Textual Data Science with R:
Textual Statistics with R comprehensively covers the main multidimensional methods in textual statistics supported by a specially-written package in R. Methods discussed include correspondence analysis, clustering, and multiple factor analysis for contigency tables. Each method is illuminated by app...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton
CRC Press, Taylor & Francis Group
2021
|
Schriftenreihe: | Chapman & Hall/CRC Computer Science & Data Analysis Series
|
Schlagworte: | |
Zusammenfassung: | Textual Statistics with R comprehensively covers the main multidimensional methods in textual statistics supported by a specially-written package in R. Methods discussed include correspondence analysis, clustering, and multiple factor analysis for contigency tables. Each method is illuminated by applications. The book is aimed at researchers and students in statistics, social sciences, hiistory, literature and linguistics. The book will be of interest to anyone from practitioners needing to extract information from texts to students in the field of massive data, where the ability to process textual data is becoming essential |
Beschreibung: | xvii, 194 Seiten Illustrationen, Diagramme |
ISBN: | 9781032093659 9781138626911 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047466488 | ||
003 | DE-604 | ||
005 | 20211007 | ||
007 | t | ||
008 | 210914s2021 a||| |||| 00||| eng d | ||
020 | |a 9781032093659 |c pbk |9 978-1-03-209365-9 | ||
020 | |a 9781138626911 |c hbk |9 978-1-138-62691-1 | ||
035 | |a (OCoLC)1264209314 | ||
035 | |a (DE-599)BVBBV047466488 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-19 | ||
100 | 1 | |a Bécue-Bertaut, Mónica |e Verfasser |0 (DE-588)1238916554 |4 aut | |
245 | 1 | 0 | |a Textual Data Science with R |c Mónica Bécue-Bertaut |
264 | 1 | |a Boca Raton |b CRC Press, Taylor & Francis Group |c 2021 | |
300 | |a xvii, 194 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Chapman & Hall/CRC Computer Science & Data Analysis Series | |
520 | |a Textual Statistics with R comprehensively covers the main multidimensional methods in textual statistics supported by a specially-written package in R. Methods discussed include correspondence analysis, clustering, and multiple factor analysis for contigency tables. Each method is illuminated by applications. The book is aimed at researchers and students in statistics, social sciences, hiistory, literature and linguistics. The book will be of interest to anyone from practitioners needing to extract information from texts to students in the field of massive data, where the ability to process textual data is becoming essential | ||
650 | 0 | 7 | |a Text Mining |0 (DE-588)4728093-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a R |g Programm |0 (DE-588)4705956-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Text Mining |0 (DE-588)4728093-1 |D s |
689 | 0 | 1 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 0 | |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032868191 |
Datensatz im Suchindex
_version_ | 1804182777018449920 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Bécue-Bertaut, Mónica |
author_GND | (DE-588)1238916554 |
author_facet | Bécue-Bertaut, Mónica |
author_role | aut |
author_sort | Bécue-Bertaut, Mónica |
author_variant | m b b mbb |
building | Verbundindex |
bvnumber | BV047466488 |
ctrlnum | (OCoLC)1264209314 (DE-599)BVBBV047466488 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01808nam a2200349 c 4500</leader><controlfield tag="001">BV047466488</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211007 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210914s2021 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781032093659</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-03-209365-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781138626911</subfield><subfield code="c">hbk</subfield><subfield code="9">978-1-138-62691-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1264209314</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047466488</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bécue-Bertaut, Mónica</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1238916554</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Textual Data Science with R</subfield><subfield code="c">Mónica Bécue-Bertaut</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">CRC Press, Taylor & Francis Group</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 194 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chapman & Hall/CRC Computer Science & Data Analysis Series</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Textual Statistics with R comprehensively covers the main multidimensional methods in textual statistics supported by a specially-written package in R. Methods discussed include correspondence analysis, clustering, and multiple factor analysis for contigency tables. Each method is illuminated by applications. The book is aimed at researchers and students in statistics, social sciences, hiistory, literature and linguistics. The book will be of interest to anyone from practitioners needing to extract information from texts to students in the field of massive data, where the ability to process textual data is becoming essential</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Text Mining</subfield><subfield code="0">(DE-588)4728093-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Text Mining</subfield><subfield code="0">(DE-588)4728093-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032868191</subfield></datafield></record></collection> |
id | DE-604.BV047466488 |
illustrated | Illustrated |
index_date | 2024-07-03T18:08:06Z |
indexdate | 2024-07-10T09:12:56Z |
institution | BVB |
isbn | 9781032093659 9781138626911 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032868191 |
oclc_num | 1264209314 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | xvii, 194 Seiten Illustrationen, Diagramme |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | CRC Press, Taylor & Francis Group |
record_format | marc |
series2 | Chapman & Hall/CRC Computer Science & Data Analysis Series |
spelling | Bécue-Bertaut, Mónica Verfasser (DE-588)1238916554 aut Textual Data Science with R Mónica Bécue-Bertaut Boca Raton CRC Press, Taylor & Francis Group 2021 xvii, 194 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Chapman & Hall/CRC Computer Science & Data Analysis Series Textual Statistics with R comprehensively covers the main multidimensional methods in textual statistics supported by a specially-written package in R. Methods discussed include correspondence analysis, clustering, and multiple factor analysis for contigency tables. Each method is illuminated by applications. The book is aimed at researchers and students in statistics, social sciences, hiistory, literature and linguistics. The book will be of interest to anyone from practitioners needing to extract information from texts to students in the field of massive data, where the ability to process textual data is becoming essential Text Mining (DE-588)4728093-1 gnd rswk-swf R Programm (DE-588)4705956-4 gnd rswk-swf Text Mining (DE-588)4728093-1 s R Programm (DE-588)4705956-4 s DE-604 |
spellingShingle | Bécue-Bertaut, Mónica Textual Data Science with R Text Mining (DE-588)4728093-1 gnd R Programm (DE-588)4705956-4 gnd |
subject_GND | (DE-588)4728093-1 (DE-588)4705956-4 |
title | Textual Data Science with R |
title_auth | Textual Data Science with R |
title_exact_search | Textual Data Science with R |
title_exact_search_txtP | Textual Data Science with R |
title_full | Textual Data Science with R Mónica Bécue-Bertaut |
title_fullStr | Textual Data Science with R Mónica Bécue-Bertaut |
title_full_unstemmed | Textual Data Science with R Mónica Bécue-Bertaut |
title_short | Textual Data Science with R |
title_sort | textual data science with r |
topic | Text Mining (DE-588)4728093-1 gnd R Programm (DE-588)4705956-4 gnd |
topic_facet | Text Mining R Programm |
work_keys_str_mv | AT becuebertautmonica textualdatasciencewithr |