Artificial intelligence for future generation robotics:
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier
[2021]
|
Schlagworte: | |
Online-Zugang: | FHD01 FWS01 FWS02 |
Beschreibung: | 1 Online-Ressource (xv, 162 Seiten) |
ISBN: | 9780323857994 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV047470218 | ||
003 | DE-604 | ||
005 | 20230626 | ||
007 | cr|uuu---uuuuu | ||
008 | 210915s2021 |||| o||u| ||||||eng d | ||
020 | |a 9780323857994 |c Online |9 978-0-323-85799-4 | ||
035 | |a (OCoLC)1269385892 | ||
035 | |a (DE-599)BVBBV047470218 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 |a DE-862 |a DE-863 | ||
084 | |a ST 308 |0 (DE-625)143655: |2 rvk | ||
245 | 1 | 0 | |a Artificial intelligence for future generation robotics |c edited by Rabindra Nath Shaw, Ankush Ghosh, Valentina E. Balas, Monica Bianchini |
264 | 1 | |a Amsterdam |b Elsevier |c [2021] | |
300 | |a 1 Online-Ressource (xv, 162 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Front Cover -- Artificial Intelligence for Future Generation Robotics -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1. Robotic process automation with increasing productivity and improving product quality using artificial intelligence and... -- 1.1 Introduction -- 1.2 Related work -- 1.3 Proposed work -- 1.4 Proposed model -- 1.4.1 System component -- 1.4.2 Effective collaboration -- 1.5 Manufacturing systems -- 1.6 Results analysis -- 1.7 Conclusions and future work -- References | |
505 | 8 | |a 2. Inverse kinematics analysis of 7-degree of freedom welding and drilling robot using artificial intelligence techniques -- 2.1 Introduction -- 2.2 Literature review -- 2.3 Modeling and design -- 2.3.1 Fitness function -- 2.3.2 Particle swarm optimization -- 2.3.3 Firefly algorithm -- 2.3.4 Proposed algorithm -- 2.4 Results and discussions -- 2.5 Conclusions and future work -- References -- 3. Vibration-based diagnosis of defect embedded in inner raceway of ball bearing using 1D convolutional neural network -- 3.1 Introduction -- 3.2 2D CNN-a brief introduction | |
505 | 8 | |a 3.3 1D convolutional neural network -- 3.4 Statistical parameters for feature extraction -- 3.5 Dataset used -- 3.6 Results -- 3.7 Conclusion -- References -- 4. Single shot detection for detecting real-time flying objects for unmanned aerial vehicle -- 4.1 Introduction -- 4.2 Related work -- 4.2.1 Appearance-based methods -- 4.2.2 Motion-based methods -- 4.2.3 Hybrid methods -- 4.2.4 Single-step detectors -- 4.2.5 Two-step detectors/region-based detectors -- 4.3 Methodology -- 4.3.1 Model training -- 4.3.2 Evaluation metric -- 4.4 Results and discussions | |
505 | 8 | |a 4.4.1 For real-time flying objects from video -- 4.5 Conclusion -- References -- 5. Depression detection for elderly people using AI robotic systems leveraging the Nelder-Mead Method -- 5.1 Introduction -- 5.2 Background -- 5.3 Related work -- 5.4 Elderly people detect depression signs and symptoms -- 5.4.1 Causes of depression in older adults -- 5.4.2 Medical conditions that can cause elderly depression -- 5.4.3 Elderly depression as side effect of medication -- 5.4.4 Self-help for elderly depression -- 5.5 Proposed methodology -- 5.5.1 Proposed algorithm | |
505 | 8 | |a 5.5.2 Persistent monitoring for depression detection -- 5.5.3 Emergency monitoring -- 5.5.4 Personalized monitoring -- 5.5.5 Feature extraction -- 5.6 Result analysis -- References -- 6. Data heterogeneity mitigation in healthcare robotic systems leveraging the Nelder-Mead method -- 6.1 Introduction -- 6.1.1 Related work -- 6.1.2 Contributions -- 6.2 Data heterogeneity mitigation -- 6.2.1 Data preprocessing -- 6.2.2 Nelder-Mead method for mitigating data heterogeneity -- 6.3 LSTM-based classification of data -- 6.4 Experiments and results | |
650 | 4 | |a Robotics | |
650 | 4 | |a Artificial intelligence | |
650 | 7 | |a Artificial intelligence |2 fast | |
650 | 7 | |a Robotics |2 fast | |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Roboter |0 (DE-588)4050208-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mensch-Maschine-Kommunikation |0 (DE-588)4125909-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 1 | |a Mensch-Maschine-Kommunikation |0 (DE-588)4125909-9 |D s |
689 | 0 | 2 | |a Roboter |0 (DE-588)4050208-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Shaw, Rabindra Nath |4 edt | |
700 | 1 | |a Ghosh, Ankush |4 edt | |
700 | 1 | |a Balas, Valentina E. |d 1956- |0 (DE-588)1202958311 |4 edt | |
700 | 1 | |a Bianchini, Monica |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-323-85498-6 |
912 | |a ZDB-30-PQE |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032871892 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6644984 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://www.sciencedirect.com/book/9780323854986 |l FWS01 |p ebook |x Aggregator |3 Volltext | |
966 | e | |u https://www.sciencedirect.com/book/9780323854986 |l FWS02 |p ebook |x Aggregator |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 934997 |
---|---|
_version_ | 1806194929089642496 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Shaw, Rabindra Nath Ghosh, Ankush Balas, Valentina E. 1956- Bianchini, Monica |
author2_role | edt edt edt edt |
author2_variant | r n s rn rns a g ag v e b ve veb m b mb |
author_GND | (DE-588)1202958311 |
author_facet | Shaw, Rabindra Nath Ghosh, Ankush Balas, Valentina E. 1956- Bianchini, Monica |
building | Verbundindex |
bvnumber | BV047470218 |
classification_rvk | ST 308 |
collection | ZDB-30-PQE ebook |
contents | Front Cover -- Artificial Intelligence for Future Generation Robotics -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1. Robotic process automation with increasing productivity and improving product quality using artificial intelligence and... -- 1.1 Introduction -- 1.2 Related work -- 1.3 Proposed work -- 1.4 Proposed model -- 1.4.1 System component -- 1.4.2 Effective collaboration -- 1.5 Manufacturing systems -- 1.6 Results analysis -- 1.7 Conclusions and future work -- References 2. Inverse kinematics analysis of 7-degree of freedom welding and drilling robot using artificial intelligence techniques -- 2.1 Introduction -- 2.2 Literature review -- 2.3 Modeling and design -- 2.3.1 Fitness function -- 2.3.2 Particle swarm optimization -- 2.3.3 Firefly algorithm -- 2.3.4 Proposed algorithm -- 2.4 Results and discussions -- 2.5 Conclusions and future work -- References -- 3. Vibration-based diagnosis of defect embedded in inner raceway of ball bearing using 1D convolutional neural network -- 3.1 Introduction -- 3.2 2D CNN-a brief introduction 3.3 1D convolutional neural network -- 3.4 Statistical parameters for feature extraction -- 3.5 Dataset used -- 3.6 Results -- 3.7 Conclusion -- References -- 4. Single shot detection for detecting real-time flying objects for unmanned aerial vehicle -- 4.1 Introduction -- 4.2 Related work -- 4.2.1 Appearance-based methods -- 4.2.2 Motion-based methods -- 4.2.3 Hybrid methods -- 4.2.4 Single-step detectors -- 4.2.5 Two-step detectors/region-based detectors -- 4.3 Methodology -- 4.3.1 Model training -- 4.3.2 Evaluation metric -- 4.4 Results and discussions 4.4.1 For real-time flying objects from video -- 4.5 Conclusion -- References -- 5. Depression detection for elderly people using AI robotic systems leveraging the Nelder-Mead Method -- 5.1 Introduction -- 5.2 Background -- 5.3 Related work -- 5.4 Elderly people detect depression signs and symptoms -- 5.4.1 Causes of depression in older adults -- 5.4.2 Medical conditions that can cause elderly depression -- 5.4.3 Elderly depression as side effect of medication -- 5.4.4 Self-help for elderly depression -- 5.5 Proposed methodology -- 5.5.1 Proposed algorithm 5.5.2 Persistent monitoring for depression detection -- 5.5.3 Emergency monitoring -- 5.5.4 Personalized monitoring -- 5.5.5 Feature extraction -- 5.6 Result analysis -- References -- 6. Data heterogeneity mitigation in healthcare robotic systems leveraging the Nelder-Mead method -- 6.1 Introduction -- 6.1.1 Related work -- 6.1.2 Contributions -- 6.2 Data heterogeneity mitigation -- 6.2.1 Data preprocessing -- 6.2.2 Nelder-Mead method for mitigating data heterogeneity -- 6.3 LSTM-based classification of data -- 6.4 Experiments and results |
ctrlnum | (OCoLC)1269385892 (DE-599)BVBBV047470218 |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04881nmm a2200553 c 4500</leader><controlfield tag="001">BV047470218</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230626 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210915s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780323857994</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-323-85799-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1269385892</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047470218</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-863</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 308</subfield><subfield code="0">(DE-625)143655:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial intelligence for future generation robotics</subfield><subfield code="c">edited by Rabindra Nath Shaw, Ankush Ghosh, Valentina E. Balas, Monica Bianchini</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 162 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Front Cover -- Artificial Intelligence for Future Generation Robotics -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1. Robotic process automation with increasing productivity and improving product quality using artificial intelligence and... -- 1.1 Introduction -- 1.2 Related work -- 1.3 Proposed work -- 1.4 Proposed model -- 1.4.1 System component -- 1.4.2 Effective collaboration -- 1.5 Manufacturing systems -- 1.6 Results analysis -- 1.7 Conclusions and future work -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Inverse kinematics analysis of 7-degree of freedom welding and drilling robot using artificial intelligence techniques -- 2.1 Introduction -- 2.2 Literature review -- 2.3 Modeling and design -- 2.3.1 Fitness function -- 2.3.2 Particle swarm optimization -- 2.3.3 Firefly algorithm -- 2.3.4 Proposed algorithm -- 2.4 Results and discussions -- 2.5 Conclusions and future work -- References -- 3. Vibration-based diagnosis of defect embedded in inner raceway of ball bearing using 1D convolutional neural network -- 3.1 Introduction -- 3.2 2D CNN-a brief introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3 1D convolutional neural network -- 3.4 Statistical parameters for feature extraction -- 3.5 Dataset used -- 3.6 Results -- 3.7 Conclusion -- References -- 4. Single shot detection for detecting real-time flying objects for unmanned aerial vehicle -- 4.1 Introduction -- 4.2 Related work -- 4.2.1 Appearance-based methods -- 4.2.2 Motion-based methods -- 4.2.3 Hybrid methods -- 4.2.4 Single-step detectors -- 4.2.5 Two-step detectors/region-based detectors -- 4.3 Methodology -- 4.3.1 Model training -- 4.3.2 Evaluation metric -- 4.4 Results and discussions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.4.1 For real-time flying objects from video -- 4.5 Conclusion -- References -- 5. Depression detection for elderly people using AI robotic systems leveraging the Nelder-Mead Method -- 5.1 Introduction -- 5.2 Background -- 5.3 Related work -- 5.4 Elderly people detect depression signs and symptoms -- 5.4.1 Causes of depression in older adults -- 5.4.2 Medical conditions that can cause elderly depression -- 5.4.3 Elderly depression as side effect of medication -- 5.4.4 Self-help for elderly depression -- 5.5 Proposed methodology -- 5.5.1 Proposed algorithm</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.5.2 Persistent monitoring for depression detection -- 5.5.3 Emergency monitoring -- 5.5.4 Personalized monitoring -- 5.5.5 Feature extraction -- 5.6 Result analysis -- References -- 6. Data heterogeneity mitigation in healthcare robotic systems leveraging the Nelder-Mead method -- 6.1 Introduction -- 6.1.1 Related work -- 6.1.2 Contributions -- 6.2 Data heterogeneity mitigation -- 6.2.1 Data preprocessing -- 6.2.2 Nelder-Mead method for mitigating data heterogeneity -- 6.3 LSTM-based classification of data -- 6.4 Experiments and results</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Robotics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Roboter</subfield><subfield code="0">(DE-588)4050208-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mensch-Maschine-Kommunikation</subfield><subfield code="0">(DE-588)4125909-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mensch-Maschine-Kommunikation</subfield><subfield code="0">(DE-588)4125909-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Roboter</subfield><subfield code="0">(DE-588)4050208-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shaw, Rabindra Nath</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghosh, Ankush</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balas, Valentina E.</subfield><subfield code="d">1956-</subfield><subfield code="0">(DE-588)1202958311</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bianchini, Monica</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-323-85498-6</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032871892</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6644984</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.sciencedirect.com/book/9780323854986</subfield><subfield code="l">FWS01</subfield><subfield code="p">ebook</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.sciencedirect.com/book/9780323854986</subfield><subfield code="l">FWS02</subfield><subfield code="p">ebook</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047470218 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:08:49Z |
indexdate | 2024-08-01T16:15:14Z |
institution | BVB |
isbn | 9780323857994 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032871892 |
oclc_num | 1269385892 |
open_access_boolean | |
owner | DE-1050 DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | DE-1050 DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 Online-Ressource (xv, 162 Seiten) |
psigel | ZDB-30-PQE ebook ZDB-30-PQE FHD01_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Elsevier |
record_format | marc |
spellingShingle | Artificial intelligence for future generation robotics Front Cover -- Artificial Intelligence for Future Generation Robotics -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1. Robotic process automation with increasing productivity and improving product quality using artificial intelligence and... -- 1.1 Introduction -- 1.2 Related work -- 1.3 Proposed work -- 1.4 Proposed model -- 1.4.1 System component -- 1.4.2 Effective collaboration -- 1.5 Manufacturing systems -- 1.6 Results analysis -- 1.7 Conclusions and future work -- References 2. Inverse kinematics analysis of 7-degree of freedom welding and drilling robot using artificial intelligence techniques -- 2.1 Introduction -- 2.2 Literature review -- 2.3 Modeling and design -- 2.3.1 Fitness function -- 2.3.2 Particle swarm optimization -- 2.3.3 Firefly algorithm -- 2.3.4 Proposed algorithm -- 2.4 Results and discussions -- 2.5 Conclusions and future work -- References -- 3. Vibration-based diagnosis of defect embedded in inner raceway of ball bearing using 1D convolutional neural network -- 3.1 Introduction -- 3.2 2D CNN-a brief introduction 3.3 1D convolutional neural network -- 3.4 Statistical parameters for feature extraction -- 3.5 Dataset used -- 3.6 Results -- 3.7 Conclusion -- References -- 4. Single shot detection for detecting real-time flying objects for unmanned aerial vehicle -- 4.1 Introduction -- 4.2 Related work -- 4.2.1 Appearance-based methods -- 4.2.2 Motion-based methods -- 4.2.3 Hybrid methods -- 4.2.4 Single-step detectors -- 4.2.5 Two-step detectors/region-based detectors -- 4.3 Methodology -- 4.3.1 Model training -- 4.3.2 Evaluation metric -- 4.4 Results and discussions 4.4.1 For real-time flying objects from video -- 4.5 Conclusion -- References -- 5. Depression detection for elderly people using AI robotic systems leveraging the Nelder-Mead Method -- 5.1 Introduction -- 5.2 Background -- 5.3 Related work -- 5.4 Elderly people detect depression signs and symptoms -- 5.4.1 Causes of depression in older adults -- 5.4.2 Medical conditions that can cause elderly depression -- 5.4.3 Elderly depression as side effect of medication -- 5.4.4 Self-help for elderly depression -- 5.5 Proposed methodology -- 5.5.1 Proposed algorithm 5.5.2 Persistent monitoring for depression detection -- 5.5.3 Emergency monitoring -- 5.5.4 Personalized monitoring -- 5.5.5 Feature extraction -- 5.6 Result analysis -- References -- 6. Data heterogeneity mitigation in healthcare robotic systems leveraging the Nelder-Mead method -- 6.1 Introduction -- 6.1.1 Related work -- 6.1.2 Contributions -- 6.2 Data heterogeneity mitigation -- 6.2.1 Data preprocessing -- 6.2.2 Nelder-Mead method for mitigating data heterogeneity -- 6.3 LSTM-based classification of data -- 6.4 Experiments and results Robotics Artificial intelligence Artificial intelligence fast Robotics fast Künstliche Intelligenz (DE-588)4033447-8 gnd Roboter (DE-588)4050208-9 gnd Mensch-Maschine-Kommunikation (DE-588)4125909-9 gnd |
subject_GND | (DE-588)4033447-8 (DE-588)4050208-9 (DE-588)4125909-9 |
title | Artificial intelligence for future generation robotics |
title_auth | Artificial intelligence for future generation robotics |
title_exact_search | Artificial intelligence for future generation robotics |
title_exact_search_txtP | Artificial intelligence for future generation robotics |
title_full | Artificial intelligence for future generation robotics edited by Rabindra Nath Shaw, Ankush Ghosh, Valentina E. Balas, Monica Bianchini |
title_fullStr | Artificial intelligence for future generation robotics edited by Rabindra Nath Shaw, Ankush Ghosh, Valentina E. Balas, Monica Bianchini |
title_full_unstemmed | Artificial intelligence for future generation robotics edited by Rabindra Nath Shaw, Ankush Ghosh, Valentina E. Balas, Monica Bianchini |
title_short | Artificial intelligence for future generation robotics |
title_sort | artificial intelligence for future generation robotics |
topic | Robotics Artificial intelligence Artificial intelligence fast Robotics fast Künstliche Intelligenz (DE-588)4033447-8 gnd Roboter (DE-588)4050208-9 gnd Mensch-Maschine-Kommunikation (DE-588)4125909-9 gnd |
topic_facet | Robotics Artificial intelligence Künstliche Intelligenz Roboter Mensch-Maschine-Kommunikation |
work_keys_str_mv | AT shawrabindranath artificialintelligenceforfuturegenerationrobotics AT ghoshankush artificialintelligenceforfuturegenerationrobotics AT balasvalentinae artificialintelligenceforfuturegenerationrobotics AT bianchinimonica artificialintelligenceforfuturegenerationrobotics |