-P Controller -- 2.6 PID Controller -- 2.7 Fuzzy Control -- 2.8 Auto-Tuning Type Fuzzy PID Controller -- 2.9 Genetic Algorithm -- 2.10 Artificial Neural Network-Based Controller -- 2.11 BLDC Motor Speed Controller With ANN-Based PID Controller -- 2.11.1 PID Controller-Based on Neuro Action -- 2.11.2 ANN-Based on PID Controller -- 2.12 Analysis of Different Speed Controllers -- 2.13 Conclusion -- References -- Chapter 3 Optimization Techniques Used in Active Magnetic Bearing System for Electric Vehicles -- 3.1 Introduction -- 3.2 Basic Components of an Active Magnetic Bearing (AMB) -- 3.2.1 Electromagnet Actuator -- 3.2.2 Rotor -- 3.2.3 Controller -- 3.2.3.1 Position Controller -- 3.2.3.2 Current Controller -- 3.2.4 Sensors | ||
500 | |a 3.2.4.1 Position Sensor -- 3.2.4.2 Current Sensor -- 3.2.5 Power Amplifier -- 3.3 Active Magnetic Bearing in Electric Vehicles System -- 3.4 Control Strategies of Active Magnetic Bearing for Electric Vehicles System -- 3.4.1 Fuzzy Logic Controller (FLC) -- 3.4.1.1 Designing of Fuzzy Logic Controller (FLC) Using MATLAB -- 3.4.2 Artificial Neural Network (ANN) -- 3.4.2.1 Artificial Neural Network Using MATLAB -- 3.4.3 Particle Swarm Optimization (PSO) -- 3.4.4 Particle Swarm Optimization (PSO) Algorithm -- 3.4.4.1 Implementation of Particle Swarm Optimization for Electric Vehicles System -- 3.5 Conclusion -- References -- Chapter 4 Small-Signal Modelling Analysis of Three-Phase Power Converters for EV Applications -- 4.1 Introduction -- 4.2 Overall System Modelling -- 4.2.1 PMSM Dynamic Model -- 4.2.2 VSI-Fed SPMSM Mathematical Model -- 4.3 Mathematical Analysis and Derivation of the Small-Signal Model -- 4.3.1 The Small-Signal Model of the System -- 4.3.2 Small-Signal Model Transfer Functions -- 4.3.3 Bode Diagram Verification -- 4.4 Conclusion -- References -- Chapter 5 Energy Management of Hybrid Energy Storage System in PHEV With Various Driving Mode -- 5.1 Introduction -- 5.1.1 Architecture of PHEV -- 5.1.2 Energy Storage System -- 5.2 Problem Description and Formulation -- 5.2.1 Problem Description -- 5.2.2 Objective -- 5.2.3 Problem Formulation -- 5.3 Modeling of HESS -- 5.4 Results and Discussion -- 5.4.1 Case 1: Gradual Acceleration of Vehicle -- 5.4.2 Case 2: Gradual Deceleration of Vehicle -- 5.4.3 Case 3: Unsystematic Acceleration and Deceleration of Vehicle -- 5.5 Conclusion -- References -- Chapter 6 Reliability Approach for the Power Semiconductor Devices in EV Applications -- 6.1 Introduction -- 6.2 Conventional Methods for Prediction of Reliability for Power Converters -- 6.3 Calculation Process of the Electronic Component | ||
500 | |a 6.4 Reliability Prediction for MOSFETs -- 6.5 Example: Reliability Prediction for Power Semiconductor Device -- 6.6 Example: Reliability Prediction for Resistor -- 6.7 Conclusions -- References -- Chapter 7 Modeling, Simulation and Analysis of Drive Cycles for PMSM-Based HEV With Optimal Battery Type -- 7.1 Introduction -- 7.2 Modeling of Hybrid Electric Vehicle -- 7.2.1 Architectures Available for HEV -- 7.3 Series-Parallel Hybrid Architecture -- 7.4 Analysis With Different Drive Cycles -- 7.4.1 Acceleration Drive Cycle -- 7.4.1.1 For 30% State of Charge -- 7.4.1.2 For 60% State of Charge -- 7.4.1.3 For 90% State of Charge -- 7.5 Cruising Drive Cycle -- 7.6 Deceleration Drive Cycle -- 7.6.1 For 30% State of Charge -- 7.6.2 For 60% State of Charge -- 7.6.3 For 90% State of Charge -- 7.7 Analysis of Battery Types -- 7.8 Conclusion -- References -- Chapter 8 Modified Firefly-Based Maximum Power Point Tracking Algorithm for PV Systems Under Partial Shading Conditions -- 8.1 Introduction -- 8.2 System Block Diagram Specifications -- 8.3 Photovoltaic System Modeling -- 8.4 Boost Converter Design -- 8.5 Incremental Conductance Algorithm -- 8.6 Under Partial Shading Conditions -- 8.7 Firefly Algorithm -- 8.8 Implementation Procedure -- 8.9 Modified Firefly Logic -- 8.10 Results and Discussions -- 8.11 Conclusion -- References -- Chapter 9 Induction Motor Control Schemes for Hybrid Electric Vehicles/Electric Vehicles -- 9.1 Introduction -- 9.2 Control Schemes of IM -- 9.2.1 Scalar Control -- 9.3 Vector Control -- 9.4 Modeling of Induction Machine -- 9.5 Controller Design -- 9.6 Simulations and Results -- 9.7 Conclusions -- References -- Chapter 10 Intelligent Hybrid Battery Management System for Electric Vehicle -- 10.1 Introduction -- 10.2 Energy Storage System (ESS) -- 10.2.1 Lithium-Ion Batteries -- 10.2.1.1 Lithium Battery Challenges | ||
500 | |a 10.2.2 Lithium-Ion Cell Modeling -- 10.2.3 Nickel-Metal Hydride Batteries -- 10.2.4 Lead-Acid Batteries -- 10.2.5 Ultracapacitors (UC) -- 10.2.5.1 Ultracapacitor Equivalent Circuit -- 10.2.6 Other Battery Technologies -- 10.3 Battery Management System -- 10.3.1 Need for BMS -- 10.3.2 BMS Components -- 10.3.3 BMS Architecture/Topology -- 10.3.4 SOC/SOH Determination -- 10.3.5 Cell Balancing Algorithms -- 10.3.6 Data Communication -- 10.3.7 The Logic and Safety Control -- 10.3.7.1 Power Up/Down Control -- 10.3.7.2 Charging and Discharging Control -- 10.4 Intelligent Battery Management System -- 10.4.1 Rule-Based Control -- 10.4.2 Optimization-Based Control -- 10.4.3 AI-Based Control -- 10.4.4 Traffic (Look Ahead Method)-Based Control -- 10.5 Conclusion -- References -- Chapter 11 A Comprehensive Study on Various Topologies of Permanent Magnet Motor Drives for Electric Vehicles Application -- 11.1 Introduction -- 11.2 Proposed Design Considerations of PMSM for Electric Vehicle -- 11.3 Impact of Digital Controllers -- 11.3.1 DSP-Based Digital Controller -- 11.3.2 FPGA-Based Digital Controller -- 11.4 Electric Vehicles Smart Infrastructure -- 11.5 Conclusion -- References -- Chapter 12 A New Approach for Flux Computation Using Intelligent Technique for Direct Flux Oriented Control of Asynchronous Motor -- 12.1 Introduction -- 12.2 Direct Field-Oriented Control of IM Drive -- 12.3 Conventional Flux Estimator -- 12.4 Rotor Flux Estimator Using CFBP-NN -- 12.5 Comparison of Proposed CFBP-NN With Existing CFBP-NN for Flux Estimation -- 12.6 Performance Study of Proposed CFBP-NN Using MATLAB/SIMULINK -- 12.7 Practical Implementation Aspects of CFBP-NNBased Flux Estimator -- 12.8 Conclusion -- References -- Chapter 13 A Review on Isolated DC-DC Converters Used in Renewable Power Generation Applications -- 13.1 Introduction | ||
500 | |a 13.2 Isolated DC-DC Converter for Electric Vehicle Applications -- 13.3 Three-Phase DC-DC Converter -- 13.4 Conclusion -- References -- Chapter 14 Basics of Vector Control of Asynchronous Induction Motor and Introduction to Fuzzy Controller -- 14.1 Introduction -- 14.2 Dynamics of Separately Excited DC Machine -- 14.3 Clarke and Park Transforms -- 14.4 Model Explanation -- 14.5 Motor Parameters -- 14.6 PI Regulators Tuning -- 14.7 Future Scope to Include Fuzzy Control in Place of PI Controller -- 14.8 Conclusion -- References -- Index -- EULA. | ||
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektrofahrzeug |0 (DE-588)4151795-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hybridfahrzeug |0 (DE-588)7524499-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 1 | |a Elektrofahrzeug |0 (DE-588)4151795-7 |D s |
689 | 0 | 2 | |a Hybridfahrzeug |0 (DE-588)7524499-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Annamalai, Chitra |e Sonstige |0 (DE-588)1228834202 |4 oth | |
700 | 1 | |a Sanjeevikumar, Padmanaban |d 1978- |e Sonstige |0 (DE-588)1220850691 |4 oth | |
700 | 1 | |a Holm-Nielsen, Jens Bo |e Sonstige |0 (DE-588)1157033725 |4 oth | |
700 | 1 | |a Himavathi, S. |e Sonstige |0 (DE-588)1220848328 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-119-68190-8 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-119-68203-5 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-119-68201-1 |
999 | |a oai:aleph.bib-bvb.de:BVB01-032899340 |
Datensatz im Suchindex
_version_ | 1804182828354633728 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author_GND | (DE-588)1228834202 (DE-588)1220850691 (DE-588)1157033725 (DE-588)1220848328 |
building | Verbundindex |
bvnumber | BV047498232 |
classification_rvk | ZO 4480 ZO 4490 ST 300 |
ctrlnum | (OCoLC)1225192329 (DE-599)BVBBV047498232 |
dewey-full | 629.272 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.272 |
dewey-search | 629.272 |
dewey-sort | 3629.272 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Informatik Verkehr / Transport |
discipline_str_mv | Informatik Verkehr / Transport |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10052nam a2200541zc 4500</leader><controlfield tag="001">BV047498232</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211210 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">211006s2020 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119681908</subfield><subfield code="c">hbk. : ca. EUR 178.37 (DE)</subfield><subfield code="9">978-1-119-68190-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119681901</subfield><subfield code="c">hbk.</subfield><subfield code="9">1-119-68190-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1225192329</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047498232</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-860</subfield><subfield code="a">DE-1043</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.272</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZO 4480</subfield><subfield code="0">(DE-625)157736:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZO 4490</subfield><subfield code="0">(DE-625)157737:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial intelligent techniques for electric and hybrid electric vehicles</subfield><subfield code="c">edited by Chitra A., P. Sanjeevikumar, Jens Bo Holm-Nielsen and S. Himavathi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beverly, MA</subfield><subfield code="b">Scrivener Publishing</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 261 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 IoT-Based Battery Management System for Hybrid Electric Vehicle -- 1.1 Introduction -- 1.2 Battery Configurations -- 1.3 Types of Batteries for HEV and EV -- 1.4 Functional Blocks of BMS -- 1.4.1 Components of BMS System -- 1.5 IoT-Based Battery Monitoring System -- References -- Chapter 2 A Noble Control Approach for Brushless Direct Current Motor Drive Using Artificial Intelligence for Optimum Operation of the E -- 2.1 Introduction -- 2.2 Introduction of Electric Vehicle -- 2.2.1 Historical Background of Electric Vehicle -- 2.2.2 Advantages of Electric Vehicle -- 2.2.2.1 Environmental -- 2.2.2.2 Mechanical -- 2.2.2.3 Energy Efficiency -- 2.2.2.4 Cost of Charging Electric Vehicles -- 2.2.2.5 The Grid Stabilization -- 2.2.2.6 Range -- 2.2.2.7 Heating of EVs -- 2.2.3 Artificial Intelligence -- 2.2.4 Basics of Artificial Intelligence -- 2.2.5 Advantages of Artificial Intelligence in Electric Vehicle -- 2.3 Brushless DC Motor -- 2.4 Mathematical Representation Brushless DC Motor -- 2.5 Closed-Loop Model of BLDC Motor Drive -- 2.5.1 P-I Controller &amp -- I-P Controller -- 2.6 PID Controller -- 2.7 Fuzzy Control -- 2.8 Auto-Tuning Type Fuzzy PID Controller -- 2.9 Genetic Algorithm -- 2.10 Artificial Neural Network-Based Controller -- 2.11 BLDC Motor Speed Controller With ANN-Based PID Controller -- 2.11.1 PID Controller-Based on Neuro Action -- 2.11.2 ANN-Based on PID Controller -- 2.12 Analysis of Different Speed Controllers -- 2.13 Conclusion -- References -- Chapter 3 Optimization Techniques Used in Active Magnetic Bearing System for Electric Vehicles -- 3.1 Introduction -- 3.2 Basic Components of an Active Magnetic Bearing (AMB) -- 3.2.1 Electromagnet Actuator -- 3.2.2 Rotor -- 3.2.3 Controller -- 3.2.3.1 Position Controller -- 3.2.3.2 Current Controller -- 3.2.4 Sensors</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3.2.4.1 Position Sensor -- 3.2.4.2 Current Sensor -- 3.2.5 Power Amplifier -- 3.3 Active Magnetic Bearing in Electric Vehicles System -- 3.4 Control Strategies of Active Magnetic Bearing for Electric Vehicles System -- 3.4.1 Fuzzy Logic Controller (FLC) -- 3.4.1.1 Designing of Fuzzy Logic Controller (FLC) Using MATLAB -- 3.4.2 Artificial Neural Network (ANN) -- 3.4.2.1 Artificial Neural Network Using MATLAB -- 3.4.3 Particle Swarm Optimization (PSO) -- 3.4.4 Particle Swarm Optimization (PSO) Algorithm -- 3.4.4.1 Implementation of Particle Swarm Optimization for Electric Vehicles System -- 3.5 Conclusion -- References -- Chapter 4 Small-Signal Modelling Analysis of Three-Phase Power Converters for EV Applications -- 4.1 Introduction -- 4.2 Overall System Modelling -- 4.2.1 PMSM Dynamic Model -- 4.2.2 VSI-Fed SPMSM Mathematical Model -- 4.3 Mathematical Analysis and Derivation of the Small-Signal Model -- 4.3.1 The Small-Signal Model of the System -- 4.3.2 Small-Signal Model Transfer Functions -- 4.3.3 Bode Diagram Verification -- 4.4 Conclusion -- References -- Chapter 5 Energy Management of Hybrid Energy Storage System in PHEV With Various Driving Mode -- 5.1 Introduction -- 5.1.1 Architecture of PHEV -- 5.1.2 Energy Storage System -- 5.2 Problem Description and Formulation -- 5.2.1 Problem Description -- 5.2.2 Objective -- 5.2.3 Problem Formulation -- 5.3 Modeling of HESS -- 5.4 Results and Discussion -- 5.4.1 Case 1: Gradual Acceleration of Vehicle -- 5.4.2 Case 2: Gradual Deceleration of Vehicle -- 5.4.3 Case 3: Unsystematic Acceleration and Deceleration of Vehicle -- 5.5 Conclusion -- References -- Chapter 6 Reliability Approach for the Power Semiconductor Devices in EV Applications -- 6.1 Introduction -- 6.2 Conventional Methods for Prediction of Reliability for Power Converters -- 6.3 Calculation Process of the Electronic Component</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">6.4 Reliability Prediction for MOSFETs -- 6.5 Example: Reliability Prediction for Power Semiconductor Device -- 6.6 Example: Reliability Prediction for Resistor -- 6.7 Conclusions -- References -- Chapter 7 Modeling, Simulation and Analysis of Drive Cycles for PMSM-Based HEV With Optimal Battery Type -- 7.1 Introduction -- 7.2 Modeling of Hybrid Electric Vehicle -- 7.2.1 Architectures Available for HEV -- 7.3 Series-Parallel Hybrid Architecture -- 7.4 Analysis With Different Drive Cycles -- 7.4.1 Acceleration Drive Cycle -- 7.4.1.1 For 30% State of Charge -- 7.4.1.2 For 60% State of Charge -- 7.4.1.3 For 90% State of Charge -- 7.5 Cruising Drive Cycle -- 7.6 Deceleration Drive Cycle -- 7.6.1 For 30% State of Charge -- 7.6.2 For 60% State of Charge -- 7.6.3 For 90% State of Charge -- 7.7 Analysis of Battery Types -- 7.8 Conclusion -- References -- Chapter 8 Modified Firefly-Based Maximum Power Point Tracking Algorithm for PV Systems Under Partial Shading Conditions -- 8.1 Introduction -- 8.2 System Block Diagram Specifications -- 8.3 Photovoltaic System Modeling -- 8.4 Boost Converter Design -- 8.5 Incremental Conductance Algorithm -- 8.6 Under Partial Shading Conditions -- 8.7 Firefly Algorithm -- 8.8 Implementation Procedure -- 8.9 Modified Firefly Logic -- 8.10 Results and Discussions -- 8.11 Conclusion -- References -- Chapter 9 Induction Motor Control Schemes for Hybrid Electric Vehicles/Electric Vehicles -- 9.1 Introduction -- 9.2 Control Schemes of IM -- 9.2.1 Scalar Control -- 9.3 Vector Control -- 9.4 Modeling of Induction Machine -- 9.5 Controller Design -- 9.6 Simulations and Results -- 9.7 Conclusions -- References -- Chapter 10 Intelligent Hybrid Battery Management System for Electric Vehicle -- 10.1 Introduction -- 10.2 Energy Storage System (ESS) -- 10.2.1 Lithium-Ion Batteries -- 10.2.1.1 Lithium Battery Challenges</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">10.2.2 Lithium-Ion Cell Modeling -- 10.2.3 Nickel-Metal Hydride Batteries -- 10.2.4 Lead-Acid Batteries -- 10.2.5 Ultracapacitors (UC) -- 10.2.5.1 Ultracapacitor Equivalent Circuit -- 10.2.6 Other Battery Technologies -- 10.3 Battery Management System -- 10.3.1 Need for BMS -- 10.3.2 BMS Components -- 10.3.3 BMS Architecture/Topology -- 10.3.4 SOC/SOH Determination -- 10.3.5 Cell Balancing Algorithms -- 10.3.6 Data Communication -- 10.3.7 The Logic and Safety Control -- 10.3.7.1 Power Up/Down Control -- 10.3.7.2 Charging and Discharging Control -- 10.4 Intelligent Battery Management System -- 10.4.1 Rule-Based Control -- 10.4.2 Optimization-Based Control -- 10.4.3 AI-Based Control -- 10.4.4 Traffic (Look Ahead Method)-Based Control -- 10.5 Conclusion -- References -- Chapter 11 A Comprehensive Study on Various Topologies of Permanent Magnet Motor Drives for Electric Vehicles Application -- 11.1 Introduction -- 11.2 Proposed Design Considerations of PMSM for Electric Vehicle -- 11.3 Impact of Digital Controllers -- 11.3.1 DSP-Based Digital Controller -- 11.3.2 FPGA-Based Digital Controller -- 11.4 Electric Vehicles Smart Infrastructure -- 11.5 Conclusion -- References -- Chapter 12 A New Approach for Flux Computation Using Intelligent Technique for Direct Flux Oriented Control of Asynchronous Motor -- 12.1 Introduction -- 12.2 Direct Field-Oriented Control of IM Drive -- 12.3 Conventional Flux Estimator -- 12.4 Rotor Flux Estimator Using CFBP-NN -- 12.5 Comparison of Proposed CFBP-NN With Existing CFBP-NN for Flux Estimation -- 12.6 Performance Study of Proposed CFBP-NN Using MATLAB/SIMULINK -- 12.7 Practical Implementation Aspects of CFBP-NNBased Flux Estimator -- 12.8 Conclusion -- References -- Chapter 13 A Review on Isolated DC-DC Converters Used in Renewable Power Generation Applications -- 13.1 Introduction</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">13.2 Isolated DC-DC Converter for Electric Vehicle Applications -- 13.3 Three-Phase DC-DC Converter -- 13.4 Conclusion -- References -- Chapter 14 Basics of Vector Control of Asynchronous Induction Motor and Introduction to Fuzzy Controller -- 14.1 Introduction -- 14.2 Dynamics of Separately Excited DC Machine -- 14.3 Clarke and Park Transforms -- 14.4 Model Explanation -- 14.5 Motor Parameters -- 14.6 PI Regulators Tuning -- 14.7 Future Scope to Include Fuzzy Control in Place of PI Controller -- 14.8 Conclusion -- References -- Index -- EULA.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrofahrzeug</subfield><subfield code="0">(DE-588)4151795-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hybridfahrzeug</subfield><subfield code="0">(DE-588)7524499-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elektrofahrzeug</subfield><subfield code="0">(DE-588)4151795-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Hybridfahrzeug</subfield><subfield code="0">(DE-588)7524499-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Annamalai, Chitra</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1228834202</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanjeevikumar, Padmanaban</subfield><subfield code="d">1978-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1220850691</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Holm-Nielsen, Jens Bo</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1157033725</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Himavathi, S.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1220848328</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-119-68190-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-119-68203-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-119-68201-1</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032899340</subfield></datafield></record></collection> |
id | DE-604.BV047498232 |
illustrated | Illustrated |
index_date | 2024-07-03T18:17:56Z |
indexdate | 2024-07-10T09:13:45Z |
institution | BVB |
isbn | 9781119681908 1119681901 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032899340 |
oclc_num | 1225192329 |
open_access_boolean | |
owner | DE-860 DE-1043 |
owner_facet | DE-860 DE-1043 |
physical | xvi, 261 Seiten Illustrationen, Diagramme |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Scrivener Publishing Wiley |
record_format | marc |
spelling | Artificial intelligent techniques for electric and hybrid electric vehicles edited by Chitra A., P. Sanjeevikumar, Jens Bo Holm-Nielsen and S. Himavathi Beverly, MA Scrivener Publishing 2020 Hoboken, NJ Wiley xvi, 261 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 IoT-Based Battery Management System for Hybrid Electric Vehicle -- 1.1 Introduction -- 1.2 Battery Configurations -- 1.3 Types of Batteries for HEV and EV -- 1.4 Functional Blocks of BMS -- 1.4.1 Components of BMS System -- 1.5 IoT-Based Battery Monitoring System -- References -- Chapter 2 A Noble Control Approach for Brushless Direct Current Motor Drive Using Artificial Intelligence for Optimum Operation of the E -- 2.1 Introduction -- 2.2 Introduction of Electric Vehicle -- 2.2.1 Historical Background of Electric Vehicle -- 2.2.2 Advantages of Electric Vehicle -- 2.2.2.1 Environmental -- 2.2.2.2 Mechanical -- 2.2.2.3 Energy Efficiency -- 2.2.2.4 Cost of Charging Electric Vehicles -- 2.2.2.5 The Grid Stabilization -- 2.2.2.6 Range -- 2.2.2.7 Heating of EVs -- 2.2.3 Artificial Intelligence -- 2.2.4 Basics of Artificial Intelligence -- 2.2.5 Advantages of Artificial Intelligence in Electric Vehicle -- 2.3 Brushless DC Motor -- 2.4 Mathematical Representation Brushless DC Motor -- 2.5 Closed-Loop Model of BLDC Motor Drive -- 2.5.1 P-I Controller & -- I-P Controller -- 2.6 PID Controller -- 2.7 Fuzzy Control -- 2.8 Auto-Tuning Type Fuzzy PID Controller -- 2.9 Genetic Algorithm -- 2.10 Artificial Neural Network-Based Controller -- 2.11 BLDC Motor Speed Controller With ANN-Based PID Controller -- 2.11.1 PID Controller-Based on Neuro Action -- 2.11.2 ANN-Based on PID Controller -- 2.12 Analysis of Different Speed Controllers -- 2.13 Conclusion -- References -- Chapter 3 Optimization Techniques Used in Active Magnetic Bearing System for Electric Vehicles -- 3.1 Introduction -- 3.2 Basic Components of an Active Magnetic Bearing (AMB) -- 3.2.1 Electromagnet Actuator -- 3.2.2 Rotor -- 3.2.3 Controller -- 3.2.3.1 Position Controller -- 3.2.3.2 Current Controller -- 3.2.4 Sensors 3.2.4.1 Position Sensor -- 3.2.4.2 Current Sensor -- 3.2.5 Power Amplifier -- 3.3 Active Magnetic Bearing in Electric Vehicles System -- 3.4 Control Strategies of Active Magnetic Bearing for Electric Vehicles System -- 3.4.1 Fuzzy Logic Controller (FLC) -- 3.4.1.1 Designing of Fuzzy Logic Controller (FLC) Using MATLAB -- 3.4.2 Artificial Neural Network (ANN) -- 3.4.2.1 Artificial Neural Network Using MATLAB -- 3.4.3 Particle Swarm Optimization (PSO) -- 3.4.4 Particle Swarm Optimization (PSO) Algorithm -- 3.4.4.1 Implementation of Particle Swarm Optimization for Electric Vehicles System -- 3.5 Conclusion -- References -- Chapter 4 Small-Signal Modelling Analysis of Three-Phase Power Converters for EV Applications -- 4.1 Introduction -- 4.2 Overall System Modelling -- 4.2.1 PMSM Dynamic Model -- 4.2.2 VSI-Fed SPMSM Mathematical Model -- 4.3 Mathematical Analysis and Derivation of the Small-Signal Model -- 4.3.1 The Small-Signal Model of the System -- 4.3.2 Small-Signal Model Transfer Functions -- 4.3.3 Bode Diagram Verification -- 4.4 Conclusion -- References -- Chapter 5 Energy Management of Hybrid Energy Storage System in PHEV With Various Driving Mode -- 5.1 Introduction -- 5.1.1 Architecture of PHEV -- 5.1.2 Energy Storage System -- 5.2 Problem Description and Formulation -- 5.2.1 Problem Description -- 5.2.2 Objective -- 5.2.3 Problem Formulation -- 5.3 Modeling of HESS -- 5.4 Results and Discussion -- 5.4.1 Case 1: Gradual Acceleration of Vehicle -- 5.4.2 Case 2: Gradual Deceleration of Vehicle -- 5.4.3 Case 3: Unsystematic Acceleration and Deceleration of Vehicle -- 5.5 Conclusion -- References -- Chapter 6 Reliability Approach for the Power Semiconductor Devices in EV Applications -- 6.1 Introduction -- 6.2 Conventional Methods for Prediction of Reliability for Power Converters -- 6.3 Calculation Process of the Electronic Component 6.4 Reliability Prediction for MOSFETs -- 6.5 Example: Reliability Prediction for Power Semiconductor Device -- 6.6 Example: Reliability Prediction for Resistor -- 6.7 Conclusions -- References -- Chapter 7 Modeling, Simulation and Analysis of Drive Cycles for PMSM-Based HEV With Optimal Battery Type -- 7.1 Introduction -- 7.2 Modeling of Hybrid Electric Vehicle -- 7.2.1 Architectures Available for HEV -- 7.3 Series-Parallel Hybrid Architecture -- 7.4 Analysis With Different Drive Cycles -- 7.4.1 Acceleration Drive Cycle -- 7.4.1.1 For 30% State of Charge -- 7.4.1.2 For 60% State of Charge -- 7.4.1.3 For 90% State of Charge -- 7.5 Cruising Drive Cycle -- 7.6 Deceleration Drive Cycle -- 7.6.1 For 30% State of Charge -- 7.6.2 For 60% State of Charge -- 7.6.3 For 90% State of Charge -- 7.7 Analysis of Battery Types -- 7.8 Conclusion -- References -- Chapter 8 Modified Firefly-Based Maximum Power Point Tracking Algorithm for PV Systems Under Partial Shading Conditions -- 8.1 Introduction -- 8.2 System Block Diagram Specifications -- 8.3 Photovoltaic System Modeling -- 8.4 Boost Converter Design -- 8.5 Incremental Conductance Algorithm -- 8.6 Under Partial Shading Conditions -- 8.7 Firefly Algorithm -- 8.8 Implementation Procedure -- 8.9 Modified Firefly Logic -- 8.10 Results and Discussions -- 8.11 Conclusion -- References -- Chapter 9 Induction Motor Control Schemes for Hybrid Electric Vehicles/Electric Vehicles -- 9.1 Introduction -- 9.2 Control Schemes of IM -- 9.2.1 Scalar Control -- 9.3 Vector Control -- 9.4 Modeling of Induction Machine -- 9.5 Controller Design -- 9.6 Simulations and Results -- 9.7 Conclusions -- References -- Chapter 10 Intelligent Hybrid Battery Management System for Electric Vehicle -- 10.1 Introduction -- 10.2 Energy Storage System (ESS) -- 10.2.1 Lithium-Ion Batteries -- 10.2.1.1 Lithium Battery Challenges 10.2.2 Lithium-Ion Cell Modeling -- 10.2.3 Nickel-Metal Hydride Batteries -- 10.2.4 Lead-Acid Batteries -- 10.2.5 Ultracapacitors (UC) -- 10.2.5.1 Ultracapacitor Equivalent Circuit -- 10.2.6 Other Battery Technologies -- 10.3 Battery Management System -- 10.3.1 Need for BMS -- 10.3.2 BMS Components -- 10.3.3 BMS Architecture/Topology -- 10.3.4 SOC/SOH Determination -- 10.3.5 Cell Balancing Algorithms -- 10.3.6 Data Communication -- 10.3.7 The Logic and Safety Control -- 10.3.7.1 Power Up/Down Control -- 10.3.7.2 Charging and Discharging Control -- 10.4 Intelligent Battery Management System -- 10.4.1 Rule-Based Control -- 10.4.2 Optimization-Based Control -- 10.4.3 AI-Based Control -- 10.4.4 Traffic (Look Ahead Method)-Based Control -- 10.5 Conclusion -- References -- Chapter 11 A Comprehensive Study on Various Topologies of Permanent Magnet Motor Drives for Electric Vehicles Application -- 11.1 Introduction -- 11.2 Proposed Design Considerations of PMSM for Electric Vehicle -- 11.3 Impact of Digital Controllers -- 11.3.1 DSP-Based Digital Controller -- 11.3.2 FPGA-Based Digital Controller -- 11.4 Electric Vehicles Smart Infrastructure -- 11.5 Conclusion -- References -- Chapter 12 A New Approach for Flux Computation Using Intelligent Technique for Direct Flux Oriented Control of Asynchronous Motor -- 12.1 Introduction -- 12.2 Direct Field-Oriented Control of IM Drive -- 12.3 Conventional Flux Estimator -- 12.4 Rotor Flux Estimator Using CFBP-NN -- 12.5 Comparison of Proposed CFBP-NN With Existing CFBP-NN for Flux Estimation -- 12.6 Performance Study of Proposed CFBP-NN Using MATLAB/SIMULINK -- 12.7 Practical Implementation Aspects of CFBP-NNBased Flux Estimator -- 12.8 Conclusion -- References -- Chapter 13 A Review on Isolated DC-DC Converters Used in Renewable Power Generation Applications -- 13.1 Introduction 13.2 Isolated DC-DC Converter for Electric Vehicle Applications -- 13.3 Three-Phase DC-DC Converter -- 13.4 Conclusion -- References -- Chapter 14 Basics of Vector Control of Asynchronous Induction Motor and Introduction to Fuzzy Controller -- 14.1 Introduction -- 14.2 Dynamics of Separately Excited DC Machine -- 14.3 Clarke and Park Transforms -- 14.4 Model Explanation -- 14.5 Motor Parameters -- 14.6 PI Regulators Tuning -- 14.7 Future Scope to Include Fuzzy Control in Place of PI Controller -- 14.8 Conclusion -- References -- Index -- EULA. Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Elektrofahrzeug (DE-588)4151795-7 gnd rswk-swf Hybridfahrzeug (DE-588)7524499-8 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 s Elektrofahrzeug (DE-588)4151795-7 s Hybridfahrzeug (DE-588)7524499-8 s DE-604 Annamalai, Chitra Sonstige (DE-588)1228834202 oth Sanjeevikumar, Padmanaban 1978- Sonstige (DE-588)1220850691 oth Holm-Nielsen, Jens Bo Sonstige (DE-588)1157033725 oth Himavathi, S. Sonstige (DE-588)1220848328 oth Erscheint auch als Druck-Ausgabe 978-1-119-68190-8 Erscheint auch als Online-Ausgabe 978-1-119-68203-5 Erscheint auch als Online-Ausgabe 978-1-119-68201-1 |
spellingShingle | Artificial intelligent techniques for electric and hybrid electric vehicles Künstliche Intelligenz (DE-588)4033447-8 gnd Elektrofahrzeug (DE-588)4151795-7 gnd Hybridfahrzeug (DE-588)7524499-8 gnd |
subject_GND | (DE-588)4033447-8 (DE-588)4151795-7 (DE-588)7524499-8 |
title | Artificial intelligent techniques for electric and hybrid electric vehicles |
title_auth | Artificial intelligent techniques for electric and hybrid electric vehicles |
title_exact_search | Artificial intelligent techniques for electric and hybrid electric vehicles |
title_exact_search_txtP | Artificial intelligent techniques for electric and hybrid electric vehicles |
title_full | Artificial intelligent techniques for electric and hybrid electric vehicles edited by Chitra A., P. Sanjeevikumar, Jens Bo Holm-Nielsen and S. Himavathi |
title_fullStr | Artificial intelligent techniques for electric and hybrid electric vehicles edited by Chitra A., P. Sanjeevikumar, Jens Bo Holm-Nielsen and S. Himavathi |
title_full_unstemmed | Artificial intelligent techniques for electric and hybrid electric vehicles edited by Chitra A., P. Sanjeevikumar, Jens Bo Holm-Nielsen and S. Himavathi |
title_short | Artificial intelligent techniques for electric and hybrid electric vehicles |
title_sort | artificial intelligent techniques for electric and hybrid electric vehicles |
topic | Künstliche Intelligenz (DE-588)4033447-8 gnd Elektrofahrzeug (DE-588)4151795-7 gnd Hybridfahrzeug (DE-588)7524499-8 gnd |
topic_facet | Künstliche Intelligenz Elektrofahrzeug Hybridfahrzeug |
work_keys_str_mv | AT annamalaichitra artificialintelligenttechniquesforelectricandhybridelectricvehicles AT sanjeevikumarpadmanaban artificialintelligenttechniquesforelectricandhybridelectricvehicles AT holmnielsenjensbo artificialintelligenttechniquesforelectricandhybridelectricvehicles AT himavathis artificialintelligenttechniquesforelectricandhybridelectricvehicles |