Elements of linear and multilinear algebra:
"This set of notes is an activity-oriented introduction to linear and multilinear algebra. The great majority of the most elementary results in these subjects are straightforward and can be verified by the thoughtful student. Indeed, that is the main point of these notes - to convince the begin...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo
World Scientific
[2021]
|
Schlagworte: | |
Online-Zugang: | TUM01 |
Zusammenfassung: | "This set of notes is an activity-oriented introduction to linear and multilinear algebra. The great majority of the most elementary results in these subjects are straightforward and can be verified by the thoughtful student. Indeed, that is the main point of these notes - to convince the beginner that the subject is accessible. In the material that follows there are numerous indicators that suggest activity on the part of the reader: words such as "proposition", "example", "theorem", "exercise", and "corollary", if not followed by a proof (and proofs here are very rare) or a reference to a proof, are invitations to verify the assertions made. These notes are intended to accompany an (academic) year-long course at the advanced undergraduate or beginning graduate level. (With judicious pruning most of the material can be covered in a two-term sequence.) The text is also suitable for a lecture-style class, the instructor proving some of the results while leaving others as exercises for the students. This book has tried to keep the facts about vector spaces and those about inner product spaces separate. Many beginning linear algebra texts conflate the material on these two vastly different subjects"-- |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9789811222740 9811222746 9789811222733 9811222738 |
Internformat
MARC
LEADER | 00000nmm a22000008c 4500 | ||
---|---|---|---|
001 | BV047471514 | ||
003 | DE-604 | ||
005 | 20211026 | ||
007 | cr|uuu---uuuuu | ||
008 | 210916s2021 |||| o||u| ||||||eng d | ||
020 | |a 9789811222740 |9 978-981-122-274-0 | ||
020 | |a 9811222746 |9 9811222746 | ||
020 | |a 9789811222733 |9 978-981-122-273-3 | ||
020 | |a 9811222738 |9 9811222738 | ||
035 | |a (OCoLC)1269394278 | ||
035 | |a (DE-599)BVBBV047471514 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
084 | |a MAT 150 |2 stub | ||
100 | 1 | |a Erdman, John M. |d 1935- |e Verfasser |0 (DE-588)1164400908 |4 aut | |
245 | 1 | 0 | |a Elements of linear and multilinear algebra |c John M. Erdman, Portland State University, USA. |
264 | 1 | |a New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo |b World Scientific |c [2021] | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a "This set of notes is an activity-oriented introduction to linear and multilinear algebra. The great majority of the most elementary results in these subjects are straightforward and can be verified by the thoughtful student. Indeed, that is the main point of these notes - to convince the beginner that the subject is accessible. In the material that follows there are numerous indicators that suggest activity on the part of the reader: words such as "proposition", "example", "theorem", "exercise", and "corollary", if not followed by a proof (and proofs here are very rare) or a reference to a proof, are invitations to verify the assertions made. These notes are intended to accompany an (academic) year-long course at the advanced undergraduate or beginning graduate level. (With judicious pruning most of the material can be covered in a two-term sequence.) The text is also suitable for a lecture-style class, the instructor proving some of the results while leaving others as exercises for the students. This book has tried to keep the facts about vector spaces and those about inner product spaces separate. Many beginning linear algebra texts conflate the material on these two vastly different subjects"-- | |
650 | 0 | 7 | |a Multilineare Algebra |0 (DE-588)4416303-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
653 | 0 | |a Algebras, Linear | |
653 | 0 | |a Multilinear algebra | |
653 | 0 | |a Algebras, Linear | |
653 | 0 | |a Multilinear algebra | |
689 | 0 | 0 | |a Multilineare Algebra |0 (DE-588)4416303-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |a Erdman, John M., 1935- |t Elements of linear and multilinear algebra |d New Jersey : World Scientific, [2021] |n Druck-Ausgabe, Hardcover |z 978-981-122-272-6 |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032873168 | ||
966 | e | |u https://doi.org/10.1142/11896 |l TUM01 |p ZDB-124-WOP |q TUM_Einzelkauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182783563661312 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Erdman, John M. 1935- |
author_GND | (DE-588)1164400908 |
author_facet | Erdman, John M. 1935- |
author_role | aut |
author_sort | Erdman, John M. 1935- |
author_variant | j m e jm jme |
building | Verbundindex |
bvnumber | BV047471514 |
classification_rvk | SK 220 |
classification_tum | MAT 150 |
collection | ZDB-124-WOP |
ctrlnum | (OCoLC)1269394278 (DE-599)BVBBV047471514 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03057nmm a22004818c 4500</leader><controlfield tag="001">BV047471514</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211026 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210916s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811222740</subfield><subfield code="9">978-981-122-274-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9811222746</subfield><subfield code="9">9811222746</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811222733</subfield><subfield code="9">978-981-122-273-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9811222738</subfield><subfield code="9">9811222738</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1269394278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047471514</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 150</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Erdman, John M.</subfield><subfield code="d">1935-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1164400908</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elements of linear and multilinear algebra</subfield><subfield code="c">John M. Erdman, Portland State University, USA.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"This set of notes is an activity-oriented introduction to linear and multilinear algebra. The great majority of the most elementary results in these subjects are straightforward and can be verified by the thoughtful student. Indeed, that is the main point of these notes - to convince the beginner that the subject is accessible. In the material that follows there are numerous indicators that suggest activity on the part of the reader: words such as "proposition", "example", "theorem", "exercise", and "corollary", if not followed by a proof (and proofs here are very rare) or a reference to a proof, are invitations to verify the assertions made. These notes are intended to accompany an (academic) year-long course at the advanced undergraduate or beginning graduate level. (With judicious pruning most of the material can be covered in a two-term sequence.) The text is also suitable for a lecture-style class, the instructor proving some of the results while leaving others as exercises for the students. This book has tried to keep the facts about vector spaces and those about inner product spaces separate. Many beginning linear algebra texts conflate the material on these two vastly different subjects"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multilineare Algebra</subfield><subfield code="0">(DE-588)4416303-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Algebras, Linear</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Multilinear algebra</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Algebras, Linear</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Multilinear algebra</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Multilineare Algebra</subfield><subfield code="0">(DE-588)4416303-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Erdman, John M., 1935-</subfield><subfield code="t">Elements of linear and multilinear algebra</subfield><subfield code="d">New Jersey : World Scientific, [2021]</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-981-122-272-6</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032873168</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/11896</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047471514 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:09:26Z |
indexdate | 2024-07-10T09:13:02Z |
institution | BVB |
isbn | 9789811222740 9811222746 9789811222733 9811222738 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032873168 |
oclc_num | 1269394278 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-124-WOP ZDB-124-WOP TUM_Einzelkauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | World Scientific |
record_format | marc |
spelling | Erdman, John M. 1935- Verfasser (DE-588)1164400908 aut Elements of linear and multilinear algebra John M. Erdman, Portland State University, USA. New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo World Scientific [2021] 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier "This set of notes is an activity-oriented introduction to linear and multilinear algebra. The great majority of the most elementary results in these subjects are straightforward and can be verified by the thoughtful student. Indeed, that is the main point of these notes - to convince the beginner that the subject is accessible. In the material that follows there are numerous indicators that suggest activity on the part of the reader: words such as "proposition", "example", "theorem", "exercise", and "corollary", if not followed by a proof (and proofs here are very rare) or a reference to a proof, are invitations to verify the assertions made. These notes are intended to accompany an (academic) year-long course at the advanced undergraduate or beginning graduate level. (With judicious pruning most of the material can be covered in a two-term sequence.) The text is also suitable for a lecture-style class, the instructor proving some of the results while leaving others as exercises for the students. This book has tried to keep the facts about vector spaces and those about inner product spaces separate. Many beginning linear algebra texts conflate the material on these two vastly different subjects"-- Multilineare Algebra (DE-588)4416303-4 gnd rswk-swf Lineare Algebra (DE-588)4035811-2 gnd rswk-swf Algebras, Linear Multilinear algebra Multilineare Algebra (DE-588)4416303-4 s DE-604 Lineare Algebra (DE-588)4035811-2 s Erscheint auch als Erdman, John M., 1935- Elements of linear and multilinear algebra New Jersey : World Scientific, [2021] Druck-Ausgabe, Hardcover 978-981-122-272-6 |
spellingShingle | Erdman, John M. 1935- Elements of linear and multilinear algebra Multilineare Algebra (DE-588)4416303-4 gnd Lineare Algebra (DE-588)4035811-2 gnd |
subject_GND | (DE-588)4416303-4 (DE-588)4035811-2 |
title | Elements of linear and multilinear algebra |
title_auth | Elements of linear and multilinear algebra |
title_exact_search | Elements of linear and multilinear algebra |
title_exact_search_txtP | Elements of linear and multilinear algebra |
title_full | Elements of linear and multilinear algebra John M. Erdman, Portland State University, USA. |
title_fullStr | Elements of linear and multilinear algebra John M. Erdman, Portland State University, USA. |
title_full_unstemmed | Elements of linear and multilinear algebra John M. Erdman, Portland State University, USA. |
title_short | Elements of linear and multilinear algebra |
title_sort | elements of linear and multilinear algebra |
topic | Multilineare Algebra (DE-588)4416303-4 gnd Lineare Algebra (DE-588)4035811-2 gnd |
topic_facet | Multilineare Algebra Lineare Algebra |
work_keys_str_mv | AT erdmanjohnm elementsoflinearandmultilinearalgebra |