OTDR theory and operation - introducing the OTDR:
The silicon-germanium heterojunction bipolar transistor (SiGe HBT) is the first practical bandgap-engineered device to be realized in silicon. This course will provide a comprehensive review of the state-of-the-art in SiGe HBTs and assess its potential for current and future wireless and wireline ap...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch Video |
Sprache: | English |
Veröffentlicht: |
United States
IEEE
2009
|
Schlagworte: | |
Online-Zugang: | FHN01 TUM01 |
Zusammenfassung: | The silicon-germanium heterojunction bipolar transistor (SiGe HBT) is the first practical bandgap-engineered device to be realized in silicon. This course will provide a comprehensive review of the state-of-the-art in SiGe HBTs and assess its potential for current and future wireless and wireline applications. SiGe HBT technology combines transistor performance competitive with III-V technologies such as GaAs and InP with the processing maturity, integration levels, yield, and cost commonly associated with conventional Si CMOS fabrication. First-generation SiGe HBTs can deliver: fT in excess of 50 GHz, fmax in excess of 70 GHz, minimum noise figure below 0.5 dB at 2.0 GHz, linearity efficiency (OIP3/Pdc) above 10, 1/f noise corner frequencies below 1 kHz, operation at cryogenic temperatures, excellent radiation hardness, as well as yield, reliability and cost comparable to Si. Aggressively-scaled SiGe HBTs can achieve greater than 200 GHz transistor-level performance, and thus are expected to enable Si-based solutions for >40 GB/sec data links and emerging RF, microwave, and even mm-wave systems |
Beschreibung: | Description based on online resource; title from title screen (IEEE Xplore Digital Library, viewed November 12, 2020) |
Beschreibung: | 1 Online-Resource (1 Videodatei, 60 Minuten) color illustrations |
ISBN: | 9781424461455 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047476958 | ||
003 | DE-604 | ||
005 | 20220218 | ||
007 | cr|uuu---uuuuu | ||
008 | 210921s2009 |||| o||u| ||||||eng d | ||
020 | |a 9781424461455 |9 978-1-4244-6145-5 | ||
035 | |a (ZDB-37-ICG)EDP0128 | ||
035 | |a (OCoLC)1269387294 | ||
035 | |a (DE-599)BVBBV047476958 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-92 | ||
082 | 0 | |a 621.3692 |2 23 | |
100 | 1 | |a Johnson, Larry |e Verfasser |4 aut | |
245 | 1 | 0 | |a OTDR theory and operation - introducing the OTDR |c Larry Johnson |
264 | 1 | |a United States |b IEEE |c 2009 | |
300 | |a 1 Online-Resource (1 Videodatei, 60 Minuten) |b color illustrations | ||
336 | |b tdi |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on online resource; title from title screen (IEEE Xplore Digital Library, viewed November 12, 2020) | ||
520 | |a The silicon-germanium heterojunction bipolar transistor (SiGe HBT) is the first practical bandgap-engineered device to be realized in silicon. This course will provide a comprehensive review of the state-of-the-art in SiGe HBTs and assess its potential for current and future wireless and wireline applications. SiGe HBT technology combines transistor performance competitive with III-V technologies such as GaAs and InP with the processing maturity, integration levels, yield, and cost commonly associated with conventional Si CMOS fabrication. First-generation SiGe HBTs can deliver: fT in excess of 50 GHz, fmax in excess of 70 GHz, minimum noise figure below 0.5 dB at 2.0 GHz, linearity efficiency (OIP3/Pdc) above 10, 1/f noise corner frequencies below 1 kHz, operation at cryogenic temperatures, excellent radiation hardness, as well as yield, reliability and cost comparable to Si. Aggressively-scaled SiGe HBTs can achieve greater than 200 GHz transistor-level performance, and thus are expected to enable Si-based solutions for >40 GB/sec data links and emerging RF, microwave, and even mm-wave systems | ||
650 | 4 | |a Optical fibers | |
650 | 4 | |a Fiber optics | |
655 | 7 | |0 (DE-588)4017102-4 |a Film |2 gnd-content | |
912 | |a ZDB-37-ICG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032878519 | ||
966 | e | |u https://ieeexplore.ieee.org/courses/details/EDP0128 |l FHN01 |p ZDB-37-ICG |x Verlag |3 Volltext | |
966 | e | |u https://ieeexplore.ieee.org/courses/details/EDP0128 |l TUM01 |p ZDB-37-ICG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182792867676160 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Johnson, Larry |
author_facet | Johnson, Larry |
author_role | aut |
author_sort | Johnson, Larry |
author_variant | l j lj |
building | Verbundindex |
bvnumber | BV047476958 |
collection | ZDB-37-ICG |
ctrlnum | (ZDB-37-ICG)EDP0128 (OCoLC)1269387294 (DE-599)BVBBV047476958 |
dewey-full | 621.3692 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3692 |
dewey-search | 621.3692 |
dewey-sort | 3621.3692 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic Video |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02455nmm a2200373zc 4500</leader><controlfield tag="001">BV047476958</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220218 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210921s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781424461455</subfield><subfield code="9">978-1-4244-6145-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-37-ICG)EDP0128</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1269387294</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047476958</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3692</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Johnson, Larry</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">OTDR theory and operation - introducing the OTDR</subfield><subfield code="c">Larry Johnson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">United States</subfield><subfield code="b">IEEE</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Resource (1 Videodatei, 60 Minuten)</subfield><subfield code="b">color illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from title screen (IEEE Xplore Digital Library, viewed November 12, 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The silicon-germanium heterojunction bipolar transistor (SiGe HBT) is the first practical bandgap-engineered device to be realized in silicon. This course will provide a comprehensive review of the state-of-the-art in SiGe HBTs and assess its potential for current and future wireless and wireline applications. SiGe HBT technology combines transistor performance competitive with III-V technologies such as GaAs and InP with the processing maturity, integration levels, yield, and cost commonly associated with conventional Si CMOS fabrication. First-generation SiGe HBTs can deliver: fT in excess of 50 GHz, fmax in excess of 70 GHz, minimum noise figure below 0.5 dB at 2.0 GHz, linearity efficiency (OIP3/Pdc) above 10, 1/f noise corner frequencies below 1 kHz, operation at cryogenic temperatures, excellent radiation hardness, as well as yield, reliability and cost comparable to Si. Aggressively-scaled SiGe HBTs can achieve greater than 200 GHz transistor-level performance, and thus are expected to enable Si-based solutions for >40 GB/sec data links and emerging RF, microwave, and even mm-wave systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical fibers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiber optics</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4017102-4</subfield><subfield code="a">Film</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-37-ICG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032878519</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/courses/details/EDP0128</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-37-ICG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/courses/details/EDP0128</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-37-ICG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4017102-4 Film gnd-content |
genre_facet | Film |
id | DE-604.BV047476958 |
illustrated | Illustrated |
index_date | 2024-07-03T18:11:31Z |
indexdate | 2024-07-10T09:13:11Z |
institution | BVB |
isbn | 9781424461455 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032878519 |
oclc_num | 1269387294 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-92 |
owner_facet | DE-91 DE-BY-TUM DE-92 |
physical | 1 Online-Resource (1 Videodatei, 60 Minuten) color illustrations |
psigel | ZDB-37-ICG |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | IEEE |
record_format | marc |
spelling | Johnson, Larry Verfasser aut OTDR theory and operation - introducing the OTDR Larry Johnson United States IEEE 2009 1 Online-Resource (1 Videodatei, 60 Minuten) color illustrations tdi rdacontent c rdamedia cr rdacarrier Description based on online resource; title from title screen (IEEE Xplore Digital Library, viewed November 12, 2020) The silicon-germanium heterojunction bipolar transistor (SiGe HBT) is the first practical bandgap-engineered device to be realized in silicon. This course will provide a comprehensive review of the state-of-the-art in SiGe HBTs and assess its potential for current and future wireless and wireline applications. SiGe HBT technology combines transistor performance competitive with III-V technologies such as GaAs and InP with the processing maturity, integration levels, yield, and cost commonly associated with conventional Si CMOS fabrication. First-generation SiGe HBTs can deliver: fT in excess of 50 GHz, fmax in excess of 70 GHz, minimum noise figure below 0.5 dB at 2.0 GHz, linearity efficiency (OIP3/Pdc) above 10, 1/f noise corner frequencies below 1 kHz, operation at cryogenic temperatures, excellent radiation hardness, as well as yield, reliability and cost comparable to Si. Aggressively-scaled SiGe HBTs can achieve greater than 200 GHz transistor-level performance, and thus are expected to enable Si-based solutions for >40 GB/sec data links and emerging RF, microwave, and even mm-wave systems Optical fibers Fiber optics (DE-588)4017102-4 Film gnd-content |
spellingShingle | Johnson, Larry OTDR theory and operation - introducing the OTDR Optical fibers Fiber optics |
subject_GND | (DE-588)4017102-4 |
title | OTDR theory and operation - introducing the OTDR |
title_auth | OTDR theory and operation - introducing the OTDR |
title_exact_search | OTDR theory and operation - introducing the OTDR |
title_exact_search_txtP | OTDR theory and operation - introducing the OTDR |
title_full | OTDR theory and operation - introducing the OTDR Larry Johnson |
title_fullStr | OTDR theory and operation - introducing the OTDR Larry Johnson |
title_full_unstemmed | OTDR theory and operation - introducing the OTDR Larry Johnson |
title_short | OTDR theory and operation - introducing the OTDR |
title_sort | otdr theory and operation introducing the otdr |
topic | Optical fibers Fiber optics |
topic_facet | Optical fibers Fiber optics Film |
work_keys_str_mv | AT johnsonlarry otdrtheoryandoperationintroducingtheotdr |