Magnetic Memory Technology: Spin-Transfer-Torque MRAM and Beyond
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
John Wiley & Sons, Incorporated
2021
|
Schlagworte: | |
Online-Zugang: | FHI01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xxiv, 327 Seiten) |
ISBN: | 9781119562283 9781119562269 9781119562221 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442535 | ||
003 | DE-604 | ||
005 | 20230126 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781119562283 |9 978-1-119-56228-3 | ||
020 | |a 9781119562269 |9 978-1-119-56226-9 | ||
020 | |a 9781119562221 |9 978-1-119-56222-1 | ||
035 | |a (ZDB-30-PQE)EBC6424573 | ||
035 | |a (ZDB-30-PAD)EBC6424573 | ||
035 | |a (ZDB-89-EBL)EBL6424573 | ||
035 | |a (OCoLC)1227392878 | ||
035 | |a (DE-599)BVBBV047442535 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-573 | ||
082 | 0 | |a 621.39763 | |
084 | |a UP 6700 |0 (DE-625)146429: |2 rvk | ||
100 | 1 | |a Tang, Denny D. |e Verfasser |0 (DE-588)143930826 |4 aut | |
245 | 1 | 0 | |a Magnetic Memory Technology |b Spin-Transfer-Torque MRAM and Beyond |c Denny D. Tang (Tang Consultancy), Chi-Feng Pai (National Taiwan University) |
264 | 1 | |a Hoboken, NJ |b John Wiley & Sons, Incorporated |c 2021 | |
264 | 4 | |c ©2021 | |
300 | |a 1 Online-Ressource (xxiv, 327 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Author Biographies -- List of Cited Tables and Figures -- Chapter 1 Basic Electromagnetism -- 1.1 Introduction -- 1.2 Magnetic Force, Pole, Field, and Dipole -- 1.3 Magnetic Dipole Moment, Torque, and Energy -- 1.4 Magnetic Flux and Magnetic Induction -- 1.5 Ampère's Circuital Law, Biot-Savart Law, and Magnetic Field from Magnetic Material -- 1.5.1 Ampère's Circuital Law -- 1.5.2 Biot-Savart's Law -- 1.5.3 Magnetic Field from Magnetic Material -- 1.6 Equations, cgs-SI Unit Conversion Tables -- Homework -- References -- Chapter 2 Magnetism and Magnetic Materials -- 2.1 Introduction -- 2.2 Origin of Magnetization -- 2.2.1 From Ampère to Einstein -- 2.2.2 Precession -- 2.2.3 Electron Spin -- 2.2.4 Spin-Orbit Interaction -- 2.2.5 Hund's Rules -- 2.3 Classification of Magnetisms -- 2.3.1 Diamagnetism -- 2.3.2 Paramagnetism -- 2.3.3 Ferromagnetism -- 2.3.4 Antiferromagnetism -- 2.3.5 Ferrimagnetism -- 2.4 Exchange Interactions -- 2.4.1 Direct Exchange -- 2.4.2 Indirect Exchange: Superexchange -- 2.4.3 Indirect Exchange: RKKY Interaction -- 2.4.4 Dzyaloshinskii-Moriya Interaction (DMI) -- 2.5 Magnetization in Magnetic Metals and Oxides -- 2.5.1 Slater-Pauling Curve -- 2.5.2 Rigid Band Model -- 2.5.3 Iron Oxides and Iron Garnets -- 2.6 Phenomenology of Magnetic Anisotropy -- 2.6.1 Uniaxial Anisotropy -- 2.6.2 Cubic Anisotropy -- 2.7 Origins of Magnetic Anisotropy -- 2.7.1 Shape Anisotropy -- 2.7.2 Magnetocrystalline Anisotropy (MCA) -- 2.7.3 Perpendicular Magnetic Anisotropy (PMA) -- 2.8 Magnetic Domain and Domain Walls -- 2.8.1 Domain Wall -- 2.8.2 Single Domain and Superparamagnetism -- Homework -- References -- Chapter 3 Magnetic Thin Films -- 3.1 Introduction -- 3.2 Magnetic Thin Film Growth -- 3.2.1 Sputter Deposition -- 3.2.2 Molecular Beam Epitaxy (MBE) | |
505 | 8 | |a 3.3 Magnetic Thin Film Characterization -- 3.3.1 Vibrating-Sample Magnetometer (VSM) -- 3.3.2 Magneto-Optical Kerr Effect (MOKE) -- References -- Chapter 4 Magnetoresistance Effects -- 4.1 Introduction -- 4.2 Anisotropic Magnetoresistance (AMR) -- 4.3 Giant Magnetoresistance (GMR) -- 4.4 Tunneling Magnetoresistance (TMR) -- 4.5 Contemporary MTJ Designs and Characterization -- 4.5.1 Perpendicular MTJ (p-MTJ) -- 4.5.2 Fully Functional p-MTJ -- 4.5.3 CIPT Approach for TMR Characterization -- Homework -- References -- Chapter 5 Magnetization Switching and Field MRAMs -- 5.1 Introduction -- 5.2 Magnetization Reversible Rotation and Irreversible Switching Under External Field -- 5.2.1 Magnetization Rotation Under an External Field in the Hard Axis Direction -- 5.2.2 Magnetization Rotation and Switching Under an external Field in the Easy Axis Direction -- 5.2.3 Magnetization Rotation and Switching Under Two Orthogonal External Fields -- 5.2.4 Magnetization Behavior of a Synthetic Anti-ferromagnetic Film Stack -- 5.3 Field MRAMs -- 5.3.1 MTJ of Field MRAM -- 5.3.2 Half-Select Bit Disturbance Issue -- Homework -- References -- Chapter 6 Spin Current and Spin Dynamics -- 6.1 Introduction to Hall Effects -- 6.1.1 Ordinary Hall Effect -- 6.1.2 Anomalous Hall Effect and Spin Hall Effect -- 6.2 Spin Current -- 6.2.1 Electron Spin Polarization in NM/FM/NM Film Stack -- 6.2.2 Spin Current Injection, Diffusion, and Inverse Spin Hall Effect -- 6.2.3 Generalized Carrier and Spin Current Drift-Diffusion Equation -- 6.3 Spin Dynamics -- 6.3.1 Landau-Lifshitz and Landau-Lifshitz-Gilbert Equations of Motion -- 6.3.2 Ferromagnetic Resonance -- 6.3.3 Spin Pumping and Effective Damping in FM/NM Film Stack -- 6.3.4 FM/NM/FM Coupling Through Spin Current -- 6.4 Interaction Between Polarized Conduction Electrons and Local Magnetization | |
505 | 8 | |a 6.4.1 Electron Spin Torque Transfer to Local Magnetic Magnetization -- 6.4.2 Macrospin Model -- 6.4.3 Spin-Torque Transfer in a Spin Valve -- 6.4.3.1 Switching Threshold Current Density -- 6.4.3.2 Switching Time -- 6.4.4 Spin-Torque Transfer Switching in Magnetic Tunnel Junction -- 6.4.5 Spin-Torque Ferromagnetic Resonance and Torkance -- 6.5 Spin Current Interaction with Domain Wall -- 6.5.1 Domain Wall Motion under Spin Current -- 6.5.2 Threshold Current Density -- Homework -- References -- Chapter 7 Spin-Torque-Transfer (STT) MRAM Engineering -- 7.1 Introduction -- 7.2 Thermal Stability Energy and Switching Energy -- 7.3 STT Switching Properties -- 7.3.1 Switching Probability and Write Error Rate (WER) -- 7.3.2 Switching Current in Precessional Regime -- 7.3.3 Switching Delay of an STT-MRAM Cell -- 7.3.4 Read Disturb Rate -- 7.3.5 Switching Under a Magnetic Field - Phase Diagram -- 7.3.6 MTJ Switching Abnormality -- 7.3.6.1 Magnetic Back-Hopping -- 7.3.6.2 Bifurcation Switching (Ballooning in WER) -- 7.3.6.3 Domain Mediated Magnetization Reversal -- 7.4 The Integrity of MTJ Tunnel Barrier -- 7.4.1 MgO Degradation Model -- 7.5 Data Retention -- 7.5.1 Retention Determination Based on Bit Switching Probability -- 7.5.2 Energy Barrier Determination Based on Aiding Field -- 7.5.3 Energy Barrier Extraction with Retention Bake at Chip Level -- 7.5.4 Data Retention Fail at the Chip Level -- 7.6 The Cell Design Considerations and Scaling -- 7.6.1 STT-MRAM Bit Cell and Array -- 7.6.2 CMOS Options -- 7.6.3 Cell Switching Efficiency -- 7.6.4 Cell Design Considerations -- 7.6.4.1 WRITE Current and Cell Size -- 7.6.4.2 READ Access Performance and RA Product of MTJ -- 7.6.4.3 READ and WRITE Voltage Margins -- 7.6.4.4 Stray Field Control for Perpendicular MTJ -- 7.6.4.5 Suppress Stochastic Switching Time Variation Ideas -- 7.6.5 The Scaling of MTJ for Memory | |
505 | 8 | |a 7.6.5.1 In-Plane MTJ -- 7.6.5.2 Out-of-Plane (Perpendicular) MTJ -- 7.7 MTJ SPICE Models -- 7.7.1 Basic MTJ Equivalent Circuit Model for Circuit Design Simulation -- 7.7.2 MTJ SPICE Circuit Model with Embedded Macrospin Calculator -- 7.8 Test Chip, Test, and Chip-Level Weak Bit Screening -- 7.8.1 Read Marginal Bits -- 7.8.2 Write Marginal Bits -- 7.8.3 Short Retention Bits -- 7.8.4 Low Endurance Bits -- Homework -- References -- Chapter 8 Advanced Switching MRAM Modes -- 8.1 Introduction -- 8.2 Current-Induced-Domain-Wall Motion (CIDM) Memory -- 8.2.1 Single-Bit Cell -- 8.2.2 Multibit Cell: Racetrack -- 8.3 Spin-Orbit Torque (SOT) Memory -- 8.3.1 Spin Orbit Torque (SOT) MRAM Cells -- 8.3.1.1 In-Plane SOT Cell -- 8.3.1.1.1 Cell Engineering and Device Properties -- 8.3.1.1.2 Cell Scaling -- 8.3.1.2 Perpendicular SOT Cell -- 8.3.2 Materials Choice for SOT-MRAM Cell -- 8.3.2.1 Transition Metals and their Alloys -- 8.3.2.2 Emergent Materials Systems -- 8.3.2.3 Benchmarking of SOT Switching Efficiency -- 8.4 Magneto-Electric Effect and Voltage-Control Magnetic Anisotropy (VCMA) MRAM -- 8.4.1 Magneto-Electric Effects -- 8.4.2 VCMA-Assisted MRAMs -- 8.4.2.1 VCMA-Assisted Field-MRAM -- 8.4.2.2 VCMA-Assisted Multi-bit-Word SOT-MRAM -- 8.4.2.3 VCMA-Assisted Precession-Toggle MRAM -- 8.5 Relative Merit of Advanced Switching Mode MRAMs -- Homework -- References -- Chapter 9 MRAM Applications and Production -- 9.1 Introduction -- 9.2 Intrinsic Characteristics and Product Attributes of Emerging Nonvolatile Memories -- 9.2.1 Intrinsic Properties -- 9.2.2 Product Attributes -- 9.3 Memory Landscape and MRAM Opportunity -- 9.3.1 MRAM as Embedded Memory in Logic Chips -- 9.3.1.1 Integration Issues of Embedded MRAM -- 9.3.1.2 MRAM as Embedded Flash in Microcontroller -- 9.3.1.3 Embedded MRAM Cell Size -- 9.3.1.4 MRAM as Cache Memory in Processor | |
505 | 8 | |a 9.3.1.5 Improvement of Access Latency -- 9.3.2 High-Density Discrete MRAM -- 9.3.2.1 Technology Status -- 9.3.2.2 Ideal CMOS Technology for High-Density MRAM -- 9.3.2.3 Improvement to Endurance and Write Error Rate with Error Buffer in Chip Architecture -- 9.3.3 Applications and Market Opportunity of MRAM -- 9.3.3.1 Battery-Backed DRAM Applications -- 9.3.3.2 Internet of Things (IoT) and Cybersecurity Applications -- 9.3.3.3 Applications to In-Memory Computing, and Artificial Intelligence (AI) -- 9.3.3.4 MRAM-Based Memory-Driven Computer -- 9.4 MRAM Production -- 9.4.1 MRAM Production Ecosystem -- 9.4.2 MRAM Product History -- 9.4.2.1 First-Generation MRAM - Field MRAM (Also Called Toggle MRAM) -- 9.4.2.2 The Second-Generation MRAM - STT-MRAM -- 9.4.2.3 The Potential Third-Generation MRAM - SOT MRAM -- Homework -- References -- Appendix A Retention Bake (Including Two-Way Flip) -- Reference -- Appendix B Memory Functionality-Based Scaling -- B.1 Introduction -- B.2 Operating Parameters for Write Endurance Failure Analysis -- B.3 Functional Requirements for Scaling -- B.3.1 Write Function - Switching Current Density -- B.3.2 Read Function - Read Speed and Read Signal -- B.4 Scaling Procedure -- B.5 Scaling Impacts -- B.5.1 VSW and JVSW -- B.5.2 Read Disturb -- B.5.3 Switching Current -- B.5.4 Nonvolatile Function - Data Retention -- B.5.5 Remarks on Temperature -- B.6 Write Endurance and its Lifetime Characterization Method -- B.7 Summary -- References -- Appendix C High-Bandwidth Design Considerations for STT-MRAM -- C.1 Introduction -- C.2 DRAM Fundamentals -- C.2.1 Cell and Sense Amplifier - Basic Operations -- C.2.2 Terminologies -- C.2.3 Basic Approach of High-Bandwidth SDRAM -- C.2.4 SDRAM Operation Mechanism -- C.2.5 SDRAM Performance -- C.3 Random Row Access Performance Analysis -- C.4 STT-MRAM Fundamentals -- C.4.1 Cell and Basic Operation | |
505 | 8 | |a C.4.2 On-Chip Error-Correcting Code (ECC) | |
650 | 0 | 7 | |a Magnetspeicher |0 (DE-588)4168608-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spin-transfer torque |0 (DE-588)1167066898 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Magnetspeicher |0 (DE-588)4168608-1 |D s |
689 | 0 | 1 | |a Spin-transfer torque |0 (DE-588)1167066898 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Pai, Chi-Feng |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Tang, Denny D. |t Magnetic Memory Technology |d Newark : John Wiley & Sons, Incorporated,c2021 |z 9781119562238 |
912 | |a ZDB-30-PQE |a ZDB-35-WEL | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032844687 | ||
966 | e | |u https://ieeexplore.ieee.org/servlet/opac?bknumber=9295051 |l FHI01 |p ZDB-35-WEL |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734945386496 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Tang, Denny D. Pai, Chi-Feng |
author_GND | (DE-588)143930826 |
author_facet | Tang, Denny D. Pai, Chi-Feng |
author_role | aut aut |
author_sort | Tang, Denny D. |
author_variant | d d t dd ddt c f p cfp |
building | Verbundindex |
bvnumber | BV047442535 |
classification_rvk | UP 6700 |
collection | ZDB-30-PQE ZDB-35-WEL |
contents | Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Author Biographies -- List of Cited Tables and Figures -- Chapter 1 Basic Electromagnetism -- 1.1 Introduction -- 1.2 Magnetic Force, Pole, Field, and Dipole -- 1.3 Magnetic Dipole Moment, Torque, and Energy -- 1.4 Magnetic Flux and Magnetic Induction -- 1.5 Ampère's Circuital Law, Biot-Savart Law, and Magnetic Field from Magnetic Material -- 1.5.1 Ampère's Circuital Law -- 1.5.2 Biot-Savart's Law -- 1.5.3 Magnetic Field from Magnetic Material -- 1.6 Equations, cgs-SI Unit Conversion Tables -- Homework -- References -- Chapter 2 Magnetism and Magnetic Materials -- 2.1 Introduction -- 2.2 Origin of Magnetization -- 2.2.1 From Ampère to Einstein -- 2.2.2 Precession -- 2.2.3 Electron Spin -- 2.2.4 Spin-Orbit Interaction -- 2.2.5 Hund's Rules -- 2.3 Classification of Magnetisms -- 2.3.1 Diamagnetism -- 2.3.2 Paramagnetism -- 2.3.3 Ferromagnetism -- 2.3.4 Antiferromagnetism -- 2.3.5 Ferrimagnetism -- 2.4 Exchange Interactions -- 2.4.1 Direct Exchange -- 2.4.2 Indirect Exchange: Superexchange -- 2.4.3 Indirect Exchange: RKKY Interaction -- 2.4.4 Dzyaloshinskii-Moriya Interaction (DMI) -- 2.5 Magnetization in Magnetic Metals and Oxides -- 2.5.1 Slater-Pauling Curve -- 2.5.2 Rigid Band Model -- 2.5.3 Iron Oxides and Iron Garnets -- 2.6 Phenomenology of Magnetic Anisotropy -- 2.6.1 Uniaxial Anisotropy -- 2.6.2 Cubic Anisotropy -- 2.7 Origins of Magnetic Anisotropy -- 2.7.1 Shape Anisotropy -- 2.7.2 Magnetocrystalline Anisotropy (MCA) -- 2.7.3 Perpendicular Magnetic Anisotropy (PMA) -- 2.8 Magnetic Domain and Domain Walls -- 2.8.1 Domain Wall -- 2.8.2 Single Domain and Superparamagnetism -- Homework -- References -- Chapter 3 Magnetic Thin Films -- 3.1 Introduction -- 3.2 Magnetic Thin Film Growth -- 3.2.1 Sputter Deposition -- 3.2.2 Molecular Beam Epitaxy (MBE) 3.3 Magnetic Thin Film Characterization -- 3.3.1 Vibrating-Sample Magnetometer (VSM) -- 3.3.2 Magneto-Optical Kerr Effect (MOKE) -- References -- Chapter 4 Magnetoresistance Effects -- 4.1 Introduction -- 4.2 Anisotropic Magnetoresistance (AMR) -- 4.3 Giant Magnetoresistance (GMR) -- 4.4 Tunneling Magnetoresistance (TMR) -- 4.5 Contemporary MTJ Designs and Characterization -- 4.5.1 Perpendicular MTJ (p-MTJ) -- 4.5.2 Fully Functional p-MTJ -- 4.5.3 CIPT Approach for TMR Characterization -- Homework -- References -- Chapter 5 Magnetization Switching and Field MRAMs -- 5.1 Introduction -- 5.2 Magnetization Reversible Rotation and Irreversible Switching Under External Field -- 5.2.1 Magnetization Rotation Under an External Field in the Hard Axis Direction -- 5.2.2 Magnetization Rotation and Switching Under an external Field in the Easy Axis Direction -- 5.2.3 Magnetization Rotation and Switching Under Two Orthogonal External Fields -- 5.2.4 Magnetization Behavior of a Synthetic Anti-ferromagnetic Film Stack -- 5.3 Field MRAMs -- 5.3.1 MTJ of Field MRAM -- 5.3.2 Half-Select Bit Disturbance Issue -- Homework -- References -- Chapter 6 Spin Current and Spin Dynamics -- 6.1 Introduction to Hall Effects -- 6.1.1 Ordinary Hall Effect -- 6.1.2 Anomalous Hall Effect and Spin Hall Effect -- 6.2 Spin Current -- 6.2.1 Electron Spin Polarization in NM/FM/NM Film Stack -- 6.2.2 Spin Current Injection, Diffusion, and Inverse Spin Hall Effect -- 6.2.3 Generalized Carrier and Spin Current Drift-Diffusion Equation -- 6.3 Spin Dynamics -- 6.3.1 Landau-Lifshitz and Landau-Lifshitz-Gilbert Equations of Motion -- 6.3.2 Ferromagnetic Resonance -- 6.3.3 Spin Pumping and Effective Damping in FM/NM Film Stack -- 6.3.4 FM/NM/FM Coupling Through Spin Current -- 6.4 Interaction Between Polarized Conduction Electrons and Local Magnetization 6.4.1 Electron Spin Torque Transfer to Local Magnetic Magnetization -- 6.4.2 Macrospin Model -- 6.4.3 Spin-Torque Transfer in a Spin Valve -- 6.4.3.1 Switching Threshold Current Density -- 6.4.3.2 Switching Time -- 6.4.4 Spin-Torque Transfer Switching in Magnetic Tunnel Junction -- 6.4.5 Spin-Torque Ferromagnetic Resonance and Torkance -- 6.5 Spin Current Interaction with Domain Wall -- 6.5.1 Domain Wall Motion under Spin Current -- 6.5.2 Threshold Current Density -- Homework -- References -- Chapter 7 Spin-Torque-Transfer (STT) MRAM Engineering -- 7.1 Introduction -- 7.2 Thermal Stability Energy and Switching Energy -- 7.3 STT Switching Properties -- 7.3.1 Switching Probability and Write Error Rate (WER) -- 7.3.2 Switching Current in Precessional Regime -- 7.3.3 Switching Delay of an STT-MRAM Cell -- 7.3.4 Read Disturb Rate -- 7.3.5 Switching Under a Magnetic Field - Phase Diagram -- 7.3.6 MTJ Switching Abnormality -- 7.3.6.1 Magnetic Back-Hopping -- 7.3.6.2 Bifurcation Switching (Ballooning in WER) -- 7.3.6.3 Domain Mediated Magnetization Reversal -- 7.4 The Integrity of MTJ Tunnel Barrier -- 7.4.1 MgO Degradation Model -- 7.5 Data Retention -- 7.5.1 Retention Determination Based on Bit Switching Probability -- 7.5.2 Energy Barrier Determination Based on Aiding Field -- 7.5.3 Energy Barrier Extraction with Retention Bake at Chip Level -- 7.5.4 Data Retention Fail at the Chip Level -- 7.6 The Cell Design Considerations and Scaling -- 7.6.1 STT-MRAM Bit Cell and Array -- 7.6.2 CMOS Options -- 7.6.3 Cell Switching Efficiency -- 7.6.4 Cell Design Considerations -- 7.6.4.1 WRITE Current and Cell Size -- 7.6.4.2 READ Access Performance and RA Product of MTJ -- 7.6.4.3 READ and WRITE Voltage Margins -- 7.6.4.4 Stray Field Control for Perpendicular MTJ -- 7.6.4.5 Suppress Stochastic Switching Time Variation Ideas -- 7.6.5 The Scaling of MTJ for Memory 7.6.5.1 In-Plane MTJ -- 7.6.5.2 Out-of-Plane (Perpendicular) MTJ -- 7.7 MTJ SPICE Models -- 7.7.1 Basic MTJ Equivalent Circuit Model for Circuit Design Simulation -- 7.7.2 MTJ SPICE Circuit Model with Embedded Macrospin Calculator -- 7.8 Test Chip, Test, and Chip-Level Weak Bit Screening -- 7.8.1 Read Marginal Bits -- 7.8.2 Write Marginal Bits -- 7.8.3 Short Retention Bits -- 7.8.4 Low Endurance Bits -- Homework -- References -- Chapter 8 Advanced Switching MRAM Modes -- 8.1 Introduction -- 8.2 Current-Induced-Domain-Wall Motion (CIDM) Memory -- 8.2.1 Single-Bit Cell -- 8.2.2 Multibit Cell: Racetrack -- 8.3 Spin-Orbit Torque (SOT) Memory -- 8.3.1 Spin Orbit Torque (SOT) MRAM Cells -- 8.3.1.1 In-Plane SOT Cell -- 8.3.1.1.1 Cell Engineering and Device Properties -- 8.3.1.1.2 Cell Scaling -- 8.3.1.2 Perpendicular SOT Cell -- 8.3.2 Materials Choice for SOT-MRAM Cell -- 8.3.2.1 Transition Metals and their Alloys -- 8.3.2.2 Emergent Materials Systems -- 8.3.2.3 Benchmarking of SOT Switching Efficiency -- 8.4 Magneto-Electric Effect and Voltage-Control Magnetic Anisotropy (VCMA) MRAM -- 8.4.1 Magneto-Electric Effects -- 8.4.2 VCMA-Assisted MRAMs -- 8.4.2.1 VCMA-Assisted Field-MRAM -- 8.4.2.2 VCMA-Assisted Multi-bit-Word SOT-MRAM -- 8.4.2.3 VCMA-Assisted Precession-Toggle MRAM -- 8.5 Relative Merit of Advanced Switching Mode MRAMs -- Homework -- References -- Chapter 9 MRAM Applications and Production -- 9.1 Introduction -- 9.2 Intrinsic Characteristics and Product Attributes of Emerging Nonvolatile Memories -- 9.2.1 Intrinsic Properties -- 9.2.2 Product Attributes -- 9.3 Memory Landscape and MRAM Opportunity -- 9.3.1 MRAM as Embedded Memory in Logic Chips -- 9.3.1.1 Integration Issues of Embedded MRAM -- 9.3.1.2 MRAM as Embedded Flash in Microcontroller -- 9.3.1.3 Embedded MRAM Cell Size -- 9.3.1.4 MRAM as Cache Memory in Processor 9.3.1.5 Improvement of Access Latency -- 9.3.2 High-Density Discrete MRAM -- 9.3.2.1 Technology Status -- 9.3.2.2 Ideal CMOS Technology for High-Density MRAM -- 9.3.2.3 Improvement to Endurance and Write Error Rate with Error Buffer in Chip Architecture -- 9.3.3 Applications and Market Opportunity of MRAM -- 9.3.3.1 Battery-Backed DRAM Applications -- 9.3.3.2 Internet of Things (IoT) and Cybersecurity Applications -- 9.3.3.3 Applications to In-Memory Computing, and Artificial Intelligence (AI) -- 9.3.3.4 MRAM-Based Memory-Driven Computer -- 9.4 MRAM Production -- 9.4.1 MRAM Production Ecosystem -- 9.4.2 MRAM Product History -- 9.4.2.1 First-Generation MRAM - Field MRAM (Also Called Toggle MRAM) -- 9.4.2.2 The Second-Generation MRAM - STT-MRAM -- 9.4.2.3 The Potential Third-Generation MRAM - SOT MRAM -- Homework -- References -- Appendix A Retention Bake (Including Two-Way Flip) -- Reference -- Appendix B Memory Functionality-Based Scaling -- B.1 Introduction -- B.2 Operating Parameters for Write Endurance Failure Analysis -- B.3 Functional Requirements for Scaling -- B.3.1 Write Function - Switching Current Density -- B.3.2 Read Function - Read Speed and Read Signal -- B.4 Scaling Procedure -- B.5 Scaling Impacts -- B.5.1 VSW and JVSW -- B.5.2 Read Disturb -- B.5.3 Switching Current -- B.5.4 Nonvolatile Function - Data Retention -- B.5.5 Remarks on Temperature -- B.6 Write Endurance and its Lifetime Characterization Method -- B.7 Summary -- References -- Appendix C High-Bandwidth Design Considerations for STT-MRAM -- C.1 Introduction -- C.2 DRAM Fundamentals -- C.2.1 Cell and Sense Amplifier - Basic Operations -- C.2.2 Terminologies -- C.2.3 Basic Approach of High-Bandwidth SDRAM -- C.2.4 SDRAM Operation Mechanism -- C.2.5 SDRAM Performance -- C.3 Random Row Access Performance Analysis -- C.4 STT-MRAM Fundamentals -- C.4.1 Cell and Basic Operation C.4.2 On-Chip Error-Correcting Code (ECC) |
ctrlnum | (ZDB-30-PQE)EBC6424573 (ZDB-30-PAD)EBC6424573 (ZDB-89-EBL)EBL6424573 (OCoLC)1227392878 (DE-599)BVBBV047442535 |
dewey-full | 621.39763 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.39763 |
dewey-search | 621.39763 |
dewey-sort | 3621.39763 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11327nmm a2200541zc 4500</leader><controlfield tag="001">BV047442535</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230126 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119562283</subfield><subfield code="9">978-1-119-56228-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119562269</subfield><subfield code="9">978-1-119-56226-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119562221</subfield><subfield code="9">978-1-119-56222-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6424573</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6424573</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6424573</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227392878</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442535</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.39763</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 6700</subfield><subfield code="0">(DE-625)146429:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tang, Denny D.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143930826</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magnetic Memory Technology</subfield><subfield code="b">Spin-Transfer-Torque MRAM and Beyond</subfield><subfield code="c">Denny D. Tang (Tang Consultancy), Chi-Feng Pai (National Taiwan University)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">John Wiley & Sons, Incorporated</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiv, 327 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Author Biographies -- List of Cited Tables and Figures -- Chapter 1 Basic Electromagnetism -- 1.1 Introduction -- 1.2 Magnetic Force, Pole, Field, and Dipole -- 1.3 Magnetic Dipole Moment, Torque, and Energy -- 1.4 Magnetic Flux and Magnetic Induction -- 1.5 Ampère's Circuital Law, Biot-Savart Law, and Magnetic Field from Magnetic Material -- 1.5.1 Ampère's Circuital Law -- 1.5.2 Biot-Savart's Law -- 1.5.3 Magnetic Field from Magnetic Material -- 1.6 Equations, cgs-SI Unit Conversion Tables -- Homework -- References -- Chapter 2 Magnetism and Magnetic Materials -- 2.1 Introduction -- 2.2 Origin of Magnetization -- 2.2.1 From Ampère to Einstein -- 2.2.2 Precession -- 2.2.3 Electron Spin -- 2.2.4 Spin-Orbit Interaction -- 2.2.5 Hund's Rules -- 2.3 Classification of Magnetisms -- 2.3.1 Diamagnetism -- 2.3.2 Paramagnetism -- 2.3.3 Ferromagnetism -- 2.3.4 Antiferromagnetism -- 2.3.5 Ferrimagnetism -- 2.4 Exchange Interactions -- 2.4.1 Direct Exchange -- 2.4.2 Indirect Exchange: Superexchange -- 2.4.3 Indirect Exchange: RKKY Interaction -- 2.4.4 Dzyaloshinskii-Moriya Interaction (DMI) -- 2.5 Magnetization in Magnetic Metals and Oxides -- 2.5.1 Slater-Pauling Curve -- 2.5.2 Rigid Band Model -- 2.5.3 Iron Oxides and Iron Garnets -- 2.6 Phenomenology of Magnetic Anisotropy -- 2.6.1 Uniaxial Anisotropy -- 2.6.2 Cubic Anisotropy -- 2.7 Origins of Magnetic Anisotropy -- 2.7.1 Shape Anisotropy -- 2.7.2 Magnetocrystalline Anisotropy (MCA) -- 2.7.3 Perpendicular Magnetic Anisotropy (PMA) -- 2.8 Magnetic Domain and Domain Walls -- 2.8.1 Domain Wall -- 2.8.2 Single Domain and Superparamagnetism -- Homework -- References -- Chapter 3 Magnetic Thin Films -- 3.1 Introduction -- 3.2 Magnetic Thin Film Growth -- 3.2.1 Sputter Deposition -- 3.2.2 Molecular Beam Epitaxy (MBE)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3 Magnetic Thin Film Characterization -- 3.3.1 Vibrating-Sample Magnetometer (VSM) -- 3.3.2 Magneto-Optical Kerr Effect (MOKE) -- References -- Chapter 4 Magnetoresistance Effects -- 4.1 Introduction -- 4.2 Anisotropic Magnetoresistance (AMR) -- 4.3 Giant Magnetoresistance (GMR) -- 4.4 Tunneling Magnetoresistance (TMR) -- 4.5 Contemporary MTJ Designs and Characterization -- 4.5.1 Perpendicular MTJ (p-MTJ) -- 4.5.2 Fully Functional p-MTJ -- 4.5.3 CIPT Approach for TMR Characterization -- Homework -- References -- Chapter 5 Magnetization Switching and Field MRAMs -- 5.1 Introduction -- 5.2 Magnetization Reversible Rotation and Irreversible Switching Under External Field -- 5.2.1 Magnetization Rotation Under an External Field in the Hard Axis Direction -- 5.2.2 Magnetization Rotation and Switching Under an external Field in the Easy Axis Direction -- 5.2.3 Magnetization Rotation and Switching Under Two Orthogonal External Fields -- 5.2.4 Magnetization Behavior of a Synthetic Anti-ferromagnetic Film Stack -- 5.3 Field MRAMs -- 5.3.1 MTJ of Field MRAM -- 5.3.2 Half-Select Bit Disturbance Issue -- Homework -- References -- Chapter 6 Spin Current and Spin Dynamics -- 6.1 Introduction to Hall Effects -- 6.1.1 Ordinary Hall Effect -- 6.1.2 Anomalous Hall Effect and Spin Hall Effect -- 6.2 Spin Current -- 6.2.1 Electron Spin Polarization in NM/FM/NM Film Stack -- 6.2.2 Spin Current Injection, Diffusion, and Inverse Spin Hall Effect -- 6.2.3 Generalized Carrier and Spin Current Drift-Diffusion Equation -- 6.3 Spin Dynamics -- 6.3.1 Landau-Lifshitz and Landau-Lifshitz-Gilbert Equations of Motion -- 6.3.2 Ferromagnetic Resonance -- 6.3.3 Spin Pumping and Effective Damping in FM/NM Film Stack -- 6.3.4 FM/NM/FM Coupling Through Spin Current -- 6.4 Interaction Between Polarized Conduction Electrons and Local Magnetization</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.4.1 Electron Spin Torque Transfer to Local Magnetic Magnetization -- 6.4.2 Macrospin Model -- 6.4.3 Spin-Torque Transfer in a Spin Valve -- 6.4.3.1 Switching Threshold Current Density -- 6.4.3.2 Switching Time -- 6.4.4 Spin-Torque Transfer Switching in Magnetic Tunnel Junction -- 6.4.5 Spin-Torque Ferromagnetic Resonance and Torkance -- 6.5 Spin Current Interaction with Domain Wall -- 6.5.1 Domain Wall Motion under Spin Current -- 6.5.2 Threshold Current Density -- Homework -- References -- Chapter 7 Spin-Torque-Transfer (STT) MRAM Engineering -- 7.1 Introduction -- 7.2 Thermal Stability Energy and Switching Energy -- 7.3 STT Switching Properties -- 7.3.1 Switching Probability and Write Error Rate (WER) -- 7.3.2 Switching Current in Precessional Regime -- 7.3.3 Switching Delay of an STT-MRAM Cell -- 7.3.4 Read Disturb Rate -- 7.3.5 Switching Under a Magnetic Field - Phase Diagram -- 7.3.6 MTJ Switching Abnormality -- 7.3.6.1 Magnetic Back-Hopping -- 7.3.6.2 Bifurcation Switching (Ballooning in WER) -- 7.3.6.3 Domain Mediated Magnetization Reversal -- 7.4 The Integrity of MTJ Tunnel Barrier -- 7.4.1 MgO Degradation Model -- 7.5 Data Retention -- 7.5.1 Retention Determination Based on Bit Switching Probability -- 7.5.2 Energy Barrier Determination Based on Aiding Field -- 7.5.3 Energy Barrier Extraction with Retention Bake at Chip Level -- 7.5.4 Data Retention Fail at the Chip Level -- 7.6 The Cell Design Considerations and Scaling -- 7.6.1 STT-MRAM Bit Cell and Array -- 7.6.2 CMOS Options -- 7.6.3 Cell Switching Efficiency -- 7.6.4 Cell Design Considerations -- 7.6.4.1 WRITE Current and Cell Size -- 7.6.4.2 READ Access Performance and RA Product of MTJ -- 7.6.4.3 READ and WRITE Voltage Margins -- 7.6.4.4 Stray Field Control for Perpendicular MTJ -- 7.6.4.5 Suppress Stochastic Switching Time Variation Ideas -- 7.6.5 The Scaling of MTJ for Memory</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.6.5.1 In-Plane MTJ -- 7.6.5.2 Out-of-Plane (Perpendicular) MTJ -- 7.7 MTJ SPICE Models -- 7.7.1 Basic MTJ Equivalent Circuit Model for Circuit Design Simulation -- 7.7.2 MTJ SPICE Circuit Model with Embedded Macrospin Calculator -- 7.8 Test Chip, Test, and Chip-Level Weak Bit Screening -- 7.8.1 Read Marginal Bits -- 7.8.2 Write Marginal Bits -- 7.8.3 Short Retention Bits -- 7.8.4 Low Endurance Bits -- Homework -- References -- Chapter 8 Advanced Switching MRAM Modes -- 8.1 Introduction -- 8.2 Current-Induced-Domain-Wall Motion (CIDM) Memory -- 8.2.1 Single-Bit Cell -- 8.2.2 Multibit Cell: Racetrack -- 8.3 Spin-Orbit Torque (SOT) Memory -- 8.3.1 Spin Orbit Torque (SOT) MRAM Cells -- 8.3.1.1 In-Plane SOT Cell -- 8.3.1.1.1 Cell Engineering and Device Properties -- 8.3.1.1.2 Cell Scaling -- 8.3.1.2 Perpendicular SOT Cell -- 8.3.2 Materials Choice for SOT-MRAM Cell -- 8.3.2.1 Transition Metals and their Alloys -- 8.3.2.2 Emergent Materials Systems -- 8.3.2.3 Benchmarking of SOT Switching Efficiency -- 8.4 Magneto-Electric Effect and Voltage-Control Magnetic Anisotropy (VCMA) MRAM -- 8.4.1 Magneto-Electric Effects -- 8.4.2 VCMA-Assisted MRAMs -- 8.4.2.1 VCMA-Assisted Field-MRAM -- 8.4.2.2 VCMA-Assisted Multi-bit-Word SOT-MRAM -- 8.4.2.3 VCMA-Assisted Precession-Toggle MRAM -- 8.5 Relative Merit of Advanced Switching Mode MRAMs -- Homework -- References -- Chapter 9 MRAM Applications and Production -- 9.1 Introduction -- 9.2 Intrinsic Characteristics and Product Attributes of Emerging Nonvolatile Memories -- 9.2.1 Intrinsic Properties -- 9.2.2 Product Attributes -- 9.3 Memory Landscape and MRAM Opportunity -- 9.3.1 MRAM as Embedded Memory in Logic Chips -- 9.3.1.1 Integration Issues of Embedded MRAM -- 9.3.1.2 MRAM as Embedded Flash in Microcontroller -- 9.3.1.3 Embedded MRAM Cell Size -- 9.3.1.4 MRAM as Cache Memory in Processor</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.3.1.5 Improvement of Access Latency -- 9.3.2 High-Density Discrete MRAM -- 9.3.2.1 Technology Status -- 9.3.2.2 Ideal CMOS Technology for High-Density MRAM -- 9.3.2.3 Improvement to Endurance and Write Error Rate with Error Buffer in Chip Architecture -- 9.3.3 Applications and Market Opportunity of MRAM -- 9.3.3.1 Battery-Backed DRAM Applications -- 9.3.3.2 Internet of Things (IoT) and Cybersecurity Applications -- 9.3.3.3 Applications to In-Memory Computing, and Artificial Intelligence (AI) -- 9.3.3.4 MRAM-Based Memory-Driven Computer -- 9.4 MRAM Production -- 9.4.1 MRAM Production Ecosystem -- 9.4.2 MRAM Product History -- 9.4.2.1 First-Generation MRAM - Field MRAM (Also Called Toggle MRAM) -- 9.4.2.2 The Second-Generation MRAM - STT-MRAM -- 9.4.2.3 The Potential Third-Generation MRAM - SOT MRAM -- Homework -- References -- Appendix A Retention Bake (Including Two-Way Flip) -- Reference -- Appendix B Memory Functionality-Based Scaling -- B.1 Introduction -- B.2 Operating Parameters for Write Endurance Failure Analysis -- B.3 Functional Requirements for Scaling -- B.3.1 Write Function - Switching Current Density -- B.3.2 Read Function - Read Speed and Read Signal -- B.4 Scaling Procedure -- B.5 Scaling Impacts -- B.5.1 VSW and JVSW -- B.5.2 Read Disturb -- B.5.3 Switching Current -- B.5.4 Nonvolatile Function - Data Retention -- B.5.5 Remarks on Temperature -- B.6 Write Endurance and its Lifetime Characterization Method -- B.7 Summary -- References -- Appendix C High-Bandwidth Design Considerations for STT-MRAM -- C.1 Introduction -- C.2 DRAM Fundamentals -- C.2.1 Cell and Sense Amplifier - Basic Operations -- C.2.2 Terminologies -- C.2.3 Basic Approach of High-Bandwidth SDRAM -- C.2.4 SDRAM Operation Mechanism -- C.2.5 SDRAM Performance -- C.3 Random Row Access Performance Analysis -- C.4 STT-MRAM Fundamentals -- C.4.1 Cell and Basic Operation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">C.4.2 On-Chip Error-Correcting Code (ECC)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Magnetspeicher</subfield><subfield code="0">(DE-588)4168608-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spin-transfer torque</subfield><subfield code="0">(DE-588)1167066898</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Magnetspeicher</subfield><subfield code="0">(DE-588)4168608-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spin-transfer torque</subfield><subfield code="0">(DE-588)1167066898</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pai, Chi-Feng</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Tang, Denny D.</subfield><subfield code="t">Magnetic Memory Technology</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2021</subfield><subfield code="z">9781119562238</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-35-WEL</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844687</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/servlet/opac?bknumber=9295051</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-35-WEL</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047442535 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:24Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9781119562283 9781119562269 9781119562221 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844687 |
oclc_num | 1227392878 |
open_access_boolean | |
owner | DE-573 |
owner_facet | DE-573 |
physical | 1 Online-Ressource (xxiv, 327 Seiten) |
psigel | ZDB-30-PQE ZDB-35-WEL |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | John Wiley & Sons, Incorporated |
record_format | marc |
spelling | Tang, Denny D. Verfasser (DE-588)143930826 aut Magnetic Memory Technology Spin-Transfer-Torque MRAM and Beyond Denny D. Tang (Tang Consultancy), Chi-Feng Pai (National Taiwan University) Hoboken, NJ John Wiley & Sons, Incorporated 2021 ©2021 1 Online-Ressource (xxiv, 327 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Author Biographies -- List of Cited Tables and Figures -- Chapter 1 Basic Electromagnetism -- 1.1 Introduction -- 1.2 Magnetic Force, Pole, Field, and Dipole -- 1.3 Magnetic Dipole Moment, Torque, and Energy -- 1.4 Magnetic Flux and Magnetic Induction -- 1.5 Ampère's Circuital Law, Biot-Savart Law, and Magnetic Field from Magnetic Material -- 1.5.1 Ampère's Circuital Law -- 1.5.2 Biot-Savart's Law -- 1.5.3 Magnetic Field from Magnetic Material -- 1.6 Equations, cgs-SI Unit Conversion Tables -- Homework -- References -- Chapter 2 Magnetism and Magnetic Materials -- 2.1 Introduction -- 2.2 Origin of Magnetization -- 2.2.1 From Ampère to Einstein -- 2.2.2 Precession -- 2.2.3 Electron Spin -- 2.2.4 Spin-Orbit Interaction -- 2.2.5 Hund's Rules -- 2.3 Classification of Magnetisms -- 2.3.1 Diamagnetism -- 2.3.2 Paramagnetism -- 2.3.3 Ferromagnetism -- 2.3.4 Antiferromagnetism -- 2.3.5 Ferrimagnetism -- 2.4 Exchange Interactions -- 2.4.1 Direct Exchange -- 2.4.2 Indirect Exchange: Superexchange -- 2.4.3 Indirect Exchange: RKKY Interaction -- 2.4.4 Dzyaloshinskii-Moriya Interaction (DMI) -- 2.5 Magnetization in Magnetic Metals and Oxides -- 2.5.1 Slater-Pauling Curve -- 2.5.2 Rigid Band Model -- 2.5.3 Iron Oxides and Iron Garnets -- 2.6 Phenomenology of Magnetic Anisotropy -- 2.6.1 Uniaxial Anisotropy -- 2.6.2 Cubic Anisotropy -- 2.7 Origins of Magnetic Anisotropy -- 2.7.1 Shape Anisotropy -- 2.7.2 Magnetocrystalline Anisotropy (MCA) -- 2.7.3 Perpendicular Magnetic Anisotropy (PMA) -- 2.8 Magnetic Domain and Domain Walls -- 2.8.1 Domain Wall -- 2.8.2 Single Domain and Superparamagnetism -- Homework -- References -- Chapter 3 Magnetic Thin Films -- 3.1 Introduction -- 3.2 Magnetic Thin Film Growth -- 3.2.1 Sputter Deposition -- 3.2.2 Molecular Beam Epitaxy (MBE) 3.3 Magnetic Thin Film Characterization -- 3.3.1 Vibrating-Sample Magnetometer (VSM) -- 3.3.2 Magneto-Optical Kerr Effect (MOKE) -- References -- Chapter 4 Magnetoresistance Effects -- 4.1 Introduction -- 4.2 Anisotropic Magnetoresistance (AMR) -- 4.3 Giant Magnetoresistance (GMR) -- 4.4 Tunneling Magnetoresistance (TMR) -- 4.5 Contemporary MTJ Designs and Characterization -- 4.5.1 Perpendicular MTJ (p-MTJ) -- 4.5.2 Fully Functional p-MTJ -- 4.5.3 CIPT Approach for TMR Characterization -- Homework -- References -- Chapter 5 Magnetization Switching and Field MRAMs -- 5.1 Introduction -- 5.2 Magnetization Reversible Rotation and Irreversible Switching Under External Field -- 5.2.1 Magnetization Rotation Under an External Field in the Hard Axis Direction -- 5.2.2 Magnetization Rotation and Switching Under an external Field in the Easy Axis Direction -- 5.2.3 Magnetization Rotation and Switching Under Two Orthogonal External Fields -- 5.2.4 Magnetization Behavior of a Synthetic Anti-ferromagnetic Film Stack -- 5.3 Field MRAMs -- 5.3.1 MTJ of Field MRAM -- 5.3.2 Half-Select Bit Disturbance Issue -- Homework -- References -- Chapter 6 Spin Current and Spin Dynamics -- 6.1 Introduction to Hall Effects -- 6.1.1 Ordinary Hall Effect -- 6.1.2 Anomalous Hall Effect and Spin Hall Effect -- 6.2 Spin Current -- 6.2.1 Electron Spin Polarization in NM/FM/NM Film Stack -- 6.2.2 Spin Current Injection, Diffusion, and Inverse Spin Hall Effect -- 6.2.3 Generalized Carrier and Spin Current Drift-Diffusion Equation -- 6.3 Spin Dynamics -- 6.3.1 Landau-Lifshitz and Landau-Lifshitz-Gilbert Equations of Motion -- 6.3.2 Ferromagnetic Resonance -- 6.3.3 Spin Pumping and Effective Damping in FM/NM Film Stack -- 6.3.4 FM/NM/FM Coupling Through Spin Current -- 6.4 Interaction Between Polarized Conduction Electrons and Local Magnetization 6.4.1 Electron Spin Torque Transfer to Local Magnetic Magnetization -- 6.4.2 Macrospin Model -- 6.4.3 Spin-Torque Transfer in a Spin Valve -- 6.4.3.1 Switching Threshold Current Density -- 6.4.3.2 Switching Time -- 6.4.4 Spin-Torque Transfer Switching in Magnetic Tunnel Junction -- 6.4.5 Spin-Torque Ferromagnetic Resonance and Torkance -- 6.5 Spin Current Interaction with Domain Wall -- 6.5.1 Domain Wall Motion under Spin Current -- 6.5.2 Threshold Current Density -- Homework -- References -- Chapter 7 Spin-Torque-Transfer (STT) MRAM Engineering -- 7.1 Introduction -- 7.2 Thermal Stability Energy and Switching Energy -- 7.3 STT Switching Properties -- 7.3.1 Switching Probability and Write Error Rate (WER) -- 7.3.2 Switching Current in Precessional Regime -- 7.3.3 Switching Delay of an STT-MRAM Cell -- 7.3.4 Read Disturb Rate -- 7.3.5 Switching Under a Magnetic Field - Phase Diagram -- 7.3.6 MTJ Switching Abnormality -- 7.3.6.1 Magnetic Back-Hopping -- 7.3.6.2 Bifurcation Switching (Ballooning in WER) -- 7.3.6.3 Domain Mediated Magnetization Reversal -- 7.4 The Integrity of MTJ Tunnel Barrier -- 7.4.1 MgO Degradation Model -- 7.5 Data Retention -- 7.5.1 Retention Determination Based on Bit Switching Probability -- 7.5.2 Energy Barrier Determination Based on Aiding Field -- 7.5.3 Energy Barrier Extraction with Retention Bake at Chip Level -- 7.5.4 Data Retention Fail at the Chip Level -- 7.6 The Cell Design Considerations and Scaling -- 7.6.1 STT-MRAM Bit Cell and Array -- 7.6.2 CMOS Options -- 7.6.3 Cell Switching Efficiency -- 7.6.4 Cell Design Considerations -- 7.6.4.1 WRITE Current and Cell Size -- 7.6.4.2 READ Access Performance and RA Product of MTJ -- 7.6.4.3 READ and WRITE Voltage Margins -- 7.6.4.4 Stray Field Control for Perpendicular MTJ -- 7.6.4.5 Suppress Stochastic Switching Time Variation Ideas -- 7.6.5 The Scaling of MTJ for Memory 7.6.5.1 In-Plane MTJ -- 7.6.5.2 Out-of-Plane (Perpendicular) MTJ -- 7.7 MTJ SPICE Models -- 7.7.1 Basic MTJ Equivalent Circuit Model for Circuit Design Simulation -- 7.7.2 MTJ SPICE Circuit Model with Embedded Macrospin Calculator -- 7.8 Test Chip, Test, and Chip-Level Weak Bit Screening -- 7.8.1 Read Marginal Bits -- 7.8.2 Write Marginal Bits -- 7.8.3 Short Retention Bits -- 7.8.4 Low Endurance Bits -- Homework -- References -- Chapter 8 Advanced Switching MRAM Modes -- 8.1 Introduction -- 8.2 Current-Induced-Domain-Wall Motion (CIDM) Memory -- 8.2.1 Single-Bit Cell -- 8.2.2 Multibit Cell: Racetrack -- 8.3 Spin-Orbit Torque (SOT) Memory -- 8.3.1 Spin Orbit Torque (SOT) MRAM Cells -- 8.3.1.1 In-Plane SOT Cell -- 8.3.1.1.1 Cell Engineering and Device Properties -- 8.3.1.1.2 Cell Scaling -- 8.3.1.2 Perpendicular SOT Cell -- 8.3.2 Materials Choice for SOT-MRAM Cell -- 8.3.2.1 Transition Metals and their Alloys -- 8.3.2.2 Emergent Materials Systems -- 8.3.2.3 Benchmarking of SOT Switching Efficiency -- 8.4 Magneto-Electric Effect and Voltage-Control Magnetic Anisotropy (VCMA) MRAM -- 8.4.1 Magneto-Electric Effects -- 8.4.2 VCMA-Assisted MRAMs -- 8.4.2.1 VCMA-Assisted Field-MRAM -- 8.4.2.2 VCMA-Assisted Multi-bit-Word SOT-MRAM -- 8.4.2.3 VCMA-Assisted Precession-Toggle MRAM -- 8.5 Relative Merit of Advanced Switching Mode MRAMs -- Homework -- References -- Chapter 9 MRAM Applications and Production -- 9.1 Introduction -- 9.2 Intrinsic Characteristics and Product Attributes of Emerging Nonvolatile Memories -- 9.2.1 Intrinsic Properties -- 9.2.2 Product Attributes -- 9.3 Memory Landscape and MRAM Opportunity -- 9.3.1 MRAM as Embedded Memory in Logic Chips -- 9.3.1.1 Integration Issues of Embedded MRAM -- 9.3.1.2 MRAM as Embedded Flash in Microcontroller -- 9.3.1.3 Embedded MRAM Cell Size -- 9.3.1.4 MRAM as Cache Memory in Processor 9.3.1.5 Improvement of Access Latency -- 9.3.2 High-Density Discrete MRAM -- 9.3.2.1 Technology Status -- 9.3.2.2 Ideal CMOS Technology for High-Density MRAM -- 9.3.2.3 Improvement to Endurance and Write Error Rate with Error Buffer in Chip Architecture -- 9.3.3 Applications and Market Opportunity of MRAM -- 9.3.3.1 Battery-Backed DRAM Applications -- 9.3.3.2 Internet of Things (IoT) and Cybersecurity Applications -- 9.3.3.3 Applications to In-Memory Computing, and Artificial Intelligence (AI) -- 9.3.3.4 MRAM-Based Memory-Driven Computer -- 9.4 MRAM Production -- 9.4.1 MRAM Production Ecosystem -- 9.4.2 MRAM Product History -- 9.4.2.1 First-Generation MRAM - Field MRAM (Also Called Toggle MRAM) -- 9.4.2.2 The Second-Generation MRAM - STT-MRAM -- 9.4.2.3 The Potential Third-Generation MRAM - SOT MRAM -- Homework -- References -- Appendix A Retention Bake (Including Two-Way Flip) -- Reference -- Appendix B Memory Functionality-Based Scaling -- B.1 Introduction -- B.2 Operating Parameters for Write Endurance Failure Analysis -- B.3 Functional Requirements for Scaling -- B.3.1 Write Function - Switching Current Density -- B.3.2 Read Function - Read Speed and Read Signal -- B.4 Scaling Procedure -- B.5 Scaling Impacts -- B.5.1 VSW and JVSW -- B.5.2 Read Disturb -- B.5.3 Switching Current -- B.5.4 Nonvolatile Function - Data Retention -- B.5.5 Remarks on Temperature -- B.6 Write Endurance and its Lifetime Characterization Method -- B.7 Summary -- References -- Appendix C High-Bandwidth Design Considerations for STT-MRAM -- C.1 Introduction -- C.2 DRAM Fundamentals -- C.2.1 Cell and Sense Amplifier - Basic Operations -- C.2.2 Terminologies -- C.2.3 Basic Approach of High-Bandwidth SDRAM -- C.2.4 SDRAM Operation Mechanism -- C.2.5 SDRAM Performance -- C.3 Random Row Access Performance Analysis -- C.4 STT-MRAM Fundamentals -- C.4.1 Cell and Basic Operation C.4.2 On-Chip Error-Correcting Code (ECC) Magnetspeicher (DE-588)4168608-1 gnd rswk-swf Spin-transfer torque (DE-588)1167066898 gnd rswk-swf Magnetspeicher (DE-588)4168608-1 s Spin-transfer torque (DE-588)1167066898 s DE-604 Pai, Chi-Feng Verfasser aut Erscheint auch als Druck-Ausgabe Tang, Denny D. Magnetic Memory Technology Newark : John Wiley & Sons, Incorporated,c2021 9781119562238 |
spellingShingle | Tang, Denny D. Pai, Chi-Feng Magnetic Memory Technology Spin-Transfer-Torque MRAM and Beyond Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Author Biographies -- List of Cited Tables and Figures -- Chapter 1 Basic Electromagnetism -- 1.1 Introduction -- 1.2 Magnetic Force, Pole, Field, and Dipole -- 1.3 Magnetic Dipole Moment, Torque, and Energy -- 1.4 Magnetic Flux and Magnetic Induction -- 1.5 Ampère's Circuital Law, Biot-Savart Law, and Magnetic Field from Magnetic Material -- 1.5.1 Ampère's Circuital Law -- 1.5.2 Biot-Savart's Law -- 1.5.3 Magnetic Field from Magnetic Material -- 1.6 Equations, cgs-SI Unit Conversion Tables -- Homework -- References -- Chapter 2 Magnetism and Magnetic Materials -- 2.1 Introduction -- 2.2 Origin of Magnetization -- 2.2.1 From Ampère to Einstein -- 2.2.2 Precession -- 2.2.3 Electron Spin -- 2.2.4 Spin-Orbit Interaction -- 2.2.5 Hund's Rules -- 2.3 Classification of Magnetisms -- 2.3.1 Diamagnetism -- 2.3.2 Paramagnetism -- 2.3.3 Ferromagnetism -- 2.3.4 Antiferromagnetism -- 2.3.5 Ferrimagnetism -- 2.4 Exchange Interactions -- 2.4.1 Direct Exchange -- 2.4.2 Indirect Exchange: Superexchange -- 2.4.3 Indirect Exchange: RKKY Interaction -- 2.4.4 Dzyaloshinskii-Moriya Interaction (DMI) -- 2.5 Magnetization in Magnetic Metals and Oxides -- 2.5.1 Slater-Pauling Curve -- 2.5.2 Rigid Band Model -- 2.5.3 Iron Oxides and Iron Garnets -- 2.6 Phenomenology of Magnetic Anisotropy -- 2.6.1 Uniaxial Anisotropy -- 2.6.2 Cubic Anisotropy -- 2.7 Origins of Magnetic Anisotropy -- 2.7.1 Shape Anisotropy -- 2.7.2 Magnetocrystalline Anisotropy (MCA) -- 2.7.3 Perpendicular Magnetic Anisotropy (PMA) -- 2.8 Magnetic Domain and Domain Walls -- 2.8.1 Domain Wall -- 2.8.2 Single Domain and Superparamagnetism -- Homework -- References -- Chapter 3 Magnetic Thin Films -- 3.1 Introduction -- 3.2 Magnetic Thin Film Growth -- 3.2.1 Sputter Deposition -- 3.2.2 Molecular Beam Epitaxy (MBE) 3.3 Magnetic Thin Film Characterization -- 3.3.1 Vibrating-Sample Magnetometer (VSM) -- 3.3.2 Magneto-Optical Kerr Effect (MOKE) -- References -- Chapter 4 Magnetoresistance Effects -- 4.1 Introduction -- 4.2 Anisotropic Magnetoresistance (AMR) -- 4.3 Giant Magnetoresistance (GMR) -- 4.4 Tunneling Magnetoresistance (TMR) -- 4.5 Contemporary MTJ Designs and Characterization -- 4.5.1 Perpendicular MTJ (p-MTJ) -- 4.5.2 Fully Functional p-MTJ -- 4.5.3 CIPT Approach for TMR Characterization -- Homework -- References -- Chapter 5 Magnetization Switching and Field MRAMs -- 5.1 Introduction -- 5.2 Magnetization Reversible Rotation and Irreversible Switching Under External Field -- 5.2.1 Magnetization Rotation Under an External Field in the Hard Axis Direction -- 5.2.2 Magnetization Rotation and Switching Under an external Field in the Easy Axis Direction -- 5.2.3 Magnetization Rotation and Switching Under Two Orthogonal External Fields -- 5.2.4 Magnetization Behavior of a Synthetic Anti-ferromagnetic Film Stack -- 5.3 Field MRAMs -- 5.3.1 MTJ of Field MRAM -- 5.3.2 Half-Select Bit Disturbance Issue -- Homework -- References -- Chapter 6 Spin Current and Spin Dynamics -- 6.1 Introduction to Hall Effects -- 6.1.1 Ordinary Hall Effect -- 6.1.2 Anomalous Hall Effect and Spin Hall Effect -- 6.2 Spin Current -- 6.2.1 Electron Spin Polarization in NM/FM/NM Film Stack -- 6.2.2 Spin Current Injection, Diffusion, and Inverse Spin Hall Effect -- 6.2.3 Generalized Carrier and Spin Current Drift-Diffusion Equation -- 6.3 Spin Dynamics -- 6.3.1 Landau-Lifshitz and Landau-Lifshitz-Gilbert Equations of Motion -- 6.3.2 Ferromagnetic Resonance -- 6.3.3 Spin Pumping and Effective Damping in FM/NM Film Stack -- 6.3.4 FM/NM/FM Coupling Through Spin Current -- 6.4 Interaction Between Polarized Conduction Electrons and Local Magnetization 6.4.1 Electron Spin Torque Transfer to Local Magnetic Magnetization -- 6.4.2 Macrospin Model -- 6.4.3 Spin-Torque Transfer in a Spin Valve -- 6.4.3.1 Switching Threshold Current Density -- 6.4.3.2 Switching Time -- 6.4.4 Spin-Torque Transfer Switching in Magnetic Tunnel Junction -- 6.4.5 Spin-Torque Ferromagnetic Resonance and Torkance -- 6.5 Spin Current Interaction with Domain Wall -- 6.5.1 Domain Wall Motion under Spin Current -- 6.5.2 Threshold Current Density -- Homework -- References -- Chapter 7 Spin-Torque-Transfer (STT) MRAM Engineering -- 7.1 Introduction -- 7.2 Thermal Stability Energy and Switching Energy -- 7.3 STT Switching Properties -- 7.3.1 Switching Probability and Write Error Rate (WER) -- 7.3.2 Switching Current in Precessional Regime -- 7.3.3 Switching Delay of an STT-MRAM Cell -- 7.3.4 Read Disturb Rate -- 7.3.5 Switching Under a Magnetic Field - Phase Diagram -- 7.3.6 MTJ Switching Abnormality -- 7.3.6.1 Magnetic Back-Hopping -- 7.3.6.2 Bifurcation Switching (Ballooning in WER) -- 7.3.6.3 Domain Mediated Magnetization Reversal -- 7.4 The Integrity of MTJ Tunnel Barrier -- 7.4.1 MgO Degradation Model -- 7.5 Data Retention -- 7.5.1 Retention Determination Based on Bit Switching Probability -- 7.5.2 Energy Barrier Determination Based on Aiding Field -- 7.5.3 Energy Barrier Extraction with Retention Bake at Chip Level -- 7.5.4 Data Retention Fail at the Chip Level -- 7.6 The Cell Design Considerations and Scaling -- 7.6.1 STT-MRAM Bit Cell and Array -- 7.6.2 CMOS Options -- 7.6.3 Cell Switching Efficiency -- 7.6.4 Cell Design Considerations -- 7.6.4.1 WRITE Current and Cell Size -- 7.6.4.2 READ Access Performance and RA Product of MTJ -- 7.6.4.3 READ and WRITE Voltage Margins -- 7.6.4.4 Stray Field Control for Perpendicular MTJ -- 7.6.4.5 Suppress Stochastic Switching Time Variation Ideas -- 7.6.5 The Scaling of MTJ for Memory 7.6.5.1 In-Plane MTJ -- 7.6.5.2 Out-of-Plane (Perpendicular) MTJ -- 7.7 MTJ SPICE Models -- 7.7.1 Basic MTJ Equivalent Circuit Model for Circuit Design Simulation -- 7.7.2 MTJ SPICE Circuit Model with Embedded Macrospin Calculator -- 7.8 Test Chip, Test, and Chip-Level Weak Bit Screening -- 7.8.1 Read Marginal Bits -- 7.8.2 Write Marginal Bits -- 7.8.3 Short Retention Bits -- 7.8.4 Low Endurance Bits -- Homework -- References -- Chapter 8 Advanced Switching MRAM Modes -- 8.1 Introduction -- 8.2 Current-Induced-Domain-Wall Motion (CIDM) Memory -- 8.2.1 Single-Bit Cell -- 8.2.2 Multibit Cell: Racetrack -- 8.3 Spin-Orbit Torque (SOT) Memory -- 8.3.1 Spin Orbit Torque (SOT) MRAM Cells -- 8.3.1.1 In-Plane SOT Cell -- 8.3.1.1.1 Cell Engineering and Device Properties -- 8.3.1.1.2 Cell Scaling -- 8.3.1.2 Perpendicular SOT Cell -- 8.3.2 Materials Choice for SOT-MRAM Cell -- 8.3.2.1 Transition Metals and their Alloys -- 8.3.2.2 Emergent Materials Systems -- 8.3.2.3 Benchmarking of SOT Switching Efficiency -- 8.4 Magneto-Electric Effect and Voltage-Control Magnetic Anisotropy (VCMA) MRAM -- 8.4.1 Magneto-Electric Effects -- 8.4.2 VCMA-Assisted MRAMs -- 8.4.2.1 VCMA-Assisted Field-MRAM -- 8.4.2.2 VCMA-Assisted Multi-bit-Word SOT-MRAM -- 8.4.2.3 VCMA-Assisted Precession-Toggle MRAM -- 8.5 Relative Merit of Advanced Switching Mode MRAMs -- Homework -- References -- Chapter 9 MRAM Applications and Production -- 9.1 Introduction -- 9.2 Intrinsic Characteristics and Product Attributes of Emerging Nonvolatile Memories -- 9.2.1 Intrinsic Properties -- 9.2.2 Product Attributes -- 9.3 Memory Landscape and MRAM Opportunity -- 9.3.1 MRAM as Embedded Memory in Logic Chips -- 9.3.1.1 Integration Issues of Embedded MRAM -- 9.3.1.2 MRAM as Embedded Flash in Microcontroller -- 9.3.1.3 Embedded MRAM Cell Size -- 9.3.1.4 MRAM as Cache Memory in Processor 9.3.1.5 Improvement of Access Latency -- 9.3.2 High-Density Discrete MRAM -- 9.3.2.1 Technology Status -- 9.3.2.2 Ideal CMOS Technology for High-Density MRAM -- 9.3.2.3 Improvement to Endurance and Write Error Rate with Error Buffer in Chip Architecture -- 9.3.3 Applications and Market Opportunity of MRAM -- 9.3.3.1 Battery-Backed DRAM Applications -- 9.3.3.2 Internet of Things (IoT) and Cybersecurity Applications -- 9.3.3.3 Applications to In-Memory Computing, and Artificial Intelligence (AI) -- 9.3.3.4 MRAM-Based Memory-Driven Computer -- 9.4 MRAM Production -- 9.4.1 MRAM Production Ecosystem -- 9.4.2 MRAM Product History -- 9.4.2.1 First-Generation MRAM - Field MRAM (Also Called Toggle MRAM) -- 9.4.2.2 The Second-Generation MRAM - STT-MRAM -- 9.4.2.3 The Potential Third-Generation MRAM - SOT MRAM -- Homework -- References -- Appendix A Retention Bake (Including Two-Way Flip) -- Reference -- Appendix B Memory Functionality-Based Scaling -- B.1 Introduction -- B.2 Operating Parameters for Write Endurance Failure Analysis -- B.3 Functional Requirements for Scaling -- B.3.1 Write Function - Switching Current Density -- B.3.2 Read Function - Read Speed and Read Signal -- B.4 Scaling Procedure -- B.5 Scaling Impacts -- B.5.1 VSW and JVSW -- B.5.2 Read Disturb -- B.5.3 Switching Current -- B.5.4 Nonvolatile Function - Data Retention -- B.5.5 Remarks on Temperature -- B.6 Write Endurance and its Lifetime Characterization Method -- B.7 Summary -- References -- Appendix C High-Bandwidth Design Considerations for STT-MRAM -- C.1 Introduction -- C.2 DRAM Fundamentals -- C.2.1 Cell and Sense Amplifier - Basic Operations -- C.2.2 Terminologies -- C.2.3 Basic Approach of High-Bandwidth SDRAM -- C.2.4 SDRAM Operation Mechanism -- C.2.5 SDRAM Performance -- C.3 Random Row Access Performance Analysis -- C.4 STT-MRAM Fundamentals -- C.4.1 Cell and Basic Operation C.4.2 On-Chip Error-Correcting Code (ECC) Magnetspeicher (DE-588)4168608-1 gnd Spin-transfer torque (DE-588)1167066898 gnd |
subject_GND | (DE-588)4168608-1 (DE-588)1167066898 |
title | Magnetic Memory Technology Spin-Transfer-Torque MRAM and Beyond |
title_auth | Magnetic Memory Technology Spin-Transfer-Torque MRAM and Beyond |
title_exact_search | Magnetic Memory Technology Spin-Transfer-Torque MRAM and Beyond |
title_exact_search_txtP | Magnetic Memory Technology Spin-Transfer-Torque MRAM and Beyond |
title_full | Magnetic Memory Technology Spin-Transfer-Torque MRAM and Beyond Denny D. Tang (Tang Consultancy), Chi-Feng Pai (National Taiwan University) |
title_fullStr | Magnetic Memory Technology Spin-Transfer-Torque MRAM and Beyond Denny D. Tang (Tang Consultancy), Chi-Feng Pai (National Taiwan University) |
title_full_unstemmed | Magnetic Memory Technology Spin-Transfer-Torque MRAM and Beyond Denny D. Tang (Tang Consultancy), Chi-Feng Pai (National Taiwan University) |
title_short | Magnetic Memory Technology |
title_sort | magnetic memory technology spin transfer torque mram and beyond |
title_sub | Spin-Transfer-Torque MRAM and Beyond |
topic | Magnetspeicher (DE-588)4168608-1 gnd Spin-transfer torque (DE-588)1167066898 gnd |
topic_facet | Magnetspeicher Spin-transfer torque |
work_keys_str_mv | AT tangdennyd magneticmemorytechnologyspintransfertorquemramandbeyond AT paichifeng magneticmemorytechnologyspintransfertorquemramandbeyond |