Rheology of polymeric systems: principles and applications
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Munich
Hanser
[2021]
|
Ausgabe: | 2nd edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXII, 620 Seiten Illustrationen, Diagramme 25 cm |
ISBN: | 9781569907221 1569907226 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV047469680 | ||
003 | DE-604 | ||
005 | 20220128 | ||
007 | t | ||
008 | 210915s2021 gw a||| |||| 00||| eng d | ||
015 | |a 21,N20 |2 dnb | ||
016 | 7 | |a 1233372629 |2 DE-101 | |
020 | |a 9781569907221 |c hbk: circa EUR 249.99 (DE) (freier Preis), circa EUR 257.00 (AT) (freier Preis) |9 978-1-56990-722-1 | ||
020 | |a 1569907226 |9 1-56990-722-6 | ||
024 | 3 | |a 9781569907221 | |
028 | 5 | 2 | |a Bestellnummer: 559/00722 |
035 | |a (OCoLC)1282184481 | ||
035 | |a (DE-599)DNB1233372629 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-210 |a DE-83 |a DE-29T |a DE-12 |a DE-91G | ||
084 | |a HIST |q DE-210 |2 fid | ||
084 | |a ZM 5100 |0 (DE-625)157060: |2 rvk | ||
084 | |a WER 550f |2 stub | ||
084 | |a 660 |2 23sdnb | ||
084 | |a PHY 216f |2 stub | ||
100 | 1 | |a Carreau, Pierre J. |e Verfasser |0 (DE-588)1245129899 |4 aut | |
245 | 1 | 0 | |a Rheology of polymeric systems |b principles and applications |c Pierre J. Carreau, Daniel C.R. De Kee, Raj P. Chhabra |
250 | |a 2nd edition | ||
264 | 1 | |a Munich |b Hanser |c [2021] | |
264 | 4 | |c ©2021 | |
300 | |a XXII, 620 Seiten |b Illustrationen, Diagramme |c 25 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Rheologie |0 (DE-588)4049828-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kunststoff |0 (DE-588)4033676-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polymere |0 (DE-588)4046699-1 |2 gnd |9 rswk-swf |
653 | |a Kunststoffe | ||
653 | |a Rheologie | ||
653 | |a FBKTCHEM: Chemie/Physik der Kunststoffe | ||
653 | |a PLAS2021 | ||
689 | 0 | 0 | |a Polymere |0 (DE-588)4046699-1 |D s |
689 | 0 | 1 | |a Kunststoff |0 (DE-588)4033676-1 |D s |
689 | 0 | 2 | |a Rheologie |0 (DE-588)4049828-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a De Kee, Daniel |d 1949- |e Verfasser |0 (DE-588)124059376 |4 aut | |
700 | 1 | |a Chhabra, Raj P. |d 1953- |e Verfasser |0 (DE-588)124082580 |4 aut | |
710 | 2 | |a Hanser Publications |0 (DE-588)1064064051 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-56990-723-8 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-56990-723-8 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032871360&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032871360 |
Datensatz im Suchindex
_version_ | 1804182780421079040 |
---|---|
adam_text | CONTENTS
PREFACE
......................................................................................................
VII
1
INTRODUCTION
......................................................................................
1
1.1
DEFINITIONS
AND
CLASSIFICATION
....................................................................
1
1.1.1
PURELY
VISCOUS
OR
INELASTIC
MATERIAL
..............................................
3
1.1.2
PERFECTLY
ELASTIC
MATERIAL
..............................................................
3
1.1.3
VISCOELASTIC
MATERIAL
......................................................................
3
1.2
NON-NEWTONIAN
PHENOMENA
......................................................................
3
1.2.1
THE
WEISSENBERG
EFFECT
..................................................................
4
1.2.2
ENTRY
FLOW,
EXTRUDATE
SWELL,
MELT
FRACTURE,
AND
VIBRATING
JET
..
5
1.2.3
RECOIL
................................................................................................
9
1.2.4
OPEN
SYPHON
..................................................................................
9
1.2.5
ANTITHIXOTROPIC
EFFECT
....................................................................
10
1.2.6
DRAG
REDUCTION
................................................................................
11
1.2.7
HOLE
PRESSURE
ERROR
........................................................................
15
1.2.8
MIXING
..............................................................................................
16
1.2.9
BUBBLES,
SPHERES,
AND
COALESCENCE
..............................................
17
2
MATERIAL
FUNCTIONS
AND
GENERALIZED
NEWTONIAN
FLUIDS
.............
21
2.1
MATERIAL
FUNCTIONS
.......................................................................................
21
2.1.1
SIMPLE
SHEAR
FLOW
..........................................................................
21
2.1.1.1
STEADY-STATE
SIMPLE
SHEAR
FLOW
....................................
24
2.1.2
SINUSOIDAL
SHEAR
FLOW
....................................................................
28
2.1.3
TRANSIENT
SHEAR
FLOWS
....................................................................
32
2.1.3.1
STRESS
GROWTH
EXPERIMENT
............................................
32
2.1.3.2
STRESS
RELAXATION
FOLLOWING
STEADY-SHEAR
FLOW
..........
35
2.1.3.3
STRESS
RELAXATION
FOLLOWING
A
SUDDEN
DEFORMATION
...
38
2.1.4
ELONGATIONAL
FLOW
...........................................................................
38
2.1.4.1
UNIAXIAL
ELONGATION
.........................................................
38
2.1.4.2
BIAXIAL
ELONGATION
...........................................................
41
2.2
GENERALIZED
NEWTONIAN
MODELS
.................................................................
41
2.2.1
GENERALIZED
NEWTONIAN
FLUID
.........................................................
42
2.2.2
THE
POWER-LAW
MODEL
.....................................................................
43
2.2.3
THE
ELLIS
MODEL
(BIRD,
ARMSTRONG,
AND
HASSAGER,
1987)
..............
43
2.2.4
THE
GARREAU
MODEL
(1972)
...............................................................
44
2.2.5
THE
CROSS-WILLIAMSON
MODEL
(1965)
.............................................
45
2.2.6
THE
FOUR-PARAMETER
CARREAU
MODEL
(GARREAU
ET
AL.,
1979B)
........
46
2.2.7
THE
DE
KEE
MODEL
(1977)
.................................................................
46
2.2.8
THE
CARREAU-YASUDA
MODEL
(YASUDA,
1979)
..................................
48
2.2.9
THE
BINGHAM
MODEL
(1922)
.............................................................
48
2.2.10
THE
CASSON
MODEL
(1959)
.................................................................
49
2.2.11
THE
HERSCHEL-BULKLEY
MODEL
(1926)
..............................................
49
2.2.12
THE
DE
KEE-TURCOTTE
MODEL
(1980)
.................................................
49
2.2.13
THE
PAPANASTASIOU
MODEL
(1987)
.....................................................
51
2.2.14
THE
ZHU-KIM-DE
KEE
MODEL
(2005)
............................................
51
2.2.15
VISCOSITY
MODELS
FOR
COMPLEX
FLOW
SITUATIONS
..............................
51
2.3
THIXOTROPY,
RHEOPEXY,
AND
HYSTERESIS
.......................................................
52
2.4
RELATIONS
BETWEEN
MATERIAL
FUNCTIONS
.......................................................
58
2.5
TEMPERATURE,
PRESSURE,
AND
MOLECULAR
WEIGHT
EFFECTS
..........................
61
2.5.1
EFFECT
OF
TEMPERATURE
ON
VISCOSITY
..............................................
61
2.5.2
EFFECT
OF
PRESSURE
ON
VISCOSITY
.......................................................
63
2.5.3
EFFECT
OF
MOLECULAR
WEIGHT
ON
VISCOSITY
......................................
64
2.6
PROBLEMS
.......................................................................................................
65
2.6.1
VISCOSITY
DATA
OF
A
PIB
SOLUTION
3
..................................................
65
2.6.2
VISCOSITY
DATA
OF
A
CMC
SOLUTION
11
.................................................
65
2.6.3
THE
ELLIS
MODEP
...............................................................................
66
2.6.4
VISCOSITY
DATA
FOR
A
PS
SOLUTION
11
...................................................
66
2.6.5
RHEOLOGICAL
BEHAVIOR
OF
DRILLING
MUDS
B
........................................
67
2.6.6
THE
CROSS-WILLIAMSON
MODEP
.......................................................
68
2.6.7
VISCOSITY-MOLECULAR
WEIGHT
RELATIONSHIP
11
..................................
68
3
RHEOMETRY
.........................................................................................
69
3.1
CAPILLARY
RHEOMETRY
..................................................................................
69
3.1.1
RABINOWITSCH
ANALYSIS
..................................................................
72
3.1.2
END
EFFECTS
OR
BAGLEY
CORRECTION
..................................................
76
3.1.2.1
FLUID
ELASTICITY
FROM
END
CORRECTIONS
..........................
80
3.1.3
MOONEY
CORRECTION
........................................................................
81
3.1.4
INTRINSIC
VISCOSITY
MEASUREMENTS
................................................
82
3.1.4.1
COMMENTS
........................................................................
84
3.2
COAXIAL-CYLINDER
RHEOMETERS
....................................................................
85
3.2.1
CALCULATION
OF
VISCOSITY
..................................................................
86
3.2.1.1
NON-NEWTONIAN
VISCOSITY
..............................................
89
3.2.1.2
COMMENTS
........................................................................
90
3.2.2
END-EFFECT
CORRECTIONS
....................................................................
91
3.2.3
NORMAL
STRESS
DETERMINATION
........................................................
92
3.3
CONE-AND-PLATE
GEOMETRY
..........................................................................
94
3.3.1
VISCOSITY
DETERMINATION
................................................................
96
3.3.2
NORMAL
STRESS
DETERMINATION
........................................................
98
3.3.3
INERTIAL
EFFECTS
................................................................................
101
3.3.3.1
TORQUE
CORRECTION
..........................................................
102
3.3.3.2
NORMAL
FORCE
CORRECTIONS
..............................................
103
3.3.4
CRITERIA
FOR
TRANSIENT
EXPERIMENTS
..............................................
105
3.4
CONCENTRIC-DISK
GEOMETRY
........................................................................
110
3.4.1
VISCOSITY
DETERMINATION
................................................................
ILL
3.4.2
NORMAL
STRESS
DIFFERENCE
DETERMINATION
....................................
112
3.5
YIELD
STRESS
MEASUREMENTS
........................................................................
114
3.5.1
YIELD
STRESS
MEASUREMENT
METHODS
............................................
116
3.5.1.1
VANE
TECHNIQUE
..............................................................
119
3.5.1.2
SLOTTED-PLATE
TECHNIQUE
..................................................
120
3.5.1.3
YIELD
STRESS
FROM
SAGS
DATA
........................................
124
3.6
PROBLEMS
......................................................................................................
125
3.6.1
RABINOWITSCH-TYPE
ANALYSIS
3
........................................................
125
3.6.2
RABINOWITSCH
ANALYSIS
FOR
A
YIELD
STRESS
FLUID
B
...........................
126
3.6.3
VISCOSITY
OF
A
HIGH-DENSITY
POLYETHYLENE
3
....................................
126
3.6.4
CONE-AND-PLATE
FLOW
B
.......................................................................
127
3.6.5
PARALLEL-PLATE
RHEOMETER
11
...............................................................
127
3.6.6
FALLING-CYLINDER
VISCOMETER
B
.........................................................
128
3.6.7
WEISSENBERG
EFFECT
8
.........................................................................
128
3.6.8
NORMAL
STRESS
MEASUREMENTS
8
.......................................................
129
3.6.9
NORMAL
STRESS
DETERMINATION
VIA
EXIT
PRESSURE
11
..........................
129
3.6.10
MAXWELL
EXTRUDER
8
...........................................................................
130
3.6.11
YIELD
STRESS
DETERMINATION
11
...........................................................
130
4
TRANSPORT
PHENOMENA
IN
SIMPLE
FLOWS
........................................
131
4.1
CRITERIA
FOR
USING
PURELY
VISCOUS
MODELS
.................................................
131
4.2
ISOTHERMAL
FLOW
IN
SIMPLE
GEOMETRIES
.....................................................
132
4.2.1
FLOW
OF
A
SHEAR-THINNING
FLUID
IN
A
CIRCULAR
TUBE
....................
133
4.2.2
FILM
THICKNESS
FOR
THE
FLOW
ON
AN
INCLINED
PLANE
......................
135
4.2.3
FLOW
IN
A
THIN
SLIT
...........................................................................
137
4.2.4
HELICAL
FLOW
IN
AN
ANNULAR
SECTION
...............................................
138
4.2.5
FLOW
IN
A
DISK-SHAPED
MOLD
...........................................................
141
4.2.5.1
VELOCITY
PROFILE
.................................................................
143
4.2.5.2
PRESSURE
PROFILE
...............................................................
144
4.3
HEAT
TRANSFER
TO
NON-NEWTONIAN
FLUIDS
.....................................................
146
4.3.1
CONVECTIVE
HEAT
TRANSFER
IN
POISEUILLE
FLOW
................................
146
4.3.1.1
LEVEQUE
ANALYSIS
.............................................................
147
4.3.1.2
CORRECTIONS
FOR
TEMPERATURE
EFFECTS
ON
THE
VISCOSITY
.
153
4.3.2
HEAT
GENERATION
IN
POISEUILLE
FLOW
...............................................
154
4.3.2.1
EQUILIBRIUM
REGIME
.........................................................
155
4.3.2.2
TRANSITION
REGIME
(APPROXIMATE
SOLUTION)
..................
156
4.4
MASS
TRANSFER
TO
NON-NEWTONIAN
FLUIDS
...................................................
158
4.4.1
MASS
TRANSFER
TO
A
POWER-LAW
FLUID
FLOWING
ON
AN
INCLINED
PLATE
...................................................................................
159
4.4.2
MASS
TRANSFER
TO
A
POWER-LAW
FLUID
IN
POISEUILLE
FLOW
..............
161
4.5
BOUNDARY
LAYER
FLOWS
.................................................................................
165
4.5.1
LAMINAR
BOUNDARY
LAYER
FLOW
OF
POWER-LAW
FLUIDS
OVER
A
PLATE
165
4.5.2
LAMINAR
THERMAL
BOUNDARY
LAYER
FLOW
OVER
A
PLATE
................
170
4.6
NON-FICKIAN
DIFFUSION
.................................................................................
173
4.6.1
FACTORS
AFFECTING
THE
MASS
TRANSPORT
PROCESS
............................
174
4.6.1.1
EFFECT
OF
TEMPERATURE
....................................................
174
4.6.1.2
EFFECT
OF
PERMEANT
AND
POLYMER
STRUCTURE
..................
175
4.6.1.3
EFFECT
OF
MECHANICAL
DEFORMATION
................................
177
4.6.2
THEORY
AND
MODELING
.....................................................................
178
4.7
PROBLEMS
.......................................................................................................
182
4.7.1
PRESSURE
DROP
IN
A
TUBE
A
................................................................
182
4.7.2
GENERALIZED
REYNOLDS
NUMBER
FOR
POISEUILLE
FLOW
A
....................
182
4.7.3
FLOW
CHARACTERISTICS
OF
A
SUSPENSION
3
..........................................
183
4.7.4
GENERALIZED
NON-NEWTONIAN
POISEUILLE
FLOW
11
..............................
184
4.7.5
TOLERANCE
IN
MACHINING
AN
EXTRUSION
DIE
B
..................................
184
4.7.6
WIRE
COATING
B
..................................................................................
185
4.7.7
AXIAL
FLOW
BETWEEN
TWO
CONCENTRIC
CYLINDERS
11
..........................
186
4.7.8
GENERALIZED
COUETTE
FLOW
B
............................................................
186
4.7.9
VELOCITY
CONTROLLER
11
........................................................................
188
4.7.10
DRAINAGE
OF
A
POWER-LAW
FLUID
11
....................................................
188
4.7.11
HEAT
TRANSFER
BY
CONVECTION
IN
A
SLIT
11
..........................................
189
4.7.12
HEAT
TRANSFER
TO
A
FALLING
FILM
B
....................................................
190
4.7.13
MASS
TRANSFER
TO
A
FALLING
FILM
B
....................................................
191
4.7.14
HEAT
AND
MASS
TRANSFER
IN
BOUNDARY
LAYERS
11
..............................
192
4.7.15
VISCOELASTIC
(NON-FICKIAN)
DIFFUSION
11
............................................
192
5
LINEAR
VISCOELASTICITY
......................................................................
193
5.1
IMPORTANCE
AND
DEFINITIONS
......................................................................
193
5.2
LINEAR
VISCOELASTIC
MODELS
........................................................................
194
5.2.1
MAXWELL
MODEL
................................................................................
195
5.2.2
GENERALIZED
MAXWELL
MODEL
..........................................................
202
5.2.3
UNSPECIFIED
FORMS
FOR
THE
MAXWELL
MODEL
..................................
205
5.2.4
JEFFREYS
MODEL
..................................................................................
211
5.2.5
VOIGT-KELVIN
MODEL
........................................................................
212
5.2.6
OTHER
LINEAR
MODELS
......................................................................
214
5.3
RELAXATION
SPECTRUM
..................................................................................
216
5.4
TIME-TEMPERATURE
SUPERPOSITION
.............................................................
219
5.5
PROBLEMS
.......................................................................................................
223
5.5.1
RHEOLOGICAL
MODEL
WITH
FRICTION
3
...................................................
223
5.5.2
MAXWELL
MODEL
3
...............................................................................
223
5.5.3
STRESS
RELAXATION
FOR
A
MAXWELL
FLUID
3
.........................................
223
5.5.4
COMPLEX
VISCOSITY
OF
A
GENERALIZED
MAXWELL
FLUID
B
..................
224
5.5.5
THE
JEFFREYS
MODEL
6
.........................................................................
225
5.5.6
MAXWELL
AND
VOIGT-KELVIN
ELEMENTS
6
...........................................
225
5.5.7
STORAGE
AND
LOSS
MODULI
OF
A
VOIGT-KELVIN
MATERIAL
3
..................
226
5.5.8
COMPLEX
COMPLIANCE
6
.....................................................................
227
5.5.9
RELAXATION
MODULUS
6
.......................................................................
227
6
NON-LINEAR
VISCOELASTICITY
..............................................................
229
6.1
NON-LINEAR
DEFORMATIONS
...........................................................................
229
6.1.1
EXPRESSIONS
FOR
THE
DEFORMATION
AND
DEFORMATION
RATE
............
231
6.1.2
PURE
DEFORMATION
OR
UNIAXIAL
ELONGATION
.....................................
236
6.1.3
PLANAR
ELONGATION
.............................................................................
239
6.1.4
EXPANSION
OR
COMPRESSION
.............................................................
240
6.1.5
SIMPLE
SHEAR
...................................................................................
240
6.1.5.1
COMMENTS
.........................................................................
241
6.2
FORMULATION
OF
CONSTITUTIVE
EQUATIONS
.....................................................
244
6.2.1
MATERIAL
OBJECTIVITY
AND
FORMULATION
OF
CONSTITUTIVE
EQUATIONS
244
6.2.2
MAXWELL
CONVECTED
MODELS
.............................................................
245
6.2.3
GENERALIZED
NEWTONIAN
MODELS
.....................................................
251
6.3
DIFFERENTIAL
CONSTITUTIVE
EQUATIONS
...........................................................
256
6.3.1
DE
WITT
MODEL
.................................................................................
257
6.3.2
OLDROYD
MODELS
...............................................................................
258
6.3.3
WHITE-METZNER
MODEL
.....................................................................
259
6.3.4
MARRUCCI
MODEL
...............................................................................
267
6.3.5
PHAN-THIEN-TANNER
MODEL
.............................................................
270
6.4
INTEGRAL
CONSTITUTIVE
EQUATIONS
.................................................................
272
6.4.1
LODGE
MODEL
.....................................................................................
273
6.4.2
CARREAU
CONSTITUTIVE
EQUATION
.......................................................
278
6.4.2.1
CARREAU
A
.........................................................................
280
6.4.2.2
CARREAU
B
.........................................................................
282
6.4.2.3
DE
KEE
MODEL
...................................................................
286
6.4.3
K-BKZ
CONSTITUTIVE
EQUATION
........................................................
287
6.4.3.1
WAGNER
MODEL
...................................................................
290
6.4.4
LEROY-PIERRARD
EQUATION
..............................................................
294
6.5
CONCLUDING
REMARKS
..................................................................................
298
6.6
PROBLEMS
.......................................................................................................
299
6.6.1
PLANAR
ELONGATIONAL
FLOW
A
..............................................................
299
6.6.2
ELONGATIONAL
VISCOSITY
OF
A
LOWER-CONVECTED
MAXWELL
FLUID
3
...
300
6.6.3
BIAXIAL
ELONGATION
6
..........................................................................
300
6.6.4
ADMISSIBLE
CONSTITUTIVE
EQUATIONS
3
..............................................
300
6.6.5
SECOND-ORDER
FLUID
B
........................................................................
301
6.6.6
ELONGATIONAL
VISCOSITY
OF
AN
OLDROYD-B
FLUID
B
..............................
301
6.6.7
TRANSIENT
BEHAVIOR
OF
A
WHITE-METZNER
FLUID
B
............................
301
6.6.8
FLOW
OF
A
WHITE-METZNER
FLUID
IN
A
TUBE
UNDER
AN
OSCILLATORY
PRESSURE
GRADIENT
B
..........................................................................
301
6.6.9
VISCOMETRIC
FUNCTIONS
FOR
A
MARRUCCI
FLUID
3
..............................
302
6.6.10
MATERIAL
FUNCTIONS
FOR
A
CARREAU
FLUID
B
......................................
302
6.6.11
MATERIAL
FUNCTIONS
FOR
A
MAXWELL
MODEL
INVOLVING
SLIP
6
............
303
6.6.12
RELATIONS
BETWEEN
MATERIAL
FUNCTIONS
15
........................................
303
6.6.13
FLOW
ABOVE
AN
OSCILLATING
PLATE
6
..................................................
303
7
CONSTITUTIVE
EQUATIONS
FROM
MOLECULAR
THEORIES
.........................
305
7.1
BEAD-AND-SPRING-TYPE
MODELS
..................................................................
306
7.1.1
HOOKEAN
ELASTIC
DUMBBELL
............................................................
306
7.1.1.1
RELATION
BETWEEN
THE
CONNECTOR
FORCE
AND
THE
STRESS
TENSOR
..................................................................
307
7.1.1.2
DISTRIBUTION
FUNCTION
....................................................
309
7.1.1.3
DISTRIBUTION
FUNCTION
..........................................
311
7.1.1.4
FORCE
BALANCE
ON
DUMBBELLS
..........................................
311
7.1.2
FINITELY
EXTENSIBLE
NON-LINEAR
ELASTIC
(FENE)
DUMBBELL
..........
315
7.1.3
ROUSE
AND
ZIMM
MODELS
................................................................
319
7.2
NETWORK
THEORIES
........................................................................................
329
7.2.1
GENERAL
NETWORK
CONCEPT
..............................................................
329
7.2.2
RUBBER-LIKE
SOLIDS
...........................................................................
331
7.2.3
ELASTIC
LIQUIDS
.................................................................................
333
7.2.4
OTHER
DEVELOPMENTS
.......................................................................
335
7.3
REPTATION
THEORIES
.......................................................................................
339
7.3.1
THE
TUBE
MODEL
...............................................................................
339
7.3.2
DOI-EDWARDS
MODEL
.........................................................................
342
7.3.3
POM-POM
MODELS
.............................................................................
346
7.3.4
THE
CURTISS-BIRD
KINETIC
THEORY
...................................................
347
7.4
CONFORMATION
TENSOR
RHEOLOGICAL
MODELS
.................................................
351
7.4.1
BASIC
DESCRIPTION
OF
THE
CONFORMATION
MODEL
............................
351
7.4.2
FENE-CHARGED
MACROMOLECULES
.....................................................
355
7.4.3
ROD-LIKE
AND
WORM-LIKE
MACROMOLECULES
...................................
361
7.4.4
GENERALIZATION
OF
THE
CONFORMATION
TENSOR
MODEL
....................
370
7.5
PROBLEMS
.......................................................................................................
379
7.5.1
HOOKEAN
DUMBBELL
MODEL
B
.............................................................
379
7.5.2
TANNER
EQUATION
3
.............................................................................
379
7.5.3
COMPLEX
VISCOSITY
OF
ROUSE
FLUID
B
.................................................
379
7.5.4
NETWORK
MODEL
B
...............................................................................
379
7.5.5
CONFORMATION
MODEL
B
.......................................................................
380
7.5.6
FENE
CONFORMATION
MODE?
.............................................................
380
7.5.7
ROD-LIKE
MACROMOLECULES
11
.............................................................
380
8
MULTIPHASE
SYSTEMS
.........................................................................
381
8.1
SYSTEMS
OF
INDUSTRIAL
INTEREST
.....................................................................
381
8.2
RHEOLOGY
OF
SUSPENSIONS
.............................................................................
383
8.2.1
VISCOSITY
OF
DILUTE
SUSPENSIONS
OF
RIGID
SPHERES
......................
384
8.2.2
RHEOLOGY
OF
EMULSIONS
...................................................................
387
8.2.2.1
OLDROYD
S
EMULSION
MODEL
.............................................
388
8.2.2.2
CHOI
AND
SCHOWALTER
S
EMULSION
MODEL
........................
390
8.2.2.3
PALIERNE
S
MODEL
...............................................................
391
8.2.3
LINEAR
VISCOLEASTICITY
OF
POLYMER
BLENDS
....................................
393
8.2.4
RHEOLOGY
OF
CONCENTRATED
SUSPENSIONS
OF
NON-INTERACTIVE
PARTICLES
...........................................................................................
399
8.2.4.1
ELASTICITY
OF
SUSPENSIONS
OF
SPHERES
............................
402
8.2.5
RHEOLOGY
OF
GLASS
FIBER
SUSPENSIONS
..........................................
403
8.2.6
SUSPENSIONS
OF
INTERACTING
PARTICLES
............................................
409
8.2.7
CONCLUDING
REMARKS
......................................................................
421
8.3
FLOW
ABOUT A
RIGID
PARTICLE
........................................................................
421
8.3.1
FLOW
OF
A
POWER-LAW
FLUID
PAST
A
SPHERE
....................................
421
8.3.2
OTHER
FLUID
MODELS
........................................................................
426
8.3.3
VISCOPLASTIC
FLUIDS
..........................................................................
426
8.3.4
VISCOELASTIC
FLUIDS
..........................................................................
427
8.3.5
WALL
EFFECTS
......................................................................................
428
8.3.6
NON-SPHERICAL
PARTICLES
..................................................................
430
8.3.7
DRAG-REDUCING
FLUIDS
....................................................................
431
8.3.8
BEHAVIOR
IN
CONFINED
FLOWS
..........................................................
432
8.4
FLOW
AROUND
FLUID
SPHERES
........................................................................
434
8.4.1
CREEPING
FLOW
OF
A
POWER-LAW
FLUID
PAST
A
GAS
BUBBLE
............
434
8.4.2
EXPERIMENTAL
RESULTS
ON
SINGLE
BUBBLES
....................................
435
8.5
CREEPING
FLOW
OF
A
POWER-LAW
FLUID
AROUND
A
NEWTONIAN
DROPLET
....
438
8.5.1
EXPERIMENTAL
RESULTS
ON
FALLING
DROPS
........................................
440
8.6
FLOW
IN
PACKED
BEDS
..................................................................................
440
8.6.1
CREEPING
POWER-LAW
FLOW
IN
BEDS
OF
SPHERICAL
PARTICLES:
THE
CAPILLARY
MODEL
......................................................................
440
8.6.2
OTHER
FLUID
MODELS
........................................................................
445
8.6.3
VISCOELASTIC
EFFECTS
........................................................................
445
8.6.4
WALL
EFFECTS
......................................................................................
447
8.6.5
EFFECTS
OF
PARTICLE
SHAPE
................................................................
448
8.6.6
SUBMERGED
OBJECTS
APPROACH
TO
FLUID
FLOW
IN
PACKED
BEDS:
CREEPING
FLOW
................................................................................
449
8.7
FLUIDIZED
BEDS
............................................................................................
451
8.7.1
MINIMUM
FLUIDIZATION
VELOCITY
....................................................
451
8.7.2
BED
EXPANSION
BEHAVIOR
................................................................
454
8.7.3
HEAT
AND
MASS
TRANSFER
IN
PACKED
AND
FLUIDIZED
BEDS
...............
456
8.8
PROBLEMS
......................................................................................................
457
8.8.1
EINSTEIN
S
RESULT
11
.............................................................................
457
8.8.2
OLDROYD
S
EMULSION
MODEL
B
.............................................................
458
8.8.3
PALIERNE
S
EMULSION
MODEL
B
...........................................................
458
8.8.4
FLOW
ABOUT
A
SPHERE
B
.......................................................................
458
8.8.5
FRICTION
FACTOR
FOR
A
PACKED
BED
B
...................................................
459
8.8.6
CRITERION
FOR
FLOW
IN
A
VISCOPLASTIC
FLUID
A
....................................
459
9
LIQUID
MIXING
......................................................................................
461
9.1
INTRODUCTION
.................................................................................................
461
9.2
MECHANISMS
OF
MIXING
...............................................................................
463
9.2.1
LAMINAR
MIXING
...............................................................................
463
9.2.2
TURBULENT
MIXING
.............................................................................
466
9.3
SCALE-UP
AND
SIMILARITY
CRITERIA
.................................................................
466
9.4
POWER
CONSUMPTION
IN
AGITATED
TANKS
.....................................................
472
9.4.1
LOW-VISCOSITY
SYSTEMS
...................................................................
472
9.4.2
HIGH-VISCOSITY
INELASTIC
FLUIDS
.......................................................
474
9.4.3
VISCOELASTIC
SYSTEMS
.......................................................................
491
9.5
FLOW
PATTERNS
...............................................................................................
493
9.5.1
CLASS
I
AGITATORS
...............................................................................
493
9.5.2
CLASS
II
AGITATORS
.............................................................................
495
9.5.3
CLASS
III
AGITATORS
...........................................................................
498
9.6
MIXING
AND
CIRCULATION
TIMES
...................................................................
501
9.7
GAS
DISPERSION
.............................................................................................
504
9.7.1
GAS
DISPERSION
MECHANISMS
...........................................................
505
9.7.2
POWER
CONSUMPTION
IN
GAS-DISPERSED
SYSTEMS
..........................
507
9.7.3
BUBBLE
SIZE
AND
HOLDUP
.................................................................
510
9.7.4
MASS
TRANSFER
COEFFICIENT
...............................................................
511
9.8
HEAT
TRANSFER
.............................................................................................
512
9.8.1
CLASS
I
AGITATORS
...............................................................................
514
9.8.2
CLASS
II
AGITATORS
.............................................................................
515
9.8.3
CLASS
III
AGITATORS
...........................................................................
517
9.9
MIXING
EQUIPMENT
AND
ITS
SELECTION
.........................................................
519
9.9.1
MECHANICAL AGITATION
....................................................................
519
9.9.1.1
TANKS
.................................................................................
519
9.9.1.2
BAFFLES
...............................................................................
520
9.9.1.3
IMPELLERS
...........................................................................
520
9.9.2
EXTRUDERS
.......................................................................................
522
9.10
PROBLEMS
......................................................................................................
523
9.10.1
POWER
REQUIREMENT
FOR
SHEAR-THINNING
FLUIDS
3
..........................
523
9.10.2
EFFECTIVE
DEFORMATION
RATE
3
.............................................................
524
9.10.3
BOTTOM
EFFECTS
ON
THE
METZNER-OTTO
CONSTANT
3
............................
524
9.10.4
EFFECTIVE
DEFORMATION
RATE
IN
THE
TRANSITION
REGIME
B
................
524
10
APPENDIX
A:
GENERAL
CURVILINEAR
COORDINATE
SYSTEMS
AND
HIGHER-ORDER
TENSORS
............................................................
525
10.1
CARTESIAN
VECTORS
AND
THE
SUMMATION
CONVENTION
................................
525
10.2
GENERAL
CURVILINEAR
COORDINATE
SYSTEMS
................................................
529
10.2.1
GENERALIZED
BASE
VECTORS
..............................................................
529
10.2.2
TRANSFORMATION
RULES
FOR
VECTORS
................................................
533
10.2.2.1
CONTRAVARIANT
TRANSFORMATION
......................................
534
10.2.2.2
COVARIANT
TRANSFORMATION
..............................................
535
10.2.3
TENSORS
OF
ARBITRARY
ORDER
............................................................
536
10.2.4
METRIC
AND
PERMUTATION
TENSORS
..................................................
539
10.2.5
PHYSICAL
COMPONENTS
....................................................................
542
10.3
COVARIANT
DIFFERENTIATION
............................................................................
546
10.3.1
DEFINITIONS
......................................................................................
546
10.3.2
PROPERTIES
OF
CHRISTOFFEL
SYMBOLS
................................................
548
10.3.3
RULES
OF
COVARIANT
DIFFERENTIATION
................................................
549
10.3.4
GRAD,
DIV,
AND
CURL
........................................................................
553
10.4
INTEGRAL
TRANSFORMS
....................................................................................
559
10.5
ISOTROPIC
TENSORS,
OBJECTIVE
TENSORS,
AND
TENSOR-VALUED
FUNCTIONS
...
561
10.5.1
ISOTROPIC
TENSORS
............................................................................
561
10.5.2
OBJECTIVE
TENSORS
............................................................................
563
10.5.3
TENSOR-VALUED
FUNCTIONS
................................................................
565
10.6
PROBLEMS
......................................................................................................
569
10.6.1
ROTATION
OF
AXES
3
............................................................................
569
10.6.2
CONTRACTION
3
....................................................................................
569
10.6.3
QUOTIENT
LAW
3
..................................................................................
569
10.6.4
TRANSFORMATION
RULE
FOR
THE
CONTRAVARIANT
COMPONENTS
OF
A
SECOND-ORDER
TENSOR
1
.......................................................................
570
10.6.5
CHRISTOFFEL
SYMBOLS
1
*
.........................................................................
570
10.6.6
CYLINDRICAL
COORDINATES
3
.................................................................
570
10.6.7
COVARIANT
DERIVATIVE
1
*
.......................................................................
570
10.6.8
PHYSICAL
COMPONENTS
3
.....................................................................
571
10.6.9
DIVERGENCE
THEOREM
1
*
.......................................................................
571
10.6.10
ISOTROPIC
TENSOR
1
*
...............................................................................
571
10.6.11
OBJECTIVITY
1
*
.......................................................................................
571
10.6.12
INVARIANTS
3
.........................................................................................
572
10.6.13
TENSOR-VALUED
FUNCTION
1
*
.................................................................
572
10.6.14
ELONGATIONAL
FLOW
1
*
...........................................................................
572
11
APPENDIX
B:
EQUATIONS
OF
CHANGE
.................................................
573
11.1
THE
EQUATION
OF
CONTINUITY
IN
THREE
COORDINATE
SYSTEMS
.......................
573
11.2
THE
EQUATION
OF
MOTION
IN
RECTANGULAR
COORDINATES
(X,Y,Z)
...................
573
11.2.1
IN
TERMS
OF
R
...................................................................................
573
11.2.2
IN
TERMS
OF
VELOCITY
GRADIENTS
FOR
A
NEWTONIAN
FLUID
WITH
CONSTANT
P
AND
P
.............................................................................
574
11.3
THE
EQUATION
OF
MOTION
IN
CYLINDRICAL
COORDINATES
(R,
0,
Z)
.....................
574
11.3.1
IN
TERMS
OF
CR
...................................................................................
574
11.3.2
IN
TERMS
OF
VELOCITY
GRADIENTS
FOR
A
NEWTONIAN
FLUID
WITH
CONSTANT
P
AND
P
...............................................................................
575
11.4
THE
EQUATION
OF
MOTION
IN
SPHERICAL
COORDINATES
(R,
0,
F )
.........................
576
11.4.1
IN
TERMS
OF
CR
.....................................................................................
576
11.4.2
IN TERMS
OF
VELOCITY
GRADIENTS
FOR
A
NEWTONIAN
FLUID
WITH
CONSTANT
P
AND
P
...............................................................................
576
REFERENCES
...................................................................................................
579
NOTATION
......................................................................................................
599
INDEX
..............................................................................................................
611
|
adam_txt |
CONTENTS
PREFACE
.
VII
1
INTRODUCTION
.
1
1.1
DEFINITIONS
AND
CLASSIFICATION
.
1
1.1.1
PURELY
VISCOUS
OR
INELASTIC
MATERIAL
.
3
1.1.2
PERFECTLY
ELASTIC
MATERIAL
.
3
1.1.3
VISCOELASTIC
MATERIAL
.
3
1.2
NON-NEWTONIAN
PHENOMENA
.
3
1.2.1
THE
WEISSENBERG
EFFECT
.
4
1.2.2
ENTRY
FLOW,
EXTRUDATE
SWELL,
MELT
FRACTURE,
AND
VIBRATING
JET
.
5
1.2.3
RECOIL
.
9
1.2.4
OPEN
SYPHON
.
9
1.2.5
ANTITHIXOTROPIC
EFFECT
.
10
1.2.6
DRAG
REDUCTION
.
11
1.2.7
HOLE
PRESSURE
ERROR
.
15
1.2.8
MIXING
.
16
1.2.9
BUBBLES,
SPHERES,
AND
COALESCENCE
.
17
2
MATERIAL
FUNCTIONS
AND
GENERALIZED
NEWTONIAN
FLUIDS
.
21
2.1
MATERIAL
FUNCTIONS
.
21
2.1.1
SIMPLE
SHEAR
FLOW
.
21
2.1.1.1
STEADY-STATE
SIMPLE
SHEAR
FLOW
.
24
2.1.2
SINUSOIDAL
SHEAR
FLOW
.
28
2.1.3
TRANSIENT
SHEAR
FLOWS
.
32
2.1.3.1
STRESS
GROWTH
EXPERIMENT
.
32
2.1.3.2
STRESS
RELAXATION
FOLLOWING
STEADY-SHEAR
FLOW
.
35
2.1.3.3
STRESS
RELAXATION
FOLLOWING
A
SUDDEN
DEFORMATION
.
38
2.1.4
ELONGATIONAL
FLOW
.
38
2.1.4.1
UNIAXIAL
ELONGATION
.
38
2.1.4.2
BIAXIAL
ELONGATION
.
41
2.2
GENERALIZED
NEWTONIAN
MODELS
.
41
2.2.1
GENERALIZED
NEWTONIAN
FLUID
.
42
2.2.2
THE
POWER-LAW
MODEL
.
43
2.2.3
THE
ELLIS
MODEL
(BIRD,
ARMSTRONG,
AND
HASSAGER,
1987)
.
43
2.2.4
THE
GARREAU
MODEL
(1972)
.
44
2.2.5
THE
CROSS-WILLIAMSON
MODEL
(1965)
.
45
2.2.6
THE
FOUR-PARAMETER
CARREAU
MODEL
(GARREAU
ET
AL.,
1979B)
.
46
2.2.7
THE
DE
KEE
MODEL
(1977)
.
46
2.2.8
THE
CARREAU-YASUDA
MODEL
(YASUDA,
1979)
.
48
2.2.9
THE
BINGHAM
MODEL
(1922)
.
48
2.2.10
THE
CASSON
MODEL
(1959)
.
49
2.2.11
THE
HERSCHEL-BULKLEY
MODEL
(1926)
.
49
2.2.12
THE
DE
KEE-TURCOTTE
MODEL
(1980)
.
49
2.2.13
THE
PAPANASTASIOU
MODEL
(1987)
.
51
2.2.14
THE
ZHU-KIM-DE
KEE
MODEL
(2005)
.
51
2.2.15
VISCOSITY
MODELS
FOR
COMPLEX
FLOW
SITUATIONS
.
51
2.3
THIXOTROPY,
RHEOPEXY,
AND
HYSTERESIS
.
52
2.4
RELATIONS
BETWEEN
MATERIAL
FUNCTIONS
.
58
2.5
TEMPERATURE,
PRESSURE,
AND
MOLECULAR
WEIGHT
EFFECTS
.
61
2.5.1
EFFECT
OF
TEMPERATURE
ON
VISCOSITY
.
61
2.5.2
EFFECT
OF
PRESSURE
ON
VISCOSITY
.
63
2.5.3
EFFECT
OF
MOLECULAR
WEIGHT
ON
VISCOSITY
.
64
2.6
PROBLEMS
.
65
2.6.1
VISCOSITY
DATA
OF
A
PIB
SOLUTION
3
.
65
2.6.2
VISCOSITY
DATA
OF
A
CMC
SOLUTION
11
.
65
2.6.3
THE
ELLIS
MODEP
.
66
2.6.4
VISCOSITY
DATA
FOR
A
PS
SOLUTION
11
.
66
2.6.5
RHEOLOGICAL
BEHAVIOR
OF
DRILLING
MUDS
B
.
67
2.6.6
THE
CROSS-WILLIAMSON
MODEP
.
68
2.6.7
VISCOSITY-MOLECULAR
WEIGHT
RELATIONSHIP
11
.
68
3
RHEOMETRY
.
69
3.1
CAPILLARY
RHEOMETRY
.
69
3.1.1
RABINOWITSCH
ANALYSIS
.
72
3.1.2
END
EFFECTS
OR
BAGLEY
CORRECTION
.
76
3.1.2.1
FLUID
ELASTICITY
FROM
END
CORRECTIONS
.
80
3.1.3
MOONEY
CORRECTION
.
81
3.1.4
INTRINSIC
VISCOSITY
MEASUREMENTS
.
82
3.1.4.1
COMMENTS
.
84
3.2
COAXIAL-CYLINDER
RHEOMETERS
.
85
3.2.1
CALCULATION
OF
VISCOSITY
.
86
3.2.1.1
NON-NEWTONIAN
VISCOSITY
.
89
3.2.1.2
COMMENTS
.
90
3.2.2
END-EFFECT
CORRECTIONS
.
91
3.2.3
NORMAL
STRESS
DETERMINATION
.
92
3.3
CONE-AND-PLATE
GEOMETRY
.
94
3.3.1
VISCOSITY
DETERMINATION
.
96
3.3.2
NORMAL
STRESS
DETERMINATION
.
98
3.3.3
INERTIAL
EFFECTS
.
101
3.3.3.1
TORQUE
CORRECTION
.
102
3.3.3.2
NORMAL
FORCE
CORRECTIONS
.
103
3.3.4
CRITERIA
FOR
TRANSIENT
EXPERIMENTS
.
105
3.4
CONCENTRIC-DISK
GEOMETRY
.
110
3.4.1
VISCOSITY
DETERMINATION
.
ILL
3.4.2
NORMAL
STRESS
DIFFERENCE
DETERMINATION
.
112
3.5
YIELD
STRESS
MEASUREMENTS
.
114
3.5.1
YIELD
STRESS
MEASUREMENT
METHODS
.
116
3.5.1.1
VANE
TECHNIQUE
.
119
3.5.1.2
SLOTTED-PLATE
TECHNIQUE
.
120
3.5.1.3
YIELD
STRESS
FROM
SAGS
DATA
.
124
3.6
PROBLEMS
.
125
3.6.1
RABINOWITSCH-TYPE
ANALYSIS
3
.
125
3.6.2
RABINOWITSCH
ANALYSIS
FOR
A
YIELD
STRESS
FLUID
B
.
126
3.6.3
VISCOSITY
OF
A
HIGH-DENSITY
POLYETHYLENE
3
.
126
3.6.4
CONE-AND-PLATE
FLOW
B
.
127
3.6.5
PARALLEL-PLATE
RHEOMETER
11
.
127
3.6.6
FALLING-CYLINDER
VISCOMETER
B
.
128
3.6.7
WEISSENBERG
EFFECT
8
.
128
3.6.8
NORMAL
STRESS
MEASUREMENTS
8
.
129
3.6.9
NORMAL
STRESS
DETERMINATION
VIA
EXIT
PRESSURE
11
.
129
3.6.10
MAXWELL
EXTRUDER
8
.
130
3.6.11
YIELD
STRESS
DETERMINATION
11
.
130
4
TRANSPORT
PHENOMENA
IN
SIMPLE
FLOWS
.
131
4.1
CRITERIA
FOR
USING
PURELY
VISCOUS
MODELS
.
131
4.2
ISOTHERMAL
FLOW
IN
SIMPLE
GEOMETRIES
.
132
4.2.1
FLOW
OF
A
SHEAR-THINNING
FLUID
IN
A
CIRCULAR
TUBE
.
133
4.2.2
FILM
THICKNESS
FOR
THE
FLOW
ON
AN
INCLINED
PLANE
.
135
4.2.3
FLOW
IN
A
THIN
SLIT
.
137
4.2.4
HELICAL
FLOW
IN
AN
ANNULAR
SECTION
.
138
4.2.5
FLOW
IN
A
DISK-SHAPED
MOLD
.
141
4.2.5.1
VELOCITY
PROFILE
.
143
4.2.5.2
PRESSURE
PROFILE
.
144
4.3
HEAT
TRANSFER
TO
NON-NEWTONIAN
FLUIDS
.
146
4.3.1
CONVECTIVE
HEAT
TRANSFER
IN
POISEUILLE
FLOW
.
146
4.3.1.1
LEVEQUE
ANALYSIS
.
147
4.3.1.2
CORRECTIONS
FOR
TEMPERATURE
EFFECTS
ON
THE
VISCOSITY
.
153
4.3.2
HEAT
GENERATION
IN
POISEUILLE
FLOW
.
154
4.3.2.1
EQUILIBRIUM
REGIME
.
155
4.3.2.2
TRANSITION
REGIME
(APPROXIMATE
SOLUTION)
.
156
4.4
MASS
TRANSFER
TO
NON-NEWTONIAN
FLUIDS
.
158
4.4.1
MASS
TRANSFER
TO
A
POWER-LAW
FLUID
FLOWING
ON
AN
INCLINED
PLATE
.
159
4.4.2
MASS
TRANSFER
TO
A
POWER-LAW
FLUID
IN
POISEUILLE
FLOW
.
161
4.5
BOUNDARY
LAYER
FLOWS
.
165
4.5.1
LAMINAR
BOUNDARY
LAYER
FLOW
OF
POWER-LAW
FLUIDS
OVER
A
PLATE
165
4.5.2
LAMINAR
THERMAL
BOUNDARY
LAYER
FLOW
OVER
A
PLATE
.
170
4.6
NON-FICKIAN
DIFFUSION
.
173
4.6.1
FACTORS
AFFECTING
THE
MASS
TRANSPORT
PROCESS
.
174
4.6.1.1
EFFECT
OF
TEMPERATURE
.
174
4.6.1.2
EFFECT
OF
PERMEANT
AND
POLYMER
STRUCTURE
.
175
4.6.1.3
EFFECT
OF
MECHANICAL
DEFORMATION
.
177
4.6.2
THEORY
AND
MODELING
.
178
4.7
PROBLEMS
.
182
4.7.1
PRESSURE
DROP
IN
A
TUBE
A
.
182
4.7.2
GENERALIZED
REYNOLDS
NUMBER
FOR
POISEUILLE
FLOW
A
.
182
4.7.3
FLOW
CHARACTERISTICS
OF
A
SUSPENSION
3
.
183
4.7.4
GENERALIZED
NON-NEWTONIAN
POISEUILLE
FLOW
11
.
184
4.7.5
TOLERANCE
IN
MACHINING
AN
EXTRUSION
DIE
B
.
184
4.7.6
WIRE
COATING
B
.
185
4.7.7
AXIAL
FLOW
BETWEEN
TWO
CONCENTRIC
CYLINDERS
11
.
186
4.7.8
GENERALIZED
COUETTE
FLOW
B
.
186
4.7.9
VELOCITY
CONTROLLER
11
.
188
4.7.10
DRAINAGE
OF
A
POWER-LAW
FLUID
11
.
188
4.7.11
HEAT
TRANSFER
BY
CONVECTION
IN
A
SLIT
11
.
189
4.7.12
HEAT
TRANSFER
TO
A
FALLING
FILM
B
.
190
4.7.13
MASS
TRANSFER
TO
A
FALLING
FILM
B
.
191
4.7.14
HEAT
AND
MASS
TRANSFER
IN
BOUNDARY
LAYERS
11
.
192
4.7.15
VISCOELASTIC
(NON-FICKIAN)
DIFFUSION
11
.
192
5
LINEAR
VISCOELASTICITY
.
193
5.1
IMPORTANCE
AND
DEFINITIONS
.
193
5.2
LINEAR
VISCOELASTIC
MODELS
.
194
5.2.1
MAXWELL
MODEL
.
195
5.2.2
GENERALIZED
MAXWELL
MODEL
.
202
5.2.3
UNSPECIFIED
FORMS
FOR
THE
MAXWELL
MODEL
.
205
5.2.4
JEFFREYS
MODEL
.
211
5.2.5
VOIGT-KELVIN
MODEL
.
212
5.2.6
OTHER
LINEAR
MODELS
.
214
5.3
RELAXATION
SPECTRUM
.
216
5.4
TIME-TEMPERATURE
SUPERPOSITION
.
219
5.5
PROBLEMS
.
223
5.5.1
RHEOLOGICAL
MODEL
WITH
FRICTION
3
.
223
5.5.2
MAXWELL
MODEL
3
.
223
5.5.3
STRESS
RELAXATION
FOR
A
MAXWELL
FLUID
3
.
223
5.5.4
COMPLEX
VISCOSITY
OF
A
GENERALIZED
MAXWELL
FLUID
B
.
224
5.5.5
THE
JEFFREYS
MODEL
6
.
225
5.5.6
MAXWELL
AND
VOIGT-KELVIN
ELEMENTS
6
.
225
5.5.7
STORAGE
AND
LOSS
MODULI
OF
A
VOIGT-KELVIN
MATERIAL
3
.
226
5.5.8
COMPLEX
COMPLIANCE
6
.
227
5.5.9
RELAXATION
MODULUS
6
.
227
6
NON-LINEAR
VISCOELASTICITY
.
229
6.1
NON-LINEAR
DEFORMATIONS
.
229
6.1.1
EXPRESSIONS
FOR
THE
DEFORMATION
AND
DEFORMATION
RATE
.
231
6.1.2
PURE
DEFORMATION
OR
UNIAXIAL
ELONGATION
.
236
6.1.3
PLANAR
ELONGATION
.
239
6.1.4
EXPANSION
OR
COMPRESSION
.
240
6.1.5
SIMPLE
SHEAR
.
240
6.1.5.1
COMMENTS
.
241
6.2
FORMULATION
OF
CONSTITUTIVE
EQUATIONS
.
244
6.2.1
MATERIAL
OBJECTIVITY
AND
FORMULATION
OF
CONSTITUTIVE
EQUATIONS
244
6.2.2
MAXWELL
CONVECTED
MODELS
.
245
6.2.3
GENERALIZED
NEWTONIAN
MODELS
.
251
6.3
DIFFERENTIAL
CONSTITUTIVE
EQUATIONS
.
256
6.3.1
DE
WITT
MODEL
.
257
6.3.2
OLDROYD
MODELS
.
258
6.3.3
WHITE-METZNER
MODEL
.
259
6.3.4
MARRUCCI
MODEL
.
267
6.3.5
PHAN-THIEN-TANNER
MODEL
.
270
6.4
INTEGRAL
CONSTITUTIVE
EQUATIONS
.
272
6.4.1
LODGE
MODEL
.
273
6.4.2
CARREAU
CONSTITUTIVE
EQUATION
.
278
6.4.2.1
CARREAU
A
.
280
6.4.2.2
CARREAU
B
.
282
6.4.2.3
DE
KEE
MODEL
.
286
6.4.3
K-BKZ
CONSTITUTIVE
EQUATION
.
287
6.4.3.1
WAGNER
MODEL
.
290
6.4.4
LEROY-PIERRARD
EQUATION
.
294
6.5
CONCLUDING
REMARKS
.
298
6.6
PROBLEMS
.
299
6.6.1
PLANAR
ELONGATIONAL
FLOW
A
.
299
6.6.2
ELONGATIONAL
VISCOSITY
OF
A
LOWER-CONVECTED
MAXWELL
FLUID
3
.
300
6.6.3
BIAXIAL
ELONGATION
6
.
300
6.6.4
ADMISSIBLE
CONSTITUTIVE
EQUATIONS
3
.
300
6.6.5
SECOND-ORDER
FLUID
B
.
301
6.6.6
ELONGATIONAL
VISCOSITY
OF
AN
OLDROYD-B
FLUID
B
.
301
6.6.7
TRANSIENT
BEHAVIOR
OF
A
WHITE-METZNER
FLUID
B
.
301
6.6.8
FLOW
OF
A
WHITE-METZNER
FLUID
IN
A
TUBE
UNDER
AN
OSCILLATORY
PRESSURE
GRADIENT
B
.
301
6.6.9
VISCOMETRIC
FUNCTIONS
FOR
A
MARRUCCI
FLUID
3
.
302
6.6.10
MATERIAL
FUNCTIONS
FOR
A
CARREAU
FLUID
B
.
302
6.6.11
MATERIAL
FUNCTIONS
FOR
A
MAXWELL
MODEL
INVOLVING
SLIP
6
.
303
6.6.12
RELATIONS
BETWEEN
MATERIAL
FUNCTIONS
15
.
303
6.6.13
FLOW
ABOVE
AN
OSCILLATING
PLATE
6
.
303
7
CONSTITUTIVE
EQUATIONS
FROM
MOLECULAR
THEORIES
.
305
7.1
BEAD-AND-SPRING-TYPE
MODELS
.
306
7.1.1
HOOKEAN
ELASTIC
DUMBBELL
.
306
7.1.1.1
RELATION
BETWEEN
THE
CONNECTOR
FORCE
AND
THE
STRESS
TENSOR
.
307
7.1.1.2
DISTRIBUTION
FUNCTION
.
309
7.1.1.3
DISTRIBUTION
FUNCTION
.
311
7.1.1.4
FORCE
BALANCE
ON
DUMBBELLS
.
311
7.1.2
FINITELY
EXTENSIBLE
NON-LINEAR
ELASTIC
(FENE)
DUMBBELL
.
315
7.1.3
ROUSE
AND
ZIMM
MODELS
.
319
7.2
NETWORK
THEORIES
.
329
7.2.1
GENERAL
NETWORK
CONCEPT
.
329
7.2.2
RUBBER-LIKE
SOLIDS
.
331
7.2.3
ELASTIC
LIQUIDS
.
333
7.2.4
OTHER
DEVELOPMENTS
.
335
7.3
REPTATION
THEORIES
.
339
7.3.1
THE
TUBE
MODEL
.
339
7.3.2
DOI-EDWARDS
MODEL
.
342
7.3.3
POM-POM
MODELS
.
346
7.3.4
THE
CURTISS-BIRD
KINETIC
THEORY
.
347
7.4
CONFORMATION
TENSOR
RHEOLOGICAL
MODELS
.
351
7.4.1
BASIC
DESCRIPTION
OF
THE
CONFORMATION
MODEL
.
351
7.4.2
FENE-CHARGED
MACROMOLECULES
.
355
7.4.3
ROD-LIKE
AND
WORM-LIKE
MACROMOLECULES
.
361
7.4.4
GENERALIZATION
OF
THE
CONFORMATION
TENSOR
MODEL
.
370
7.5
PROBLEMS
.
379
7.5.1
HOOKEAN
DUMBBELL
MODEL
B
.
379
7.5.2
TANNER
EQUATION
3
.
379
7.5.3
COMPLEX
VISCOSITY
OF
ROUSE
FLUID
B
.
379
7.5.4
NETWORK
MODEL
B
.
379
7.5.5
CONFORMATION
MODEL
B
.
380
7.5.6
FENE
CONFORMATION
MODE?
.
380
7.5.7
ROD-LIKE
MACROMOLECULES
11
.
380
8
MULTIPHASE
SYSTEMS
.
381
8.1
SYSTEMS
OF
INDUSTRIAL
INTEREST
.
381
8.2
RHEOLOGY
OF
SUSPENSIONS
.
383
8.2.1
VISCOSITY
OF
DILUTE
SUSPENSIONS
OF
RIGID
SPHERES
.
384
8.2.2
RHEOLOGY
OF
EMULSIONS
.
387
8.2.2.1
OLDROYD
'
S
EMULSION
MODEL
.
388
8.2.2.2
CHOI
AND
SCHOWALTER
'
S
EMULSION
MODEL
.
390
8.2.2.3
PALIERNE
'
S
MODEL
.
391
8.2.3
LINEAR
VISCOLEASTICITY
OF
POLYMER
BLENDS
.
393
8.2.4
RHEOLOGY
OF
CONCENTRATED
SUSPENSIONS
OF
NON-INTERACTIVE
PARTICLES
.
399
8.2.4.1
ELASTICITY
OF
SUSPENSIONS
OF
SPHERES
.
402
8.2.5
RHEOLOGY
OF
GLASS
FIBER
SUSPENSIONS
.
403
8.2.6
SUSPENSIONS
OF
INTERACTING
PARTICLES
.
409
8.2.7
CONCLUDING
REMARKS
.
421
8.3
FLOW
ABOUT A
RIGID
PARTICLE
.
421
8.3.1
FLOW
OF
A
POWER-LAW
FLUID
PAST
A
SPHERE
.
421
8.3.2
OTHER
FLUID
MODELS
.
426
8.3.3
VISCOPLASTIC
FLUIDS
.
426
8.3.4
VISCOELASTIC
FLUIDS
.
427
8.3.5
WALL
EFFECTS
.
428
8.3.6
NON-SPHERICAL
PARTICLES
.
430
8.3.7
DRAG-REDUCING
FLUIDS
.
431
8.3.8
BEHAVIOR
IN
CONFINED
FLOWS
.
432
8.4
FLOW
AROUND
FLUID
SPHERES
.
434
8.4.1
CREEPING
FLOW
OF
A
POWER-LAW
FLUID
PAST
A
GAS
BUBBLE
.
434
8.4.2
EXPERIMENTAL
RESULTS
ON
SINGLE
BUBBLES
.
435
8.5
CREEPING
FLOW
OF
A
POWER-LAW
FLUID
AROUND
A
NEWTONIAN
DROPLET
.
438
8.5.1
EXPERIMENTAL
RESULTS
ON
FALLING
DROPS
.
440
8.6
FLOW
IN
PACKED
BEDS
.
440
8.6.1
CREEPING
POWER-LAW
FLOW
IN
BEDS
OF
SPHERICAL
PARTICLES:
THE
CAPILLARY
MODEL
.
440
8.6.2
OTHER
FLUID
MODELS
.
445
8.6.3
VISCOELASTIC
EFFECTS
.
445
8.6.4
WALL
EFFECTS
.
447
8.6.5
EFFECTS
OF
PARTICLE
SHAPE
.
448
8.6.6
"
SUBMERGED
OBJECTS
"
APPROACH
TO
FLUID
FLOW
IN
PACKED
BEDS:
CREEPING
FLOW
.
449
8.7
FLUIDIZED
BEDS
.
451
8.7.1
MINIMUM
FLUIDIZATION
VELOCITY
.
451
8.7.2
BED
EXPANSION
BEHAVIOR
.
454
8.7.3
HEAT
AND
MASS
TRANSFER
IN
PACKED
AND
FLUIDIZED
BEDS
.
456
8.8
PROBLEMS
.
457
8.8.1
EINSTEIN
'
S
RESULT
11
.
457
8.8.2
OLDROYD
'
S
EMULSION
MODEL
B
.
458
8.8.3
PALIERNE
'
S
EMULSION
MODEL
B
.
458
8.8.4
FLOW
ABOUT
A
SPHERE
B
.
458
8.8.5
FRICTION
FACTOR
FOR
A
PACKED
BED
B
.
459
8.8.6
CRITERION
FOR
FLOW
IN
A
VISCOPLASTIC
FLUID
A
.
459
9
LIQUID
MIXING
.
461
9.1
INTRODUCTION
.
461
9.2
MECHANISMS
OF
MIXING
.
463
9.2.1
LAMINAR
MIXING
.
463
9.2.2
TURBULENT
MIXING
.
466
9.3
SCALE-UP
AND
SIMILARITY
CRITERIA
.
466
9.4
POWER
CONSUMPTION
IN
AGITATED
TANKS
.
472
9.4.1
LOW-VISCOSITY
SYSTEMS
.
472
9.4.2
HIGH-VISCOSITY
INELASTIC
FLUIDS
.
474
9.4.3
VISCOELASTIC
SYSTEMS
.
491
9.5
FLOW
PATTERNS
.
493
9.5.1
CLASS
I
AGITATORS
.
493
9.5.2
CLASS
II
AGITATORS
.
495
9.5.3
CLASS
III
AGITATORS
.
498
9.6
MIXING
AND
CIRCULATION
TIMES
.
501
9.7
GAS
DISPERSION
.
504
9.7.1
GAS
DISPERSION
MECHANISMS
.
505
9.7.2
POWER
CONSUMPTION
IN
GAS-DISPERSED
SYSTEMS
.
507
9.7.3
BUBBLE
SIZE
AND
HOLDUP
.
510
9.7.4
MASS
TRANSFER
COEFFICIENT
.
511
9.8
HEAT
TRANSFER
.
512
9.8.1
CLASS
I
AGITATORS
.
514
9.8.2
CLASS
II
AGITATORS
.
515
9.8.3
CLASS
III
AGITATORS
.
517
9.9
MIXING
EQUIPMENT
AND
ITS
SELECTION
.
519
9.9.1
MECHANICAL AGITATION
.
519
9.9.1.1
TANKS
.
519
9.9.1.2
BAFFLES
.
520
9.9.1.3
IMPELLERS
.
520
9.9.2
EXTRUDERS
.
522
9.10
PROBLEMS
.
523
9.10.1
POWER
REQUIREMENT
FOR
SHEAR-THINNING
FLUIDS
3
.
523
9.10.2
EFFECTIVE
DEFORMATION
RATE
3
.
524
9.10.3
BOTTOM
EFFECTS
ON
THE
METZNER-OTTO
CONSTANT
3
.
524
9.10.4
EFFECTIVE
DEFORMATION
RATE
IN
THE
TRANSITION
REGIME
B
.
524
10
APPENDIX
A:
GENERAL
CURVILINEAR
COORDINATE
SYSTEMS
AND
HIGHER-ORDER
TENSORS
.
525
10.1
CARTESIAN
VECTORS
AND
THE
SUMMATION
CONVENTION
.
525
10.2
GENERAL
CURVILINEAR
COORDINATE
SYSTEMS
.
529
10.2.1
GENERALIZED
BASE
VECTORS
.
529
10.2.2
TRANSFORMATION
RULES
FOR
VECTORS
.
533
10.2.2.1
CONTRAVARIANT
TRANSFORMATION
.
534
10.2.2.2
COVARIANT
TRANSFORMATION
.
535
10.2.3
TENSORS
OF
ARBITRARY
ORDER
.
536
10.2.4
METRIC
AND
PERMUTATION
TENSORS
.
539
10.2.5
PHYSICAL
COMPONENTS
.
542
10.3
COVARIANT
DIFFERENTIATION
.
546
10.3.1
DEFINITIONS
.
546
10.3.2
PROPERTIES
OF
CHRISTOFFEL
SYMBOLS
.
548
10.3.3
RULES
OF
COVARIANT
DIFFERENTIATION
.
549
10.3.4
GRAD,
DIV,
AND
CURL
.
553
10.4
INTEGRAL
TRANSFORMS
.
559
10.5
ISOTROPIC
TENSORS,
OBJECTIVE
TENSORS,
AND
TENSOR-VALUED
FUNCTIONS
.
561
10.5.1
ISOTROPIC
TENSORS
.
561
10.5.2
OBJECTIVE
TENSORS
.
563
10.5.3
TENSOR-VALUED
FUNCTIONS
.
565
10.6
PROBLEMS
.
569
10.6.1
ROTATION
OF
AXES
3
.
569
10.6.2
CONTRACTION
3
.
569
10.6.3
QUOTIENT
LAW
3
.
569
10.6.4
TRANSFORMATION
RULE
FOR
THE
CONTRAVARIANT
COMPONENTS
OF
A
SECOND-ORDER
TENSOR
1
.
570
10.6.5
CHRISTOFFEL
SYMBOLS
1
*
.
570
10.6.6
CYLINDRICAL
COORDINATES
3
.
570
10.6.7
COVARIANT
DERIVATIVE
1
*
.
570
10.6.8
PHYSICAL
COMPONENTS
3
.
571
10.6.9
DIVERGENCE
THEOREM
1
*
.
571
10.6.10
ISOTROPIC
TENSOR
1
*
.
571
10.6.11
OBJECTIVITY
1
*
.
571
10.6.12
INVARIANTS
3
.
572
10.6.13
TENSOR-VALUED
FUNCTION
1
*
.
572
10.6.14
ELONGATIONAL
FLOW
1
*
.
572
11
APPENDIX
B:
EQUATIONS
OF
CHANGE
.
573
11.1
THE
EQUATION
OF
CONTINUITY
IN
THREE
COORDINATE
SYSTEMS
.
573
11.2
THE
EQUATION
OF
MOTION
IN
RECTANGULAR
COORDINATES
(X,Y,Z)
.
573
11.2.1
IN
TERMS
OF
R
.
573
11.2.2
IN
TERMS
OF
VELOCITY
GRADIENTS
FOR
A
NEWTONIAN
FLUID
WITH
CONSTANT
P
AND
P
.
574
11.3
THE
EQUATION
OF
MOTION
IN
CYLINDRICAL
COORDINATES
(R,
0,
Z)
.
574
11.3.1
IN
TERMS
OF
CR
.
574
11.3.2
IN
TERMS
OF
VELOCITY
GRADIENTS
FOR
A
NEWTONIAN
FLUID
WITH
CONSTANT
P
AND
P
.
575
11.4
THE
EQUATION
OF
MOTION
IN
SPHERICAL
COORDINATES
(R,
0,
F )
.
576
11.4.1
IN
TERMS
OF
CR
.
576
11.4.2
IN TERMS
OF
VELOCITY
GRADIENTS
FOR
A
NEWTONIAN
FLUID
WITH
CONSTANT
P
AND
P
.
576
REFERENCES
.
579
NOTATION
.
599
INDEX
.
611 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Carreau, Pierre J. De Kee, Daniel 1949- Chhabra, Raj P. 1953- |
author_GND | (DE-588)1245129899 (DE-588)124059376 (DE-588)124082580 |
author_facet | Carreau, Pierre J. De Kee, Daniel 1949- Chhabra, Raj P. 1953- |
author_role | aut aut aut |
author_sort | Carreau, Pierre J. |
author_variant | p j c pj pjc k d d kd kdd r p c rp rpc |
building | Verbundindex |
bvnumber | BV047469680 |
classification_rvk | ZM 5100 |
classification_tum | WER 550f PHY 216f |
ctrlnum | (OCoLC)1282184481 (DE-599)DNB1233372629 |
discipline | Physik Werkstoffwissenschaften Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Physik Werkstoffwissenschaften Werkstoffwissenschaften / Fertigungstechnik |
edition | 2nd edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02417nam a22006138c 4500</leader><controlfield tag="001">BV047469680</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220128 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210915s2021 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">21,N20</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1233372629</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781569907221</subfield><subfield code="c">hbk: circa EUR 249.99 (DE) (freier Preis), circa EUR 257.00 (AT) (freier Preis)</subfield><subfield code="9">978-1-56990-722-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1569907226</subfield><subfield code="9">1-56990-722-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781569907221</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 559/00722</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1282184481</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1233372629</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-210</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">HIST</subfield><subfield code="q">DE-210</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 5100</subfield><subfield code="0">(DE-625)157060:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WER 550f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">660</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 216f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Carreau, Pierre J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1245129899</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rheology of polymeric systems</subfield><subfield code="b">principles and applications</subfield><subfield code="c">Pierre J. Carreau, Daniel C.R. De Kee, Raj P. Chhabra</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Munich</subfield><subfield code="b">Hanser</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 620 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rheologie</subfield><subfield code="0">(DE-588)4049828-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kunststoff</subfield><subfield code="0">(DE-588)4033676-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polymere</subfield><subfield code="0">(DE-588)4046699-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Kunststoffe</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Rheologie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">FBKTCHEM: Chemie/Physik der Kunststoffe</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">PLAS2021</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Polymere</subfield><subfield code="0">(DE-588)4046699-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kunststoff</subfield><subfield code="0">(DE-588)4033676-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Rheologie</subfield><subfield code="0">(DE-588)4049828-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Kee, Daniel</subfield><subfield code="d">1949-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124059376</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chhabra, Raj P.</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124082580</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Hanser Publications</subfield><subfield code="0">(DE-588)1064064051</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-56990-723-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-56990-723-8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032871360&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032871360</subfield></datafield></record></collection> |
id | DE-604.BV047469680 |
illustrated | Illustrated |
index_date | 2024-07-03T18:08:40Z |
indexdate | 2024-07-10T09:12:59Z |
institution | BVB |
institution_GND | (DE-588)1064064051 |
isbn | 9781569907221 1569907226 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032871360 |
oclc_num | 1282184481 |
open_access_boolean | |
owner | DE-210 DE-83 DE-29T DE-12 DE-91G DE-BY-TUM |
owner_facet | DE-210 DE-83 DE-29T DE-12 DE-91G DE-BY-TUM |
physical | XXII, 620 Seiten Illustrationen, Diagramme 25 cm |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Hanser |
record_format | marc |
spelling | Carreau, Pierre J. Verfasser (DE-588)1245129899 aut Rheology of polymeric systems principles and applications Pierre J. Carreau, Daniel C.R. De Kee, Raj P. Chhabra 2nd edition Munich Hanser [2021] ©2021 XXII, 620 Seiten Illustrationen, Diagramme 25 cm txt rdacontent n rdamedia nc rdacarrier Rheologie (DE-588)4049828-1 gnd rswk-swf Kunststoff (DE-588)4033676-1 gnd rswk-swf Polymere (DE-588)4046699-1 gnd rswk-swf Kunststoffe Rheologie FBKTCHEM: Chemie/Physik der Kunststoffe PLAS2021 Polymere (DE-588)4046699-1 s Kunststoff (DE-588)4033676-1 s Rheologie (DE-588)4049828-1 s DE-604 De Kee, Daniel 1949- Verfasser (DE-588)124059376 aut Chhabra, Raj P. 1953- Verfasser (DE-588)124082580 aut Hanser Publications (DE-588)1064064051 pbl Erscheint auch als Online-Ausgabe 978-1-56990-723-8 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032871360&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Carreau, Pierre J. De Kee, Daniel 1949- Chhabra, Raj P. 1953- Rheology of polymeric systems principles and applications Rheologie (DE-588)4049828-1 gnd Kunststoff (DE-588)4033676-1 gnd Polymere (DE-588)4046699-1 gnd |
subject_GND | (DE-588)4049828-1 (DE-588)4033676-1 (DE-588)4046699-1 |
title | Rheology of polymeric systems principles and applications |
title_auth | Rheology of polymeric systems principles and applications |
title_exact_search | Rheology of polymeric systems principles and applications |
title_exact_search_txtP | Rheology of polymeric systems principles and applications |
title_full | Rheology of polymeric systems principles and applications Pierre J. Carreau, Daniel C.R. De Kee, Raj P. Chhabra |
title_fullStr | Rheology of polymeric systems principles and applications Pierre J. Carreau, Daniel C.R. De Kee, Raj P. Chhabra |
title_full_unstemmed | Rheology of polymeric systems principles and applications Pierre J. Carreau, Daniel C.R. De Kee, Raj P. Chhabra |
title_short | Rheology of polymeric systems |
title_sort | rheology of polymeric systems principles and applications |
title_sub | principles and applications |
topic | Rheologie (DE-588)4049828-1 gnd Kunststoff (DE-588)4033676-1 gnd Polymere (DE-588)4046699-1 gnd |
topic_facet | Rheologie Kunststoff Polymere |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032871360&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT carreaupierrej rheologyofpolymericsystemsprinciplesandapplications AT dekeedaniel rheologyofpolymericsystemsprinciplesandapplications AT chhabrarajp rheologyofpolymericsystemsprinciplesandapplications AT hanserpublications rheologyofpolymericsystemsprinciplesandapplications |