Evolutionary optimization methods for engineering, Part I, Genetic algorithms:
Optimization is the process of upgrading something to perform better. Engineers constantly look for improving their designs in multi parametric solution space. Imagine that you will be able to use nature's evolutionary processes to obtain the best parameters for your designs. This is the subjec...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch Video |
Sprache: | English |
Veröffentlicht: |
United States
IEEE
2011
|
Schlagworte: | |
Online-Zugang: | FHN01 TUM01 |
Zusammenfassung: | Optimization is the process of upgrading something to perform better. Engineers constantly look for improving their designs in multi parametric solution space. Imagine that you will be able to use nature's evolutionary processes to obtain the best parameters for your designs. This is the subject of this course which is divided into two parts. This course is Part I and covers the applications of Genetic Algorithms (GA). The underlying fundamental concepts of Genetic Algorithms are presented and then some representative examples are provided. Useful references are listed to allow for a more in-depth understanding of this topic |
Beschreibung: | Description based on online resource; title from title screen (IEEE Xplore Digital Library, viewed November 13, 2020) |
Beschreibung: | 1 Online-Resource (1 Videodatei, 60 Minuten) |
ISBN: | 9781612845050 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047477141 | ||
003 | DE-604 | ||
005 | 20220216 | ||
007 | cr|uuu---uuuuu | ||
008 | 210921s2011 |||| o||u| ||||||eng d | ||
020 | |a 9781612845050 |9 978-1-61284-505-0 | ||
035 | |a (ZDB-37-ICG)EDP215 | ||
035 | |a (OCoLC)1269394884 | ||
035 | |a (DE-599)BVBBV047477141 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-92 | ||
082 | 0 | |a 519.7 |2 23 | |
100 | 1 | |a Rahmat-Samii, Yahya |e Verfasser |4 aut | |
245 | 1 | 0 | |a Evolutionary optimization methods for engineering, Part I, Genetic algorithms |c Yahya Rahmat-Samii |
264 | 1 | |a United States |b IEEE |c 2011 | |
300 | |a 1 Online-Resource (1 Videodatei, 60 Minuten) | ||
336 | |b tdi |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on online resource; title from title screen (IEEE Xplore Digital Library, viewed November 13, 2020) | ||
520 | |a Optimization is the process of upgrading something to perform better. Engineers constantly look for improving their designs in multi parametric solution space. Imagine that you will be able to use nature's evolutionary processes to obtain the best parameters for your designs. This is the subject of this course which is divided into two parts. This course is Part I and covers the applications of Genetic Algorithms (GA). The underlying fundamental concepts of Genetic Algorithms are presented and then some representative examples are provided. Useful references are listed to allow for a more in-depth understanding of this topic | ||
650 | 4 | |a Genetic algorithms | |
650 | 4 | |a Evolutionary computation | |
655 | 7 | |0 (DE-588)4017102-4 |a Film |2 gnd-content | |
912 | |a ZDB-37-ICG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032878702 | ||
966 | e | |u https://ieeexplore.ieee.org/courses/details/EDP215 |l FHN01 |p ZDB-37-ICG |x Verlag |3 Volltext | |
966 | e | |u https://ieeexplore.ieee.org/courses/details/EDP215 |l TUM01 |p ZDB-37-ICG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182793130868736 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Rahmat-Samii, Yahya |
author_facet | Rahmat-Samii, Yahya |
author_role | aut |
author_sort | Rahmat-Samii, Yahya |
author_variant | y r s yrs |
building | Verbundindex |
bvnumber | BV047477141 |
collection | ZDB-37-ICG |
ctrlnum | (ZDB-37-ICG)EDP215 (OCoLC)1269394884 (DE-599)BVBBV047477141 |
dewey-full | 519.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.7 |
dewey-search | 519.7 |
dewey-sort | 3519.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Electronic Video |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02003nmm a2200373zc 4500</leader><controlfield tag="001">BV047477141</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220216 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210921s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781612845050</subfield><subfield code="9">978-1-61284-505-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-37-ICG)EDP215</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1269394884</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047477141</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rahmat-Samii, Yahya</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evolutionary optimization methods for engineering, Part I, Genetic algorithms</subfield><subfield code="c">Yahya Rahmat-Samii</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">United States</subfield><subfield code="b">IEEE</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Resource (1 Videodatei, 60 Minuten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from title screen (IEEE Xplore Digital Library, viewed November 13, 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Optimization is the process of upgrading something to perform better. Engineers constantly look for improving their designs in multi parametric solution space. Imagine that you will be able to use nature's evolutionary processes to obtain the best parameters for your designs. This is the subject of this course which is divided into two parts. This course is Part I and covers the applications of Genetic Algorithms (GA). The underlying fundamental concepts of Genetic Algorithms are presented and then some representative examples are provided. Useful references are listed to allow for a more in-depth understanding of this topic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolutionary computation</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4017102-4</subfield><subfield code="a">Film</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-37-ICG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032878702</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/courses/details/EDP215</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-37-ICG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/courses/details/EDP215</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-37-ICG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4017102-4 Film gnd-content |
genre_facet | Film |
id | DE-604.BV047477141 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:11:31Z |
indexdate | 2024-07-10T09:13:11Z |
institution | BVB |
isbn | 9781612845050 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032878702 |
oclc_num | 1269394884 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-92 |
owner_facet | DE-91 DE-BY-TUM DE-92 |
physical | 1 Online-Resource (1 Videodatei, 60 Minuten) |
psigel | ZDB-37-ICG |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | IEEE |
record_format | marc |
spelling | Rahmat-Samii, Yahya Verfasser aut Evolutionary optimization methods for engineering, Part I, Genetic algorithms Yahya Rahmat-Samii United States IEEE 2011 1 Online-Resource (1 Videodatei, 60 Minuten) tdi rdacontent c rdamedia cr rdacarrier Description based on online resource; title from title screen (IEEE Xplore Digital Library, viewed November 13, 2020) Optimization is the process of upgrading something to perform better. Engineers constantly look for improving their designs in multi parametric solution space. Imagine that you will be able to use nature's evolutionary processes to obtain the best parameters for your designs. This is the subject of this course which is divided into two parts. This course is Part I and covers the applications of Genetic Algorithms (GA). The underlying fundamental concepts of Genetic Algorithms are presented and then some representative examples are provided. Useful references are listed to allow for a more in-depth understanding of this topic Genetic algorithms Evolutionary computation (DE-588)4017102-4 Film gnd-content |
spellingShingle | Rahmat-Samii, Yahya Evolutionary optimization methods for engineering, Part I, Genetic algorithms Genetic algorithms Evolutionary computation |
subject_GND | (DE-588)4017102-4 |
title | Evolutionary optimization methods for engineering, Part I, Genetic algorithms |
title_auth | Evolutionary optimization methods for engineering, Part I, Genetic algorithms |
title_exact_search | Evolutionary optimization methods for engineering, Part I, Genetic algorithms |
title_exact_search_txtP | Evolutionary optimization methods for engineering, Part I, Genetic algorithms |
title_full | Evolutionary optimization methods for engineering, Part I, Genetic algorithms Yahya Rahmat-Samii |
title_fullStr | Evolutionary optimization methods for engineering, Part I, Genetic algorithms Yahya Rahmat-Samii |
title_full_unstemmed | Evolutionary optimization methods for engineering, Part I, Genetic algorithms Yahya Rahmat-Samii |
title_short | Evolutionary optimization methods for engineering, Part I, Genetic algorithms |
title_sort | evolutionary optimization methods for engineering part i genetic algorithms |
topic | Genetic algorithms Evolutionary computation |
topic_facet | Genetic algorithms Evolutionary computation Film |
work_keys_str_mv | AT rahmatsamiiyahya evolutionaryoptimizationmethodsforengineeringpartigeneticalgorithms |