Methodologies in amine synthesis: challenges and applications
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Weinheim, Germany
Wiley-VCH
[2021]
|
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xiii, 460 Seiten) Illustrationen |
ISBN: | 9783527826179 9783527826193 9783527826186 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442701 | ||
003 | DE-604 | ||
005 | 20240216 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 |||| o||u| ||||||eng d | ||
020 | |a 9783527826179 |q PDF |9 978-3-527-82617-9 | ||
020 | |a 9783527826193 |q EPUB |9 978-3-527-82619-3 | ||
020 | |a 9783527826186 |q OBOOK |9 978-3-527-82618-6 | ||
035 | |a (ZDB-30-PQE)EBC6461958 | ||
035 | |a (ZDB-30-PAD)EBC6461958 | ||
035 | |a (ZDB-89-EBL)EBL6461958 | ||
035 | |a (OCoLC)1235599040 | ||
035 | |a (DE-599)BVBBV047442701 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 547.042 | |
084 | |a VK 7400 |0 (DE-625)147419:253 |2 rvk | ||
084 | |a CHE 620 |2 stub | ||
084 | |a CHE 820 |2 stub | ||
245 | 1 | 0 | |a Methodologies in amine synthesis |b challenges and applications |c edited by Alfredo Ricci and Luca Bernardi |
264 | 1 | |a Weinheim, Germany |b Wiley-VCH |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (xiii, 460 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Substitution‐type Electrophilic Amination Using Hydroxylamine‐Derived Reagents -- 1.1 Introduction -- 1.2 Cu‐Catalyzed Reactions -- 1.3 Electrophilic Amination Reactions Catalyzed by Other Transition Metals -- 1.4 Electrophilic Amination with Hydroxylamine‐derived Metallanitrenes -- 1.5 Transition‐Metal‐Free Electrophilic Amination Reactions -- 1.6 Conclusion -- References -- Chapter 2 Remote Functionalizations Using Nitrogen Radicals in H‐Atom Transfer (HAT) Reactions -- 2.1 Introduction -- 2.2 Intramolecular 1,5‐H‐Atom Transfer (1,5‐HAT) -- 2.3 Photoinduced Strategies -- 2.3.1 Reductive Strategies -- 2.3.1.1 1,5‐HAT via Iminyl Radicals -- 2.3.1.2 1,5‐HAT via Amidyl and Sulfamidyl Radicals -- 2.3.2 Oxidative Strategies -- 2.3.2.1 1,5‐HAT via Iminyl Radicals -- 2.3.2.2 1,5‐HAT via Amidyl and Sulfamidyl Radicals -- 2.3.3 Photoinduced Bond Homolysis -- 2.4 Thermal Strategies -- 2.5 Summary and Conclusions -- References -- Chapter 3 Radical‐Based C N Bond Formation in Photo/Electrochemistry -- 3.1 Introduction -- 3.2 C N Bond Formation via N‐radical Species Addition -- 3.2.1 Radical Addition to C C Double/Triple Bonds -- 3.2.1.1 Amidyl Radical Addition -- 3.2.1.2 Hydrazonyl Radical Addition -- 3.2.1.3 Aminium Radical Cation Addition -- 3.2.2 Radical Species Addition to Aromatic Rings -- 3.3 Amination via N‐atom Nucleophilic Addition -- 3.3.1 Aromatic C(sp2) H Bond Amination -- 3.3.2 Olefinic C(sp2) H Bond Amination -- 3.3.3 Activated C(sp3) H Bond Amination -- 3.3.3.1 Benzylic C(sp3) H Bond Amination -- 3.3.3.2 N‐& -- rmalpha -- ‐C(sp3) H Bond Amination -- 3.4 Amination via Radical Cross‐coupling -- 3.4.1 Aryl C(sp2) N Bond Formation via Radical Cross‐coupling -- 3.4.1.1 Aryl C(sp2) N Bond Formation Using Diarylamines -- 3.4.1.2 Aryl C(sp2) N Bond Formation Using Azoles | |
505 | 8 | |a 3.4.2 Other C N Bond Formation via Radical Cross‐coupling -- 3.5 Summary and Conclusions -- References -- Chapter 4 Propargylamines: Recent Advances in Asymmetric Synthesis and Use as Chemical Tools in Organic Chemistry -- 4.1 Introduction -- 4.2 Metal‐Catalyzed Asymmetric Synthesis of Propargylamines -- 4.2.1 Enantioselective A3 Coupling -- 4.2.1.1 Enantioselective A3 Coupling Involving Primary Amines -- 4.2.1.2 Enantioselective A3 Coupling Involving Secondary Amines -- 4.2.2 Enantioselective Propargylic Amination of Propargylic Esters with Amines -- 4.2.3 Cu‐Catalyzed Enantioselective Ring Opening of Alkynyl‐Substituted Epoxides/Lactones/Carbonates -- 4.2.4 Enantioselective Addition of Terminal Alkynes to Enamines/Enamides -- 4.2.5 Rh/Ru‐Catalyzed Enantioselective Hydrogenation of Alkynyl‐Substituted Enamides/Imines -- 4.2.6 Enantioselective C-H Activation: Synthesis of Cyclic Propargylamines -- 4.3 Enzymatic Synthesis of Propargylamines -- 4.4 Photoredox Synthesis of Propargylamines -- 4.5 Organocatalyzed Asymmetric Synthesis of Propargylamines -- 4.6 Propargylamines as Building Blocks in the Synthesis of Heterocycles -- 4.6.1 Synthesis of Pyrroles from Propargylamines -- 4.6.2 Synthesis of Pyrrolines from Propargylamines -- 4.6.3 Synthesis of Pyridines from Propargylamines -- 4.6.4 Synthesis of Quinolines from Propargylamines -- 4.6.5 Synthesis of Oxazoles from Propargylamines -- 4.6.6 Synthesis of Thiazoles from Propargylamines -- 4.7 Conclusions -- References -- Chapter 5 Transition‐Metal‐Catalyzed Chiral Amines Synthesis -- 5.1 Introduction -- 5.2 Asymmetric Reductive Amination -- 5.3 Asymmetric Hydroamination -- 5.4 Asymmetric Hydroaminoalkylation -- 5.5 Asymmetric Hydroaminomethylation -- 5.6 Coupling on a Chiral Metal Center -- 5.7 Conclusion -- References | |
505 | 8 | |a Chapter 6 Industrial Relevance of Asymmetric Organocatalysis in the Preparation of Chiral Amine Derivatives -- 6.1 Introduction -- 6.2 Organocatalysis in Manufacture: Representative Examples -- 6.3 Case Studies -- 6.3.1 Pregabalin -- 6.3.1.1 Pathway A: Desymmetrization of Glutaric Anhydride 53 -- 6.3.1.2 Pathway B: Addition of an Amino & -- rmalpha -- ‐Carbanion 55 to Michael Acceptors -- 6.3.1.3 Pathway C: Addition of Acetate Enolate Equivalents to Nitroalkene 56 -- 6.3.2 Bicyclic & -- rmalpha -- ‐Amino Acid Core of Telaprevir -- 6.3.3 5‐(Trifluoromethyl)‐2‐isoxazolines as Antipest Agents -- 6.4 Summary and Conclusions -- References -- Chapter 7 Biocatalytic Synthesis of Chiral Amines Using Oxidoreductases -- 7.1 Introduction -- 7.2 Amine Oxidases -- 7.2.1 Introduction -- 7.2.2 (S)‐Selective Amine Oxidases -- 7.2.2.1 Monoamine Oxidase from Aspergillus niger -- 7.2.2.2 Directed Evolution of MAO‐N -- 7.2.2.3 Synthetic Applications and Cascades -- 7.2.2.4 Monoamine Oxidase from Pseudomonas monteilii ZMU‐T01 -- 7.2.2.5 Cyclohexylamine Oxidase from Brevibacterium oxydans (CHAO) -- 7.2.3 (R)‐Selective Amine Oxidases -- 7.2.3.1 D‐Amino Acid Oxidase (pkDAO) -- 7.2.3.2 6‐Hydroxy‐D‐nicotine Oxidase (6‐HDNO) from Arthrobacter nicotinovorans -- 7.3 Amine Dehydrogenases -- 7.3.1 Introduction -- 7.3.2 Discovery and Engineering of AmDH -- 7.3.2.1 Leucine Dehydrogenase -- 7.3.2.2 Phenylalanine Dehydrogenase and Chimeric Amine Dehydrogenase -- 7.3.2.3 Native Amine Dehydrogenase -- 7.3.3 Synthetic Applications of AmDH -- 7.3.3.1 Primary Amine Synthesis with Engineered AmDH -- 7.3.3.2 Primary Amine Synthesis with Natural AmDH -- 7.3.3.3 Substrate Promiscuity in AmDH -- 7.3.3.4 Cascade Reactions that Use AmDH -- 7.4 Imine Reductases -- 7.4.1 From Biosynthesis to Biocatalysis -- 7.4.2 Biocatalytic Application of Imine Reductases | |
505 | 8 | |a 7.4.2.1 IREDs in Cascade and Chemoenzymatic Synthesis -- 7.4.3 IRED Engineering -- 7.4.4 Imine Reductases Catalyzing Reductive Amination -- 7.4.5 Imine Reductase‐Catalyzed Amine Alkylation Cascades -- 7.4.6 Engineering of Reductive Aminases -- 7.5 Engineered Cytochrome P450s -- 7.6 Conclusions and Perspectives -- References -- Chapter 8 Engineering Functional Nanomaterials Through the Amino Group -- 8.1 Introduction -- 8.2 Quantification of Nanomaterial‐Bound Amino Groups -- 8.3 Exploiting Amino Compounds for the Functionalization of Carbon‐Based Nanomaterials -- 8.3.1 Historical Backgrounds: Allotropes of Carbon -- 8.3.2 Use of Amines for the Functionalization of Carbon Nanostructures -- 8.3.3 Other Functionalization Procedures of Common Carbon Nanostructures -- 8.3.4 Exfoliation of Graphite with Melamine -- 8.3.5 Other Carbon Nanomaterials -- 8.3.5.1 Carbon Nanohorns -- 8.3.5.2 Carbon Nanodiamonds -- 8.3.5.3 Carbon Nano‐onions -- 8.3.6 Amino‐Functionalized Carbon‐Based Nanomaterials for Analytical Applications -- 8.4 Amines in the Synthesis and Functionalization of Carbon Dots -- 8.4.1 Amines as CD Constituents -- 8.4.2 Amine‐Rich CDs from Arginine and Ethylenediamine (NCDs) -- 8.4.2.1 One‐Pot Functionalization of NCDs -- 8.4.2.2 Postfunctionalization of NCDs -- 8.4.2.3 Use of CD‐Supported Amines in Organocatalysis -- 8.5 Amines for the Engineering of Hybrid Organic-Inorganic Nanomaterials -- 8.5.1 Amines as Head Groups or End Groups on Self‐assembled Monolayers on Flat Surfaces -- 8.5.2 Alkylamines in the Preparation of Semiconductor Quantum Dots -- 8.5.2.1 Sulfur-Amine and Selenium-Amine Systems -- 8.5.2.2 Capping Ligands for Quantum Dots and Ligand Exchange by Amines -- 8.5.3 Alkylamines as Reagents for the Synthesis and Passivation of Metal Nanoparticles -- 8.5.3.1 Alkylamines as Capping Agents for Metal Nanoparticles | |
505 | 8 | |a 8.5.3.2 Displacement of Amines from the Surface of Metal Nanoparticles -- 8.5.4 Amines on the Outer Surface of Organic-inorganic Hybrid Nanoparticles -- 8.5.5 Postfunctionalization of Amine‐Terminated Organic-Inorganic Hybrid Nanoparticles -- References -- Chapter 9 Recent Advances in the Synthesis of Nitrogen Compounds from Biomass Derivatives -- 9.1 Introduction -- 9.2 Synthesis of Nitrogen Compounds from Chitin and Its Derivatives -- 9.3 Synthesis of Amines and Formamides from & -- rmalpha -- ‐Amino Acids -- 9.4 Synthesis of Nitrogen Compounds from Cellulosic Biomass Derivatives -- 9.5 Synthesis of Nitrogen Compounds from Lignin Derivatives -- 9.6 Synthesis of Nitrogen Compounds from Triglycerides and Fatty Alcohols -- 9.7 Conclusion -- References -- Chapter 10 Recent Advances in the Synthesis of Arylamines in the Light of Application in Pharmaceutical and Chemical Industry -- 10.1 Modern Approaches to Transition‐Metal‐Catalyzed C-N Coupling in Industry -- 10.1.1 Introduction -- 10.1.2 Transition‐Metal‐Catalyzed C N‐Bond Formation -- 10.1.2.1 Ullmann‐Type Amination -- 10.1.2.2 Buchwald-Hartwig Amination -- 10.2 New Methodologies in the Synthesis of Arylamines on the Brink of Industrial Application -- 10.2.1 Introduction -- 10.2.2 Catalytic C-H Amination -- 10.2.2.1 Catalytic C-H Amination under Standard Conditions -- 10.2.2.2 Photoredox Catalysis -- 10.2.2.3 Electrochemical Approaches -- 10.2.3 Decarboxylative Aryl Amination -- 10.2.4 Nickel‐Catalyzed C-N Coupling -- 10.2.5 Other Metal‐Catalyzed Cross‐Couplings -- 10.2.6 Reductive Amination -- 10.2.7 Hydroamination -- 10.2.8 Summary and Conclusions -- 10.3 Advances to Arylamine Formation Using Intensified and More Sustainable Process Technologies -- 10.3.1 Introduction -- 10.3.2 Flow Chemistry -- 10.3.2.1 Pd‐Catalyzed C N Bond Forming Reaction -- 10.3.2.2 Nucleophilic Aromatic Substitution | |
505 | 8 | |a 10.3.2.3 Telescoped Sequence of Nitration and Hydrogenation in Flow Synthesis | |
650 | 0 | 7 | |a Chemische Synthese |0 (DE-588)4133806-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Amine |0 (DE-588)4001705-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Amine |0 (DE-588)4001705-9 |D s |
689 | 0 | 1 | |a Chemische Synthese |0 (DE-588)4133806-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ricci, Alfredo |0 (DE-588)1233695614 |4 edt | |
700 | 1 | |a Bernardi, Luca |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a Ricci, Alfredo |t Methodologies in Amine Synthesis |d Newark : John Wiley & Sons, Incorporated,c2021 |n Druck-Ausgabe |z 978-3-527-34739-1 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032844853 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6461958 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182735025078272 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Ricci, Alfredo Bernardi, Luca |
author2_role | edt edt |
author2_variant | a r ar l b lb |
author_GND | (DE-588)1233695614 |
author_facet | Ricci, Alfredo Bernardi, Luca |
building | Verbundindex |
bvnumber | BV047442701 |
classification_rvk | VK 7400 |
classification_tum | CHE 620 CHE 820 |
collection | ZDB-30-PQE |
contents | Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Substitution‐type Electrophilic Amination Using Hydroxylamine‐Derived Reagents -- 1.1 Introduction -- 1.2 Cu‐Catalyzed Reactions -- 1.3 Electrophilic Amination Reactions Catalyzed by Other Transition Metals -- 1.4 Electrophilic Amination with Hydroxylamine‐derived Metallanitrenes -- 1.5 Transition‐Metal‐Free Electrophilic Amination Reactions -- 1.6 Conclusion -- References -- Chapter 2 Remote Functionalizations Using Nitrogen Radicals in H‐Atom Transfer (HAT) Reactions -- 2.1 Introduction -- 2.2 Intramolecular 1,5‐H‐Atom Transfer (1,5‐HAT) -- 2.3 Photoinduced Strategies -- 2.3.1 Reductive Strategies -- 2.3.1.1 1,5‐HAT via Iminyl Radicals -- 2.3.1.2 1,5‐HAT via Amidyl and Sulfamidyl Radicals -- 2.3.2 Oxidative Strategies -- 2.3.2.1 1,5‐HAT via Iminyl Radicals -- 2.3.2.2 1,5‐HAT via Amidyl and Sulfamidyl Radicals -- 2.3.3 Photoinduced Bond Homolysis -- 2.4 Thermal Strategies -- 2.5 Summary and Conclusions -- References -- Chapter 3 Radical‐Based C N Bond Formation in Photo/Electrochemistry -- 3.1 Introduction -- 3.2 C N Bond Formation via N‐radical Species Addition -- 3.2.1 Radical Addition to C C Double/Triple Bonds -- 3.2.1.1 Amidyl Radical Addition -- 3.2.1.2 Hydrazonyl Radical Addition -- 3.2.1.3 Aminium Radical Cation Addition -- 3.2.2 Radical Species Addition to Aromatic Rings -- 3.3 Amination via N‐atom Nucleophilic Addition -- 3.3.1 Aromatic C(sp2) H Bond Amination -- 3.3.2 Olefinic C(sp2) H Bond Amination -- 3.3.3 Activated C(sp3) H Bond Amination -- 3.3.3.1 Benzylic C(sp3) H Bond Amination -- 3.3.3.2 N‐& -- rmalpha -- ‐C(sp3) H Bond Amination -- 3.4 Amination via Radical Cross‐coupling -- 3.4.1 Aryl C(sp2) N Bond Formation via Radical Cross‐coupling -- 3.4.1.1 Aryl C(sp2) N Bond Formation Using Diarylamines -- 3.4.1.2 Aryl C(sp2) N Bond Formation Using Azoles 3.4.2 Other C N Bond Formation via Radical Cross‐coupling -- 3.5 Summary and Conclusions -- References -- Chapter 4 Propargylamines: Recent Advances in Asymmetric Synthesis and Use as Chemical Tools in Organic Chemistry -- 4.1 Introduction -- 4.2 Metal‐Catalyzed Asymmetric Synthesis of Propargylamines -- 4.2.1 Enantioselective A3 Coupling -- 4.2.1.1 Enantioselective A3 Coupling Involving Primary Amines -- 4.2.1.2 Enantioselective A3 Coupling Involving Secondary Amines -- 4.2.2 Enantioselective Propargylic Amination of Propargylic Esters with Amines -- 4.2.3 Cu‐Catalyzed Enantioselective Ring Opening of Alkynyl‐Substituted Epoxides/Lactones/Carbonates -- 4.2.4 Enantioselective Addition of Terminal Alkynes to Enamines/Enamides -- 4.2.5 Rh/Ru‐Catalyzed Enantioselective Hydrogenation of Alkynyl‐Substituted Enamides/Imines -- 4.2.6 Enantioselective C-H Activation: Synthesis of Cyclic Propargylamines -- 4.3 Enzymatic Synthesis of Propargylamines -- 4.4 Photoredox Synthesis of Propargylamines -- 4.5 Organocatalyzed Asymmetric Synthesis of Propargylamines -- 4.6 Propargylamines as Building Blocks in the Synthesis of Heterocycles -- 4.6.1 Synthesis of Pyrroles from Propargylamines -- 4.6.2 Synthesis of Pyrrolines from Propargylamines -- 4.6.3 Synthesis of Pyridines from Propargylamines -- 4.6.4 Synthesis of Quinolines from Propargylamines -- 4.6.5 Synthesis of Oxazoles from Propargylamines -- 4.6.6 Synthesis of Thiazoles from Propargylamines -- 4.7 Conclusions -- References -- Chapter 5 Transition‐Metal‐Catalyzed Chiral Amines Synthesis -- 5.1 Introduction -- 5.2 Asymmetric Reductive Amination -- 5.3 Asymmetric Hydroamination -- 5.4 Asymmetric Hydroaminoalkylation -- 5.5 Asymmetric Hydroaminomethylation -- 5.6 Coupling on a Chiral Metal Center -- 5.7 Conclusion -- References Chapter 6 Industrial Relevance of Asymmetric Organocatalysis in the Preparation of Chiral Amine Derivatives -- 6.1 Introduction -- 6.2 Organocatalysis in Manufacture: Representative Examples -- 6.3 Case Studies -- 6.3.1 Pregabalin -- 6.3.1.1 Pathway A: Desymmetrization of Glutaric Anhydride 53 -- 6.3.1.2 Pathway B: Addition of an Amino & -- rmalpha -- ‐Carbanion 55 to Michael Acceptors -- 6.3.1.3 Pathway C: Addition of Acetate Enolate Equivalents to Nitroalkene 56 -- 6.3.2 Bicyclic & -- rmalpha -- ‐Amino Acid Core of Telaprevir -- 6.3.3 5‐(Trifluoromethyl)‐2‐isoxazolines as Antipest Agents -- 6.4 Summary and Conclusions -- References -- Chapter 7 Biocatalytic Synthesis of Chiral Amines Using Oxidoreductases -- 7.1 Introduction -- 7.2 Amine Oxidases -- 7.2.1 Introduction -- 7.2.2 (S)‐Selective Amine Oxidases -- 7.2.2.1 Monoamine Oxidase from Aspergillus niger -- 7.2.2.2 Directed Evolution of MAO‐N -- 7.2.2.3 Synthetic Applications and Cascades -- 7.2.2.4 Monoamine Oxidase from Pseudomonas monteilii ZMU‐T01 -- 7.2.2.5 Cyclohexylamine Oxidase from Brevibacterium oxydans (CHAO) -- 7.2.3 (R)‐Selective Amine Oxidases -- 7.2.3.1 D‐Amino Acid Oxidase (pkDAO) -- 7.2.3.2 6‐Hydroxy‐D‐nicotine Oxidase (6‐HDNO) from Arthrobacter nicotinovorans -- 7.3 Amine Dehydrogenases -- 7.3.1 Introduction -- 7.3.2 Discovery and Engineering of AmDH -- 7.3.2.1 Leucine Dehydrogenase -- 7.3.2.2 Phenylalanine Dehydrogenase and Chimeric Amine Dehydrogenase -- 7.3.2.3 Native Amine Dehydrogenase -- 7.3.3 Synthetic Applications of AmDH -- 7.3.3.1 Primary Amine Synthesis with Engineered AmDH -- 7.3.3.2 Primary Amine Synthesis with Natural AmDH -- 7.3.3.3 Substrate Promiscuity in AmDH -- 7.3.3.4 Cascade Reactions that Use AmDH -- 7.4 Imine Reductases -- 7.4.1 From Biosynthesis to Biocatalysis -- 7.4.2 Biocatalytic Application of Imine Reductases 7.4.2.1 IREDs in Cascade and Chemoenzymatic Synthesis -- 7.4.3 IRED Engineering -- 7.4.4 Imine Reductases Catalyzing Reductive Amination -- 7.4.5 Imine Reductase‐Catalyzed Amine Alkylation Cascades -- 7.4.6 Engineering of Reductive Aminases -- 7.5 Engineered Cytochrome P450s -- 7.6 Conclusions and Perspectives -- References -- Chapter 8 Engineering Functional Nanomaterials Through the Amino Group -- 8.1 Introduction -- 8.2 Quantification of Nanomaterial‐Bound Amino Groups -- 8.3 Exploiting Amino Compounds for the Functionalization of Carbon‐Based Nanomaterials -- 8.3.1 Historical Backgrounds: Allotropes of Carbon -- 8.3.2 Use of Amines for the Functionalization of Carbon Nanostructures -- 8.3.3 Other Functionalization Procedures of Common Carbon Nanostructures -- 8.3.4 Exfoliation of Graphite with Melamine -- 8.3.5 Other Carbon Nanomaterials -- 8.3.5.1 Carbon Nanohorns -- 8.3.5.2 Carbon Nanodiamonds -- 8.3.5.3 Carbon Nano‐onions -- 8.3.6 Amino‐Functionalized Carbon‐Based Nanomaterials for Analytical Applications -- 8.4 Amines in the Synthesis and Functionalization of Carbon Dots -- 8.4.1 Amines as CD Constituents -- 8.4.2 Amine‐Rich CDs from Arginine and Ethylenediamine (NCDs) -- 8.4.2.1 One‐Pot Functionalization of NCDs -- 8.4.2.2 Postfunctionalization of NCDs -- 8.4.2.3 Use of CD‐Supported Amines in Organocatalysis -- 8.5 Amines for the Engineering of Hybrid Organic-Inorganic Nanomaterials -- 8.5.1 Amines as Head Groups or End Groups on Self‐assembled Monolayers on Flat Surfaces -- 8.5.2 Alkylamines in the Preparation of Semiconductor Quantum Dots -- 8.5.2.1 Sulfur-Amine and Selenium-Amine Systems -- 8.5.2.2 Capping Ligands for Quantum Dots and Ligand Exchange by Amines -- 8.5.3 Alkylamines as Reagents for the Synthesis and Passivation of Metal Nanoparticles -- 8.5.3.1 Alkylamines as Capping Agents for Metal Nanoparticles 8.5.3.2 Displacement of Amines from the Surface of Metal Nanoparticles -- 8.5.4 Amines on the Outer Surface of Organic-inorganic Hybrid Nanoparticles -- 8.5.5 Postfunctionalization of Amine‐Terminated Organic-Inorganic Hybrid Nanoparticles -- References -- Chapter 9 Recent Advances in the Synthesis of Nitrogen Compounds from Biomass Derivatives -- 9.1 Introduction -- 9.2 Synthesis of Nitrogen Compounds from Chitin and Its Derivatives -- 9.3 Synthesis of Amines and Formamides from & -- rmalpha -- ‐Amino Acids -- 9.4 Synthesis of Nitrogen Compounds from Cellulosic Biomass Derivatives -- 9.5 Synthesis of Nitrogen Compounds from Lignin Derivatives -- 9.6 Synthesis of Nitrogen Compounds from Triglycerides and Fatty Alcohols -- 9.7 Conclusion -- References -- Chapter 10 Recent Advances in the Synthesis of Arylamines in the Light of Application in Pharmaceutical and Chemical Industry -- 10.1 Modern Approaches to Transition‐Metal‐Catalyzed C-N Coupling in Industry -- 10.1.1 Introduction -- 10.1.2 Transition‐Metal‐Catalyzed C N‐Bond Formation -- 10.1.2.1 Ullmann‐Type Amination -- 10.1.2.2 Buchwald-Hartwig Amination -- 10.2 New Methodologies in the Synthesis of Arylamines on the Brink of Industrial Application -- 10.2.1 Introduction -- 10.2.2 Catalytic C-H Amination -- 10.2.2.1 Catalytic C-H Amination under Standard Conditions -- 10.2.2.2 Photoredox Catalysis -- 10.2.2.3 Electrochemical Approaches -- 10.2.3 Decarboxylative Aryl Amination -- 10.2.4 Nickel‐Catalyzed C-N Coupling -- 10.2.5 Other Metal‐Catalyzed Cross‐Couplings -- 10.2.6 Reductive Amination -- 10.2.7 Hydroamination -- 10.2.8 Summary and Conclusions -- 10.3 Advances to Arylamine Formation Using Intensified and More Sustainable Process Technologies -- 10.3.1 Introduction -- 10.3.2 Flow Chemistry -- 10.3.2.1 Pd‐Catalyzed C N Bond Forming Reaction -- 10.3.2.2 Nucleophilic Aromatic Substitution 10.3.2.3 Telescoped Sequence of Nitration and Hydrogenation in Flow Synthesis |
ctrlnum | (ZDB-30-PQE)EBC6461958 (ZDB-30-PAD)EBC6461958 (ZDB-89-EBL)EBL6461958 (OCoLC)1235599040 (DE-599)BVBBV047442701 |
dewey-full | 547.042 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 547 - Organic chemistry |
dewey-raw | 547.042 |
dewey-search | 547.042 |
dewey-sort | 3547.042 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Chemie |
discipline_str_mv | Chemie / Pharmazie Chemie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11540nmm a2200577zc 4500</leader><controlfield tag="001">BV047442701</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240216 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527826179</subfield><subfield code="q">PDF</subfield><subfield code="9">978-3-527-82617-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527826193</subfield><subfield code="q">EPUB</subfield><subfield code="9">978-3-527-82619-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527826186</subfield><subfield code="q">OBOOK</subfield><subfield code="9">978-3-527-82618-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6461958</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6461958</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6461958</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1235599040</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442701</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">547.042</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VK 7400</subfield><subfield code="0">(DE-625)147419:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 620</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 820</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Methodologies in amine synthesis</subfield><subfield code="b">challenges and applications</subfield><subfield code="c">edited by Alfredo Ricci and Luca Bernardi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim, Germany</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 460 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Substitution‐type Electrophilic Amination Using Hydroxylamine‐Derived Reagents -- 1.1 Introduction -- 1.2 Cu‐Catalyzed Reactions -- 1.3 Electrophilic Amination Reactions Catalyzed by Other Transition Metals -- 1.4 Electrophilic Amination with Hydroxylamine‐derived Metallanitrenes -- 1.5 Transition‐Metal‐Free Electrophilic Amination Reactions -- 1.6 Conclusion -- References -- Chapter 2 Remote Functionalizations Using Nitrogen Radicals in H‐Atom Transfer (HAT) Reactions -- 2.1 Introduction -- 2.2 Intramolecular 1,5‐H‐Atom Transfer (1,5‐HAT) -- 2.3 Photoinduced Strategies -- 2.3.1 Reductive Strategies -- 2.3.1.1 1,5‐HAT via Iminyl Radicals -- 2.3.1.2 1,5‐HAT via Amidyl and Sulfamidyl Radicals -- 2.3.2 Oxidative Strategies -- 2.3.2.1 1,5‐HAT via Iminyl Radicals -- 2.3.2.2 1,5‐HAT via Amidyl and Sulfamidyl Radicals -- 2.3.3 Photoinduced Bond Homolysis -- 2.4 Thermal Strategies -- 2.5 Summary and Conclusions -- References -- Chapter 3 Radical‐Based C N Bond Formation in Photo/Electrochemistry -- 3.1 Introduction -- 3.2 C N Bond Formation via N‐radical Species Addition -- 3.2.1 Radical Addition to C C Double/Triple Bonds -- 3.2.1.1 Amidyl Radical Addition -- 3.2.1.2 Hydrazonyl Radical Addition -- 3.2.1.3 Aminium Radical Cation Addition -- 3.2.2 Radical Species Addition to Aromatic Rings -- 3.3 Amination via N‐atom Nucleophilic Addition -- 3.3.1 Aromatic C(sp2) H Bond Amination -- 3.3.2 Olefinic C(sp2) H Bond Amination -- 3.3.3 Activated C(sp3) H Bond Amination -- 3.3.3.1 Benzylic C(sp3) H Bond Amination -- 3.3.3.2 N‐&amp -- rmalpha -- ‐C(sp3) H Bond Amination -- 3.4 Amination via Radical Cross‐coupling -- 3.4.1 Aryl C(sp2) N Bond Formation via Radical Cross‐coupling -- 3.4.1.1 Aryl C(sp2) N Bond Formation Using Diarylamines -- 3.4.1.2 Aryl C(sp2) N Bond Formation Using Azoles</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4.2 Other C N Bond Formation via Radical Cross‐coupling -- 3.5 Summary and Conclusions -- References -- Chapter 4 Propargylamines: Recent Advances in Asymmetric Synthesis and Use as Chemical Tools in Organic Chemistry -- 4.1 Introduction -- 4.2 Metal‐Catalyzed Asymmetric Synthesis of Propargylamines -- 4.2.1 Enantioselective A3 Coupling -- 4.2.1.1 Enantioselective A3 Coupling Involving Primary Amines -- 4.2.1.2 Enantioselective A3 Coupling Involving Secondary Amines -- 4.2.2 Enantioselective Propargylic Amination of Propargylic Esters with Amines -- 4.2.3 Cu‐Catalyzed Enantioselective Ring Opening of Alkynyl‐Substituted Epoxides/Lactones/Carbonates -- 4.2.4 Enantioselective Addition of Terminal Alkynes to Enamines/Enamides -- 4.2.5 Rh/Ru‐Catalyzed Enantioselective Hydrogenation of Alkynyl‐Substituted Enamides/Imines -- 4.2.6 Enantioselective C-H Activation: Synthesis of Cyclic Propargylamines -- 4.3 Enzymatic Synthesis of Propargylamines -- 4.4 Photoredox Synthesis of Propargylamines -- 4.5 Organocatalyzed Asymmetric Synthesis of Propargylamines -- 4.6 Propargylamines as Building Blocks in the Synthesis of Heterocycles -- 4.6.1 Synthesis of Pyrroles from Propargylamines -- 4.6.2 Synthesis of Pyrrolines from Propargylamines -- 4.6.3 Synthesis of Pyridines from Propargylamines -- 4.6.4 Synthesis of Quinolines from Propargylamines -- 4.6.5 Synthesis of Oxazoles from Propargylamines -- 4.6.6 Synthesis of Thiazoles from Propargylamines -- 4.7 Conclusions -- References -- Chapter 5 Transition‐Metal‐Catalyzed Chiral Amines Synthesis -- 5.1 Introduction -- 5.2 Asymmetric Reductive Amination -- 5.3 Asymmetric Hydroamination -- 5.4 Asymmetric Hydroaminoalkylation -- 5.5 Asymmetric Hydroaminomethylation -- 5.6 Coupling on a Chiral Metal Center -- 5.7 Conclusion -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 6 Industrial Relevance of Asymmetric Organocatalysis in the Preparation of Chiral Amine Derivatives -- 6.1 Introduction -- 6.2 Organocatalysis in Manufacture: Representative Examples -- 6.3 Case Studies -- 6.3.1 Pregabalin -- 6.3.1.1 Pathway A: Desymmetrization of Glutaric Anhydride 53 -- 6.3.1.2 Pathway B: Addition of an Amino &amp -- rmalpha -- ‐Carbanion 55 to Michael Acceptors -- 6.3.1.3 Pathway C: Addition of Acetate Enolate Equivalents to Nitroalkene 56 -- 6.3.2 Bicyclic &amp -- rmalpha -- ‐Amino Acid Core of Telaprevir -- 6.3.3 5‐(Trifluoromethyl)‐2‐isoxazolines as Antipest Agents -- 6.4 Summary and Conclusions -- References -- Chapter 7 Biocatalytic Synthesis of Chiral Amines Using Oxidoreductases -- 7.1 Introduction -- 7.2 Amine Oxidases -- 7.2.1 Introduction -- 7.2.2 (S)‐Selective Amine Oxidases -- 7.2.2.1 Monoamine Oxidase from Aspergillus niger -- 7.2.2.2 Directed Evolution of MAO‐N -- 7.2.2.3 Synthetic Applications and Cascades -- 7.2.2.4 Monoamine Oxidase from Pseudomonas monteilii ZMU‐T01 -- 7.2.2.5 Cyclohexylamine Oxidase from Brevibacterium oxydans (CHAO) -- 7.2.3 (R)‐Selective Amine Oxidases -- 7.2.3.1 D‐Amino Acid Oxidase (pkDAO) -- 7.2.3.2 6‐Hydroxy‐D‐nicotine Oxidase (6‐HDNO) from Arthrobacter nicotinovorans -- 7.3 Amine Dehydrogenases -- 7.3.1 Introduction -- 7.3.2 Discovery and Engineering of AmDH -- 7.3.2.1 Leucine Dehydrogenase -- 7.3.2.2 Phenylalanine Dehydrogenase and Chimeric Amine Dehydrogenase -- 7.3.2.3 Native Amine Dehydrogenase -- 7.3.3 Synthetic Applications of AmDH -- 7.3.3.1 Primary Amine Synthesis with Engineered AmDH -- 7.3.3.2 Primary Amine Synthesis with Natural AmDH -- 7.3.3.3 Substrate Promiscuity in AmDH -- 7.3.3.4 Cascade Reactions that Use AmDH -- 7.4 Imine Reductases -- 7.4.1 From Biosynthesis to Biocatalysis -- 7.4.2 Biocatalytic Application of Imine Reductases</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.4.2.1 IREDs in Cascade and Chemoenzymatic Synthesis -- 7.4.3 IRED Engineering -- 7.4.4 Imine Reductases Catalyzing Reductive Amination -- 7.4.5 Imine Reductase‐Catalyzed Amine Alkylation Cascades -- 7.4.6 Engineering of Reductive Aminases -- 7.5 Engineered Cytochrome P450s -- 7.6 Conclusions and Perspectives -- References -- Chapter 8 Engineering Functional Nanomaterials Through the Amino Group -- 8.1 Introduction -- 8.2 Quantification of Nanomaterial‐Bound Amino Groups -- 8.3 Exploiting Amino Compounds for the Functionalization of Carbon‐Based Nanomaterials -- 8.3.1 Historical Backgrounds: Allotropes of Carbon -- 8.3.2 Use of Amines for the Functionalization of Carbon Nanostructures -- 8.3.3 Other Functionalization Procedures of Common Carbon Nanostructures -- 8.3.4 Exfoliation of Graphite with Melamine -- 8.3.5 Other Carbon Nanomaterials -- 8.3.5.1 Carbon Nanohorns -- 8.3.5.2 Carbon Nanodiamonds -- 8.3.5.3 Carbon Nano‐onions -- 8.3.6 Amino‐Functionalized Carbon‐Based Nanomaterials for Analytical Applications -- 8.4 Amines in the Synthesis and Functionalization of Carbon Dots -- 8.4.1 Amines as CD Constituents -- 8.4.2 Amine‐Rich CDs from Arginine and Ethylenediamine (NCDs) -- 8.4.2.1 One‐Pot Functionalization of NCDs -- 8.4.2.2 Postfunctionalization of NCDs -- 8.4.2.3 Use of CD‐Supported Amines in Organocatalysis -- 8.5 Amines for the Engineering of Hybrid Organic-Inorganic Nanomaterials -- 8.5.1 Amines as Head Groups or End Groups on Self‐assembled Monolayers on Flat Surfaces -- 8.5.2 Alkylamines in the Preparation of Semiconductor Quantum Dots -- 8.5.2.1 Sulfur-Amine and Selenium-Amine Systems -- 8.5.2.2 Capping Ligands for Quantum Dots and Ligand Exchange by Amines -- 8.5.3 Alkylamines as Reagents for the Synthesis and Passivation of Metal Nanoparticles -- 8.5.3.1 Alkylamines as Capping Agents for Metal Nanoparticles</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.5.3.2 Displacement of Amines from the Surface of Metal Nanoparticles -- 8.5.4 Amines on the Outer Surface of Organic-inorganic Hybrid Nanoparticles -- 8.5.5 Postfunctionalization of Amine‐Terminated Organic-Inorganic Hybrid Nanoparticles -- References -- Chapter 9 Recent Advances in the Synthesis of Nitrogen Compounds from Biomass Derivatives -- 9.1 Introduction -- 9.2 Synthesis of Nitrogen Compounds from Chitin and Its Derivatives -- 9.3 Synthesis of Amines and Formamides from &amp -- rmalpha -- ‐Amino Acids -- 9.4 Synthesis of Nitrogen Compounds from Cellulosic Biomass Derivatives -- 9.5 Synthesis of Nitrogen Compounds from Lignin Derivatives -- 9.6 Synthesis of Nitrogen Compounds from Triglycerides and Fatty Alcohols -- 9.7 Conclusion -- References -- Chapter 10 Recent Advances in the Synthesis of Arylamines in the Light of Application in Pharmaceutical and Chemical Industry -- 10.1 Modern Approaches to Transition‐Metal‐Catalyzed C-N Coupling in Industry -- 10.1.1 Introduction -- 10.1.2 Transition‐Metal‐Catalyzed C N‐Bond Formation -- 10.1.2.1 Ullmann‐Type Amination -- 10.1.2.2 Buchwald-Hartwig Amination -- 10.2 New Methodologies in the Synthesis of Arylamines on the Brink of Industrial Application -- 10.2.1 Introduction -- 10.2.2 Catalytic C-H Amination -- 10.2.2.1 Catalytic C-H Amination under Standard Conditions -- 10.2.2.2 Photoredox Catalysis -- 10.2.2.3 Electrochemical Approaches -- 10.2.3 Decarboxylative Aryl Amination -- 10.2.4 Nickel‐Catalyzed C-N Coupling -- 10.2.5 Other Metal‐Catalyzed Cross‐Couplings -- 10.2.6 Reductive Amination -- 10.2.7 Hydroamination -- 10.2.8 Summary and Conclusions -- 10.3 Advances to Arylamine Formation Using Intensified and More Sustainable Process Technologies -- 10.3.1 Introduction -- 10.3.2 Flow Chemistry -- 10.3.2.1 Pd‐Catalyzed C N Bond Forming Reaction -- 10.3.2.2 Nucleophilic Aromatic Substitution</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.3.2.3 Telescoped Sequence of Nitration and Hydrogenation in Flow Synthesis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemische Synthese</subfield><subfield code="0">(DE-588)4133806-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Amine</subfield><subfield code="0">(DE-588)4001705-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Amine</subfield><subfield code="0">(DE-588)4001705-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chemische Synthese</subfield><subfield code="0">(DE-588)4133806-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ricci, Alfredo</subfield><subfield code="0">(DE-588)1233695614</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bernardi, Luca</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Ricci, Alfredo</subfield><subfield code="t">Methodologies in Amine Synthesis</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2021</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-527-34739-1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844853</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6461958</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV047442701 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:24Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9783527826179 9783527826193 9783527826186 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844853 |
oclc_num | 1235599040 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xiii, 460 Seiten) Illustrationen |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Methodologies in amine synthesis challenges and applications edited by Alfredo Ricci and Luca Bernardi Weinheim, Germany Wiley-VCH [2021] © 2021 1 Online-Ressource (xiii, 460 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Substitution‐type Electrophilic Amination Using Hydroxylamine‐Derived Reagents -- 1.1 Introduction -- 1.2 Cu‐Catalyzed Reactions -- 1.3 Electrophilic Amination Reactions Catalyzed by Other Transition Metals -- 1.4 Electrophilic Amination with Hydroxylamine‐derived Metallanitrenes -- 1.5 Transition‐Metal‐Free Electrophilic Amination Reactions -- 1.6 Conclusion -- References -- Chapter 2 Remote Functionalizations Using Nitrogen Radicals in H‐Atom Transfer (HAT) Reactions -- 2.1 Introduction -- 2.2 Intramolecular 1,5‐H‐Atom Transfer (1,5‐HAT) -- 2.3 Photoinduced Strategies -- 2.3.1 Reductive Strategies -- 2.3.1.1 1,5‐HAT via Iminyl Radicals -- 2.3.1.2 1,5‐HAT via Amidyl and Sulfamidyl Radicals -- 2.3.2 Oxidative Strategies -- 2.3.2.1 1,5‐HAT via Iminyl Radicals -- 2.3.2.2 1,5‐HAT via Amidyl and Sulfamidyl Radicals -- 2.3.3 Photoinduced Bond Homolysis -- 2.4 Thermal Strategies -- 2.5 Summary and Conclusions -- References -- Chapter 3 Radical‐Based C N Bond Formation in Photo/Electrochemistry -- 3.1 Introduction -- 3.2 C N Bond Formation via N‐radical Species Addition -- 3.2.1 Radical Addition to C C Double/Triple Bonds -- 3.2.1.1 Amidyl Radical Addition -- 3.2.1.2 Hydrazonyl Radical Addition -- 3.2.1.3 Aminium Radical Cation Addition -- 3.2.2 Radical Species Addition to Aromatic Rings -- 3.3 Amination via N‐atom Nucleophilic Addition -- 3.3.1 Aromatic C(sp2) H Bond Amination -- 3.3.2 Olefinic C(sp2) H Bond Amination -- 3.3.3 Activated C(sp3) H Bond Amination -- 3.3.3.1 Benzylic C(sp3) H Bond Amination -- 3.3.3.2 N‐& -- rmalpha -- ‐C(sp3) H Bond Amination -- 3.4 Amination via Radical Cross‐coupling -- 3.4.1 Aryl C(sp2) N Bond Formation via Radical Cross‐coupling -- 3.4.1.1 Aryl C(sp2) N Bond Formation Using Diarylamines -- 3.4.1.2 Aryl C(sp2) N Bond Formation Using Azoles 3.4.2 Other C N Bond Formation via Radical Cross‐coupling -- 3.5 Summary and Conclusions -- References -- Chapter 4 Propargylamines: Recent Advances in Asymmetric Synthesis and Use as Chemical Tools in Organic Chemistry -- 4.1 Introduction -- 4.2 Metal‐Catalyzed Asymmetric Synthesis of Propargylamines -- 4.2.1 Enantioselective A3 Coupling -- 4.2.1.1 Enantioselective A3 Coupling Involving Primary Amines -- 4.2.1.2 Enantioselective A3 Coupling Involving Secondary Amines -- 4.2.2 Enantioselective Propargylic Amination of Propargylic Esters with Amines -- 4.2.3 Cu‐Catalyzed Enantioselective Ring Opening of Alkynyl‐Substituted Epoxides/Lactones/Carbonates -- 4.2.4 Enantioselective Addition of Terminal Alkynes to Enamines/Enamides -- 4.2.5 Rh/Ru‐Catalyzed Enantioselective Hydrogenation of Alkynyl‐Substituted Enamides/Imines -- 4.2.6 Enantioselective C-H Activation: Synthesis of Cyclic Propargylamines -- 4.3 Enzymatic Synthesis of Propargylamines -- 4.4 Photoredox Synthesis of Propargylamines -- 4.5 Organocatalyzed Asymmetric Synthesis of Propargylamines -- 4.6 Propargylamines as Building Blocks in the Synthesis of Heterocycles -- 4.6.1 Synthesis of Pyrroles from Propargylamines -- 4.6.2 Synthesis of Pyrrolines from Propargylamines -- 4.6.3 Synthesis of Pyridines from Propargylamines -- 4.6.4 Synthesis of Quinolines from Propargylamines -- 4.6.5 Synthesis of Oxazoles from Propargylamines -- 4.6.6 Synthesis of Thiazoles from Propargylamines -- 4.7 Conclusions -- References -- Chapter 5 Transition‐Metal‐Catalyzed Chiral Amines Synthesis -- 5.1 Introduction -- 5.2 Asymmetric Reductive Amination -- 5.3 Asymmetric Hydroamination -- 5.4 Asymmetric Hydroaminoalkylation -- 5.5 Asymmetric Hydroaminomethylation -- 5.6 Coupling on a Chiral Metal Center -- 5.7 Conclusion -- References Chapter 6 Industrial Relevance of Asymmetric Organocatalysis in the Preparation of Chiral Amine Derivatives -- 6.1 Introduction -- 6.2 Organocatalysis in Manufacture: Representative Examples -- 6.3 Case Studies -- 6.3.1 Pregabalin -- 6.3.1.1 Pathway A: Desymmetrization of Glutaric Anhydride 53 -- 6.3.1.2 Pathway B: Addition of an Amino & -- rmalpha -- ‐Carbanion 55 to Michael Acceptors -- 6.3.1.3 Pathway C: Addition of Acetate Enolate Equivalents to Nitroalkene 56 -- 6.3.2 Bicyclic & -- rmalpha -- ‐Amino Acid Core of Telaprevir -- 6.3.3 5‐(Trifluoromethyl)‐2‐isoxazolines as Antipest Agents -- 6.4 Summary and Conclusions -- References -- Chapter 7 Biocatalytic Synthesis of Chiral Amines Using Oxidoreductases -- 7.1 Introduction -- 7.2 Amine Oxidases -- 7.2.1 Introduction -- 7.2.2 (S)‐Selective Amine Oxidases -- 7.2.2.1 Monoamine Oxidase from Aspergillus niger -- 7.2.2.2 Directed Evolution of MAO‐N -- 7.2.2.3 Synthetic Applications and Cascades -- 7.2.2.4 Monoamine Oxidase from Pseudomonas monteilii ZMU‐T01 -- 7.2.2.5 Cyclohexylamine Oxidase from Brevibacterium oxydans (CHAO) -- 7.2.3 (R)‐Selective Amine Oxidases -- 7.2.3.1 D‐Amino Acid Oxidase (pkDAO) -- 7.2.3.2 6‐Hydroxy‐D‐nicotine Oxidase (6‐HDNO) from Arthrobacter nicotinovorans -- 7.3 Amine Dehydrogenases -- 7.3.1 Introduction -- 7.3.2 Discovery and Engineering of AmDH -- 7.3.2.1 Leucine Dehydrogenase -- 7.3.2.2 Phenylalanine Dehydrogenase and Chimeric Amine Dehydrogenase -- 7.3.2.3 Native Amine Dehydrogenase -- 7.3.3 Synthetic Applications of AmDH -- 7.3.3.1 Primary Amine Synthesis with Engineered AmDH -- 7.3.3.2 Primary Amine Synthesis with Natural AmDH -- 7.3.3.3 Substrate Promiscuity in AmDH -- 7.3.3.4 Cascade Reactions that Use AmDH -- 7.4 Imine Reductases -- 7.4.1 From Biosynthesis to Biocatalysis -- 7.4.2 Biocatalytic Application of Imine Reductases 7.4.2.1 IREDs in Cascade and Chemoenzymatic Synthesis -- 7.4.3 IRED Engineering -- 7.4.4 Imine Reductases Catalyzing Reductive Amination -- 7.4.5 Imine Reductase‐Catalyzed Amine Alkylation Cascades -- 7.4.6 Engineering of Reductive Aminases -- 7.5 Engineered Cytochrome P450s -- 7.6 Conclusions and Perspectives -- References -- Chapter 8 Engineering Functional Nanomaterials Through the Amino Group -- 8.1 Introduction -- 8.2 Quantification of Nanomaterial‐Bound Amino Groups -- 8.3 Exploiting Amino Compounds for the Functionalization of Carbon‐Based Nanomaterials -- 8.3.1 Historical Backgrounds: Allotropes of Carbon -- 8.3.2 Use of Amines for the Functionalization of Carbon Nanostructures -- 8.3.3 Other Functionalization Procedures of Common Carbon Nanostructures -- 8.3.4 Exfoliation of Graphite with Melamine -- 8.3.5 Other Carbon Nanomaterials -- 8.3.5.1 Carbon Nanohorns -- 8.3.5.2 Carbon Nanodiamonds -- 8.3.5.3 Carbon Nano‐onions -- 8.3.6 Amino‐Functionalized Carbon‐Based Nanomaterials for Analytical Applications -- 8.4 Amines in the Synthesis and Functionalization of Carbon Dots -- 8.4.1 Amines as CD Constituents -- 8.4.2 Amine‐Rich CDs from Arginine and Ethylenediamine (NCDs) -- 8.4.2.1 One‐Pot Functionalization of NCDs -- 8.4.2.2 Postfunctionalization of NCDs -- 8.4.2.3 Use of CD‐Supported Amines in Organocatalysis -- 8.5 Amines for the Engineering of Hybrid Organic-Inorganic Nanomaterials -- 8.5.1 Amines as Head Groups or End Groups on Self‐assembled Monolayers on Flat Surfaces -- 8.5.2 Alkylamines in the Preparation of Semiconductor Quantum Dots -- 8.5.2.1 Sulfur-Amine and Selenium-Amine Systems -- 8.5.2.2 Capping Ligands for Quantum Dots and Ligand Exchange by Amines -- 8.5.3 Alkylamines as Reagents for the Synthesis and Passivation of Metal Nanoparticles -- 8.5.3.1 Alkylamines as Capping Agents for Metal Nanoparticles 8.5.3.2 Displacement of Amines from the Surface of Metal Nanoparticles -- 8.5.4 Amines on the Outer Surface of Organic-inorganic Hybrid Nanoparticles -- 8.5.5 Postfunctionalization of Amine‐Terminated Organic-Inorganic Hybrid Nanoparticles -- References -- Chapter 9 Recent Advances in the Synthesis of Nitrogen Compounds from Biomass Derivatives -- 9.1 Introduction -- 9.2 Synthesis of Nitrogen Compounds from Chitin and Its Derivatives -- 9.3 Synthesis of Amines and Formamides from & -- rmalpha -- ‐Amino Acids -- 9.4 Synthesis of Nitrogen Compounds from Cellulosic Biomass Derivatives -- 9.5 Synthesis of Nitrogen Compounds from Lignin Derivatives -- 9.6 Synthesis of Nitrogen Compounds from Triglycerides and Fatty Alcohols -- 9.7 Conclusion -- References -- Chapter 10 Recent Advances in the Synthesis of Arylamines in the Light of Application in Pharmaceutical and Chemical Industry -- 10.1 Modern Approaches to Transition‐Metal‐Catalyzed C-N Coupling in Industry -- 10.1.1 Introduction -- 10.1.2 Transition‐Metal‐Catalyzed C N‐Bond Formation -- 10.1.2.1 Ullmann‐Type Amination -- 10.1.2.2 Buchwald-Hartwig Amination -- 10.2 New Methodologies in the Synthesis of Arylamines on the Brink of Industrial Application -- 10.2.1 Introduction -- 10.2.2 Catalytic C-H Amination -- 10.2.2.1 Catalytic C-H Amination under Standard Conditions -- 10.2.2.2 Photoredox Catalysis -- 10.2.2.3 Electrochemical Approaches -- 10.2.3 Decarboxylative Aryl Amination -- 10.2.4 Nickel‐Catalyzed C-N Coupling -- 10.2.5 Other Metal‐Catalyzed Cross‐Couplings -- 10.2.6 Reductive Amination -- 10.2.7 Hydroamination -- 10.2.8 Summary and Conclusions -- 10.3 Advances to Arylamine Formation Using Intensified and More Sustainable Process Technologies -- 10.3.1 Introduction -- 10.3.2 Flow Chemistry -- 10.3.2.1 Pd‐Catalyzed C N Bond Forming Reaction -- 10.3.2.2 Nucleophilic Aromatic Substitution 10.3.2.3 Telescoped Sequence of Nitration and Hydrogenation in Flow Synthesis Chemische Synthese (DE-588)4133806-6 gnd rswk-swf Amine (DE-588)4001705-9 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Amine (DE-588)4001705-9 s Chemische Synthese (DE-588)4133806-6 s DE-604 Ricci, Alfredo (DE-588)1233695614 edt Bernardi, Luca edt Erscheint auch als Ricci, Alfredo Methodologies in Amine Synthesis Newark : John Wiley & Sons, Incorporated,c2021 Druck-Ausgabe 978-3-527-34739-1 |
spellingShingle | Methodologies in amine synthesis challenges and applications Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Substitution‐type Electrophilic Amination Using Hydroxylamine‐Derived Reagents -- 1.1 Introduction -- 1.2 Cu‐Catalyzed Reactions -- 1.3 Electrophilic Amination Reactions Catalyzed by Other Transition Metals -- 1.4 Electrophilic Amination with Hydroxylamine‐derived Metallanitrenes -- 1.5 Transition‐Metal‐Free Electrophilic Amination Reactions -- 1.6 Conclusion -- References -- Chapter 2 Remote Functionalizations Using Nitrogen Radicals in H‐Atom Transfer (HAT) Reactions -- 2.1 Introduction -- 2.2 Intramolecular 1,5‐H‐Atom Transfer (1,5‐HAT) -- 2.3 Photoinduced Strategies -- 2.3.1 Reductive Strategies -- 2.3.1.1 1,5‐HAT via Iminyl Radicals -- 2.3.1.2 1,5‐HAT via Amidyl and Sulfamidyl Radicals -- 2.3.2 Oxidative Strategies -- 2.3.2.1 1,5‐HAT via Iminyl Radicals -- 2.3.2.2 1,5‐HAT via Amidyl and Sulfamidyl Radicals -- 2.3.3 Photoinduced Bond Homolysis -- 2.4 Thermal Strategies -- 2.5 Summary and Conclusions -- References -- Chapter 3 Radical‐Based C N Bond Formation in Photo/Electrochemistry -- 3.1 Introduction -- 3.2 C N Bond Formation via N‐radical Species Addition -- 3.2.1 Radical Addition to C C Double/Triple Bonds -- 3.2.1.1 Amidyl Radical Addition -- 3.2.1.2 Hydrazonyl Radical Addition -- 3.2.1.3 Aminium Radical Cation Addition -- 3.2.2 Radical Species Addition to Aromatic Rings -- 3.3 Amination via N‐atom Nucleophilic Addition -- 3.3.1 Aromatic C(sp2) H Bond Amination -- 3.3.2 Olefinic C(sp2) H Bond Amination -- 3.3.3 Activated C(sp3) H Bond Amination -- 3.3.3.1 Benzylic C(sp3) H Bond Amination -- 3.3.3.2 N‐& -- rmalpha -- ‐C(sp3) H Bond Amination -- 3.4 Amination via Radical Cross‐coupling -- 3.4.1 Aryl C(sp2) N Bond Formation via Radical Cross‐coupling -- 3.4.1.1 Aryl C(sp2) N Bond Formation Using Diarylamines -- 3.4.1.2 Aryl C(sp2) N Bond Formation Using Azoles 3.4.2 Other C N Bond Formation via Radical Cross‐coupling -- 3.5 Summary and Conclusions -- References -- Chapter 4 Propargylamines: Recent Advances in Asymmetric Synthesis and Use as Chemical Tools in Organic Chemistry -- 4.1 Introduction -- 4.2 Metal‐Catalyzed Asymmetric Synthesis of Propargylamines -- 4.2.1 Enantioselective A3 Coupling -- 4.2.1.1 Enantioselective A3 Coupling Involving Primary Amines -- 4.2.1.2 Enantioselective A3 Coupling Involving Secondary Amines -- 4.2.2 Enantioselective Propargylic Amination of Propargylic Esters with Amines -- 4.2.3 Cu‐Catalyzed Enantioselective Ring Opening of Alkynyl‐Substituted Epoxides/Lactones/Carbonates -- 4.2.4 Enantioselective Addition of Terminal Alkynes to Enamines/Enamides -- 4.2.5 Rh/Ru‐Catalyzed Enantioselective Hydrogenation of Alkynyl‐Substituted Enamides/Imines -- 4.2.6 Enantioselective C-H Activation: Synthesis of Cyclic Propargylamines -- 4.3 Enzymatic Synthesis of Propargylamines -- 4.4 Photoredox Synthesis of Propargylamines -- 4.5 Organocatalyzed Asymmetric Synthesis of Propargylamines -- 4.6 Propargylamines as Building Blocks in the Synthesis of Heterocycles -- 4.6.1 Synthesis of Pyrroles from Propargylamines -- 4.6.2 Synthesis of Pyrrolines from Propargylamines -- 4.6.3 Synthesis of Pyridines from Propargylamines -- 4.6.4 Synthesis of Quinolines from Propargylamines -- 4.6.5 Synthesis of Oxazoles from Propargylamines -- 4.6.6 Synthesis of Thiazoles from Propargylamines -- 4.7 Conclusions -- References -- Chapter 5 Transition‐Metal‐Catalyzed Chiral Amines Synthesis -- 5.1 Introduction -- 5.2 Asymmetric Reductive Amination -- 5.3 Asymmetric Hydroamination -- 5.4 Asymmetric Hydroaminoalkylation -- 5.5 Asymmetric Hydroaminomethylation -- 5.6 Coupling on a Chiral Metal Center -- 5.7 Conclusion -- References Chapter 6 Industrial Relevance of Asymmetric Organocatalysis in the Preparation of Chiral Amine Derivatives -- 6.1 Introduction -- 6.2 Organocatalysis in Manufacture: Representative Examples -- 6.3 Case Studies -- 6.3.1 Pregabalin -- 6.3.1.1 Pathway A: Desymmetrization of Glutaric Anhydride 53 -- 6.3.1.2 Pathway B: Addition of an Amino & -- rmalpha -- ‐Carbanion 55 to Michael Acceptors -- 6.3.1.3 Pathway C: Addition of Acetate Enolate Equivalents to Nitroalkene 56 -- 6.3.2 Bicyclic & -- rmalpha -- ‐Amino Acid Core of Telaprevir -- 6.3.3 5‐(Trifluoromethyl)‐2‐isoxazolines as Antipest Agents -- 6.4 Summary and Conclusions -- References -- Chapter 7 Biocatalytic Synthesis of Chiral Amines Using Oxidoreductases -- 7.1 Introduction -- 7.2 Amine Oxidases -- 7.2.1 Introduction -- 7.2.2 (S)‐Selective Amine Oxidases -- 7.2.2.1 Monoamine Oxidase from Aspergillus niger -- 7.2.2.2 Directed Evolution of MAO‐N -- 7.2.2.3 Synthetic Applications and Cascades -- 7.2.2.4 Monoamine Oxidase from Pseudomonas monteilii ZMU‐T01 -- 7.2.2.5 Cyclohexylamine Oxidase from Brevibacterium oxydans (CHAO) -- 7.2.3 (R)‐Selective Amine Oxidases -- 7.2.3.1 D‐Amino Acid Oxidase (pkDAO) -- 7.2.3.2 6‐Hydroxy‐D‐nicotine Oxidase (6‐HDNO) from Arthrobacter nicotinovorans -- 7.3 Amine Dehydrogenases -- 7.3.1 Introduction -- 7.3.2 Discovery and Engineering of AmDH -- 7.3.2.1 Leucine Dehydrogenase -- 7.3.2.2 Phenylalanine Dehydrogenase and Chimeric Amine Dehydrogenase -- 7.3.2.3 Native Amine Dehydrogenase -- 7.3.3 Synthetic Applications of AmDH -- 7.3.3.1 Primary Amine Synthesis with Engineered AmDH -- 7.3.3.2 Primary Amine Synthesis with Natural AmDH -- 7.3.3.3 Substrate Promiscuity in AmDH -- 7.3.3.4 Cascade Reactions that Use AmDH -- 7.4 Imine Reductases -- 7.4.1 From Biosynthesis to Biocatalysis -- 7.4.2 Biocatalytic Application of Imine Reductases 7.4.2.1 IREDs in Cascade and Chemoenzymatic Synthesis -- 7.4.3 IRED Engineering -- 7.4.4 Imine Reductases Catalyzing Reductive Amination -- 7.4.5 Imine Reductase‐Catalyzed Amine Alkylation Cascades -- 7.4.6 Engineering of Reductive Aminases -- 7.5 Engineered Cytochrome P450s -- 7.6 Conclusions and Perspectives -- References -- Chapter 8 Engineering Functional Nanomaterials Through the Amino Group -- 8.1 Introduction -- 8.2 Quantification of Nanomaterial‐Bound Amino Groups -- 8.3 Exploiting Amino Compounds for the Functionalization of Carbon‐Based Nanomaterials -- 8.3.1 Historical Backgrounds: Allotropes of Carbon -- 8.3.2 Use of Amines for the Functionalization of Carbon Nanostructures -- 8.3.3 Other Functionalization Procedures of Common Carbon Nanostructures -- 8.3.4 Exfoliation of Graphite with Melamine -- 8.3.5 Other Carbon Nanomaterials -- 8.3.5.1 Carbon Nanohorns -- 8.3.5.2 Carbon Nanodiamonds -- 8.3.5.3 Carbon Nano‐onions -- 8.3.6 Amino‐Functionalized Carbon‐Based Nanomaterials for Analytical Applications -- 8.4 Amines in the Synthesis and Functionalization of Carbon Dots -- 8.4.1 Amines as CD Constituents -- 8.4.2 Amine‐Rich CDs from Arginine and Ethylenediamine (NCDs) -- 8.4.2.1 One‐Pot Functionalization of NCDs -- 8.4.2.2 Postfunctionalization of NCDs -- 8.4.2.3 Use of CD‐Supported Amines in Organocatalysis -- 8.5 Amines for the Engineering of Hybrid Organic-Inorganic Nanomaterials -- 8.5.1 Amines as Head Groups or End Groups on Self‐assembled Monolayers on Flat Surfaces -- 8.5.2 Alkylamines in the Preparation of Semiconductor Quantum Dots -- 8.5.2.1 Sulfur-Amine and Selenium-Amine Systems -- 8.5.2.2 Capping Ligands for Quantum Dots and Ligand Exchange by Amines -- 8.5.3 Alkylamines as Reagents for the Synthesis and Passivation of Metal Nanoparticles -- 8.5.3.1 Alkylamines as Capping Agents for Metal Nanoparticles 8.5.3.2 Displacement of Amines from the Surface of Metal Nanoparticles -- 8.5.4 Amines on the Outer Surface of Organic-inorganic Hybrid Nanoparticles -- 8.5.5 Postfunctionalization of Amine‐Terminated Organic-Inorganic Hybrid Nanoparticles -- References -- Chapter 9 Recent Advances in the Synthesis of Nitrogen Compounds from Biomass Derivatives -- 9.1 Introduction -- 9.2 Synthesis of Nitrogen Compounds from Chitin and Its Derivatives -- 9.3 Synthesis of Amines and Formamides from & -- rmalpha -- ‐Amino Acids -- 9.4 Synthesis of Nitrogen Compounds from Cellulosic Biomass Derivatives -- 9.5 Synthesis of Nitrogen Compounds from Lignin Derivatives -- 9.6 Synthesis of Nitrogen Compounds from Triglycerides and Fatty Alcohols -- 9.7 Conclusion -- References -- Chapter 10 Recent Advances in the Synthesis of Arylamines in the Light of Application in Pharmaceutical and Chemical Industry -- 10.1 Modern Approaches to Transition‐Metal‐Catalyzed C-N Coupling in Industry -- 10.1.1 Introduction -- 10.1.2 Transition‐Metal‐Catalyzed C N‐Bond Formation -- 10.1.2.1 Ullmann‐Type Amination -- 10.1.2.2 Buchwald-Hartwig Amination -- 10.2 New Methodologies in the Synthesis of Arylamines on the Brink of Industrial Application -- 10.2.1 Introduction -- 10.2.2 Catalytic C-H Amination -- 10.2.2.1 Catalytic C-H Amination under Standard Conditions -- 10.2.2.2 Photoredox Catalysis -- 10.2.2.3 Electrochemical Approaches -- 10.2.3 Decarboxylative Aryl Amination -- 10.2.4 Nickel‐Catalyzed C-N Coupling -- 10.2.5 Other Metal‐Catalyzed Cross‐Couplings -- 10.2.6 Reductive Amination -- 10.2.7 Hydroamination -- 10.2.8 Summary and Conclusions -- 10.3 Advances to Arylamine Formation Using Intensified and More Sustainable Process Technologies -- 10.3.1 Introduction -- 10.3.2 Flow Chemistry -- 10.3.2.1 Pd‐Catalyzed C N Bond Forming Reaction -- 10.3.2.2 Nucleophilic Aromatic Substitution 10.3.2.3 Telescoped Sequence of Nitration and Hydrogenation in Flow Synthesis Chemische Synthese (DE-588)4133806-6 gnd Amine (DE-588)4001705-9 gnd |
subject_GND | (DE-588)4133806-6 (DE-588)4001705-9 (DE-588)4143413-4 |
title | Methodologies in amine synthesis challenges and applications |
title_auth | Methodologies in amine synthesis challenges and applications |
title_exact_search | Methodologies in amine synthesis challenges and applications |
title_exact_search_txtP | Methodologies in amine synthesis challenges and applications |
title_full | Methodologies in amine synthesis challenges and applications edited by Alfredo Ricci and Luca Bernardi |
title_fullStr | Methodologies in amine synthesis challenges and applications edited by Alfredo Ricci and Luca Bernardi |
title_full_unstemmed | Methodologies in amine synthesis challenges and applications edited by Alfredo Ricci and Luca Bernardi |
title_short | Methodologies in amine synthesis |
title_sort | methodologies in amine synthesis challenges and applications |
title_sub | challenges and applications |
topic | Chemische Synthese (DE-588)4133806-6 gnd Amine (DE-588)4001705-9 gnd |
topic_facet | Chemische Synthese Amine Aufsatzsammlung |
work_keys_str_mv | AT riccialfredo methodologiesinaminesynthesischallengesandapplications AT bernardiluca methodologiesinaminesynthesischallengesandapplications |