The calculus of braids: an introduction, and beyond
Everyone knows what braids are, whether they be made of hair, knitting wool, or electrical cables. However, it is not so evident that we can construct a theory about them, i.e. to elaborate a coherent and mathematically interesting corpus of results concerning them. This book demonstrates that there...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2021
|
Schriftenreihe: | London Mathematical Society student texts
100 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Everyone knows what braids are, whether they be made of hair, knitting wool, or electrical cables. However, it is not so evident that we can construct a theory about them, i.e. to elaborate a coherent and mathematically interesting corpus of results concerning them. This book demonstrates that there is a resoundingly positive response to this question: braids are fascinating objects, with a variety of rich mathematical properties and potential applications. A special emphasis is placed on the algorithmic aspects and on what can be called the 'calculus of braids', in particular the problem of isotopy. Prerequisites are kept to a minimum, with most results being established from scratch. An appendix at the end of each chapter gives a detailed introduction to the more advanced notions required, including monoids and group presentations. Also included is a range of carefully selected exercises to help the reader test their knowledge, with solutions available |
Beschreibung: | Title from publisher's bibliographic system (viewed on 01 Sep 2021) Geometric braids -- Braid groups -- Braid monoids -- The greedy normal form -- The Artin representation -- Handle reduction -- The Dynnikov coordinates -- A few avenues of investigation -- Solutions to the exercises |
Beschreibung: | 1 Online-Ressource (xii, 245 Seiten) |
ISBN: | 9781108921121 |
DOI: | 10.1017/9781108921121 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047486282 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210928s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781108921121 |c Online |9 978-1-108-92112-1 | ||
024 | 7 | |a 10.1017/9781108921121 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108921121 | ||
035 | |a (OCoLC)1277024704 | ||
035 | |a (DE-599)BVBBV047486282 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 514/.224 | |
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
100 | 1 | |a Dehornoy, Patrick |d 1952-2019 |0 (DE-588)113599625 |4 aut | |
240 | 1 | 0 | |a Calcul des tresses <Englisch> |
245 | 1 | 0 | |a The calculus of braids |b an introduction, and beyond |c Patrick Dehornoy ; translated by Danièle Gibbons, Greg Gibbons |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2021 | |
300 | |a 1 Online-Ressource (xii, 245 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society student texts | |
490 | 0 | |a 100 | |
500 | |a Title from publisher's bibliographic system (viewed on 01 Sep 2021) | ||
500 | |a Geometric braids -- Braid groups -- Braid monoids -- The greedy normal form -- The Artin representation -- Handle reduction -- The Dynnikov coordinates -- A few avenues of investigation -- Solutions to the exercises | ||
520 | |a Everyone knows what braids are, whether they be made of hair, knitting wool, or electrical cables. However, it is not so evident that we can construct a theory about them, i.e. to elaborate a coherent and mathematically interesting corpus of results concerning them. This book demonstrates that there is a resoundingly positive response to this question: braids are fascinating objects, with a variety of rich mathematical properties and potential applications. A special emphasis is placed on the algorithmic aspects and on what can be called the 'calculus of braids', in particular the problem of isotopy. Prerequisites are kept to a minimum, with most results being established from scratch. An appendix at the end of each chapter gives a detailed introduction to the more advanced notions required, including monoids and group presentations. Also included is a range of carefully selected exercises to help the reader test their knowledge, with solutions available | ||
650 | 4 | |a Braid theory | |
650 | 0 | 7 | |a Zopf |g Mathematik |0 (DE-588)4191043-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zopf |g Mathematik |0 (DE-588)4191043-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Gibbons, Danièle |d ca. 20./21. Jh. |0 (DE-588)1203756402 |4 trl | |
700 | 1 | |a Gibbons, Greg |d ca. 20./21. Jh. |0 (DE-588)1203756526 |4 trl | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-84394-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108921121 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032887665 | ||
966 | e | |u https://doi.org/10.1017/9781108921121 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108921121 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182808213585920 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Dehornoy, Patrick 1952-2019 |
author2 | Gibbons, Danièle ca. 20./21. Jh Gibbons, Greg ca. 20./21. Jh |
author2_role | trl trl |
author2_variant | d g dg g g gg |
author_GND | (DE-588)113599625 (DE-588)1203756402 (DE-588)1203756526 |
author_facet | Dehornoy, Patrick 1952-2019 Gibbons, Danièle ca. 20./21. Jh Gibbons, Greg ca. 20./21. Jh |
author_role | aut |
author_sort | Dehornoy, Patrick 1952-2019 |
author_variant | p d pd |
building | Verbundindex |
bvnumber | BV047486282 |
classification_rvk | SK 300 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108921121 (OCoLC)1277024704 (DE-599)BVBBV047486282 |
dewey-full | 514/.224 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.224 |
dewey-search | 514/.224 |
dewey-sort | 3514 3224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781108921121 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03164nmm a2200505zc 4500</leader><controlfield tag="001">BV047486282</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210928s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108921121</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-92112-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108921121</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108921121</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1277024704</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047486282</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.224</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dehornoy, Patrick</subfield><subfield code="d">1952-2019</subfield><subfield code="0">(DE-588)113599625</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Calcul des tresses <Englisch></subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The calculus of braids</subfield><subfield code="b">an introduction, and beyond</subfield><subfield code="c">Patrick Dehornoy ; translated by Danièle Gibbons, Greg Gibbons</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 245 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">100</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 01 Sep 2021)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Geometric braids -- Braid groups -- Braid monoids -- The greedy normal form -- The Artin representation -- Handle reduction -- The Dynnikov coordinates -- A few avenues of investigation -- Solutions to the exercises</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Everyone knows what braids are, whether they be made of hair, knitting wool, or electrical cables. However, it is not so evident that we can construct a theory about them, i.e. to elaborate a coherent and mathematically interesting corpus of results concerning them. This book demonstrates that there is a resoundingly positive response to this question: braids are fascinating objects, with a variety of rich mathematical properties and potential applications. A special emphasis is placed on the algorithmic aspects and on what can be called the 'calculus of braids', in particular the problem of isotopy. Prerequisites are kept to a minimum, with most results being established from scratch. An appendix at the end of each chapter gives a detailed introduction to the more advanced notions required, including monoids and group presentations. Also included is a range of carefully selected exercises to help the reader test their knowledge, with solutions available</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Braid theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zopf</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4191043-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zopf</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4191043-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gibbons, Danièle</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1203756402</subfield><subfield code="4">trl</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gibbons, Greg</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1203756526</subfield><subfield code="4">trl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-84394-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108921121</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032887665</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108921121</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108921121</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047486282 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:14:17Z |
indexdate | 2024-07-10T09:13:26Z |
institution | BVB |
isbn | 9781108921121 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032887665 |
oclc_num | 1277024704 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 Online-Ressource (xii, 245 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society student texts 100 |
spelling | Dehornoy, Patrick 1952-2019 (DE-588)113599625 aut Calcul des tresses <Englisch> The calculus of braids an introduction, and beyond Patrick Dehornoy ; translated by Danièle Gibbons, Greg Gibbons Cambridge Cambridge University Press 2021 1 Online-Ressource (xii, 245 Seiten) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society student texts 100 Title from publisher's bibliographic system (viewed on 01 Sep 2021) Geometric braids -- Braid groups -- Braid monoids -- The greedy normal form -- The Artin representation -- Handle reduction -- The Dynnikov coordinates -- A few avenues of investigation -- Solutions to the exercises Everyone knows what braids are, whether they be made of hair, knitting wool, or electrical cables. However, it is not so evident that we can construct a theory about them, i.e. to elaborate a coherent and mathematically interesting corpus of results concerning them. This book demonstrates that there is a resoundingly positive response to this question: braids are fascinating objects, with a variety of rich mathematical properties and potential applications. A special emphasis is placed on the algorithmic aspects and on what can be called the 'calculus of braids', in particular the problem of isotopy. Prerequisites are kept to a minimum, with most results being established from scratch. An appendix at the end of each chapter gives a detailed introduction to the more advanced notions required, including monoids and group presentations. Also included is a range of carefully selected exercises to help the reader test their knowledge, with solutions available Braid theory Zopf Mathematik (DE-588)4191043-6 gnd rswk-swf Zopf Mathematik (DE-588)4191043-6 s DE-604 Gibbons, Danièle ca. 20./21. Jh. (DE-588)1203756402 trl Gibbons, Greg ca. 20./21. Jh. (DE-588)1203756526 trl Erscheint auch als Druck-Ausgabe 978-1-108-84394-2 https://doi.org/10.1017/9781108921121 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Dehornoy, Patrick 1952-2019 The calculus of braids an introduction, and beyond Braid theory Zopf Mathematik (DE-588)4191043-6 gnd |
subject_GND | (DE-588)4191043-6 |
title | The calculus of braids an introduction, and beyond |
title_alt | Calcul des tresses <Englisch> |
title_auth | The calculus of braids an introduction, and beyond |
title_exact_search | The calculus of braids an introduction, and beyond |
title_exact_search_txtP | The calculus of braids an introduction, and beyond |
title_full | The calculus of braids an introduction, and beyond Patrick Dehornoy ; translated by Danièle Gibbons, Greg Gibbons |
title_fullStr | The calculus of braids an introduction, and beyond Patrick Dehornoy ; translated by Danièle Gibbons, Greg Gibbons |
title_full_unstemmed | The calculus of braids an introduction, and beyond Patrick Dehornoy ; translated by Danièle Gibbons, Greg Gibbons |
title_short | The calculus of braids |
title_sort | the calculus of braids an introduction and beyond |
title_sub | an introduction, and beyond |
topic | Braid theory Zopf Mathematik (DE-588)4191043-6 gnd |
topic_facet | Braid theory Zopf Mathematik |
url | https://doi.org/10.1017/9781108921121 |
work_keys_str_mv | AT dehornoypatrick calculdestressesenglisch AT gibbonsdaniele calculdestressesenglisch AT gibbonsgreg calculdestressesenglisch AT dehornoypatrick thecalculusofbraidsanintroductionandbeyond AT gibbonsdaniele thecalculusofbraidsanintroductionandbeyond AT gibbonsgreg thecalculusofbraidsanintroductionandbeyond |