Quantized number theory, fractal strings and the Riemann hypothesis: from spectral operators to phase transitions and universality
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
©2021
|
Schriftenreihe: | Fractals and dynamics in mathematics, science, and the arts: theory and applications
vol. 4 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (496 Seiten) ill |
ISBN: | 9789813230804 9813230800 |
DOI: | 10.1142/10728 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV047457927 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210908s2021 |||| o||u| ||||||eng d | ||
020 | |a 9789813230804 |9 978-981-3230-80-4 | ||
020 | |a 9813230800 |9 981-3230-80-0 | ||
024 | 7 | |a 10.1142/10728 |2 doi | |
035 | |a (ZDB-124-WOP)00010728 | ||
035 | |a (OCoLC)1268185666 | ||
035 | |a (DE-599)BVBBV047457927 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 512.7 | |
100 | 1 | |a Herichi, Hafedh |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quantized number theory, fractal strings and the Riemann hypothesis |b from spectral operators to phase transitions and universality |c Hafedh Herichi, Michel L. Lapidus |
264 | 1 | |a Singapore |b World Scientific |c ©2021 | |
300 | |a 1 Online-Ressource (496 Seiten) |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Fractals and dynamics in mathematics, science, and the arts: theory and applications |v vol. 4 | |
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Number theory | |
650 | 4 | |a Riemann hypothesis | |
653 | |a Electronic books | ||
700 | 1 | |a Lapidus, Michel L. |d 1956- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789813230798 |
856 | 4 | 0 | |u https://doi.org/10.1142/10728 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032859762 |
Datensatz im Suchindex
_version_ | 1804182761432416256 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Herichi, Hafedh |
author_facet | Herichi, Hafedh |
author_role | aut |
author_sort | Herichi, Hafedh |
author_variant | h h hh |
building | Verbundindex |
bvnumber | BV047457927 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00010728 (OCoLC)1268185666 (DE-599)BVBBV047457927 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1142/10728 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01483nmm a2200397zcb4500</leader><controlfield tag="001">BV047457927</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210908s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813230804</subfield><subfield code="9">978-981-3230-80-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9813230800</subfield><subfield code="9">981-3230-80-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/10728</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00010728</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1268185666</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047457927</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Herichi, Hafedh</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantized number theory, fractal strings and the Riemann hypothesis</subfield><subfield code="b">from spectral operators to phase transitions and universality</subfield><subfield code="c">Hafedh Herichi, Michel L. Lapidus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (496 Seiten)</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Fractals and dynamics in mathematics, science, and the arts: theory and applications</subfield><subfield code="v">vol. 4</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann hypothesis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lapidus, Michel L.</subfield><subfield code="d">1956-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789813230798</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1142/10728</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032859762</subfield></datafield></record></collection> |
id | DE-604.BV047457927 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:05:18Z |
indexdate | 2024-07-10T09:12:41Z |
institution | BVB |
isbn | 9789813230804 9813230800 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032859762 |
oclc_num | 1268185666 |
open_access_boolean | |
physical | 1 Online-Ressource (496 Seiten) ill |
psigel | ZDB-124-WOP |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | World Scientific |
record_format | marc |
series2 | Fractals and dynamics in mathematics, science, and the arts: theory and applications |
spelling | Herichi, Hafedh Verfasser aut Quantized number theory, fractal strings and the Riemann hypothesis from spectral operators to phase transitions and universality Hafedh Herichi, Michel L. Lapidus Singapore World Scientific ©2021 1 Online-Ressource (496 Seiten) ill txt rdacontent c rdamedia cr rdacarrier Fractals and dynamics in mathematics, science, and the arts: theory and applications vol. 4 Includes bibliographical references and index Number theory Riemann hypothesis Electronic books Lapidus, Michel L. 1956- Sonstige oth Erscheint auch als Druck-Ausgabe 9789813230798 https://doi.org/10.1142/10728 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Herichi, Hafedh Quantized number theory, fractal strings and the Riemann hypothesis from spectral operators to phase transitions and universality Number theory Riemann hypothesis |
title | Quantized number theory, fractal strings and the Riemann hypothesis from spectral operators to phase transitions and universality |
title_auth | Quantized number theory, fractal strings and the Riemann hypothesis from spectral operators to phase transitions and universality |
title_exact_search | Quantized number theory, fractal strings and the Riemann hypothesis from spectral operators to phase transitions and universality |
title_exact_search_txtP | Quantized number theory, fractal strings and the Riemann hypothesis from spectral operators to phase transitions and universality |
title_full | Quantized number theory, fractal strings and the Riemann hypothesis from spectral operators to phase transitions and universality Hafedh Herichi, Michel L. Lapidus |
title_fullStr | Quantized number theory, fractal strings and the Riemann hypothesis from spectral operators to phase transitions and universality Hafedh Herichi, Michel L. Lapidus |
title_full_unstemmed | Quantized number theory, fractal strings and the Riemann hypothesis from spectral operators to phase transitions and universality Hafedh Herichi, Michel L. Lapidus |
title_short | Quantized number theory, fractal strings and the Riemann hypothesis |
title_sort | quantized number theory fractal strings and the riemann hypothesis from spectral operators to phase transitions and universality |
title_sub | from spectral operators to phase transitions and universality |
topic | Number theory Riemann hypothesis |
topic_facet | Number theory Riemann hypothesis |
url | https://doi.org/10.1142/10728 |
work_keys_str_mv | AT herichihafedh quantizednumbertheoryfractalstringsandtheriemannhypothesisfromspectraloperatorstophasetransitionsanduniversality AT lapidusmichell quantizednumbertheoryfractalstringsandtheriemannhypothesisfromspectraloperatorstophasetransitionsanduniversality |