CubeSat antenna design:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[New York, NY]
IEEE Press
[2021]
Hoboken, New Jersey Wiley |
Schlagworte: | |
Online-Zugang: | FHI01 TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xix, 319 Seiten) Illustrationen, Diagramme |
ISBN: | 9781119692713 9781119692720 9781119692706 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442534 | ||
003 | DE-604 | ||
005 | 20240214 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781119692713 |9 978-1-119-69271-3 | ||
020 | |a 9781119692720 |9 978-1-119-69272-0 | ||
020 | |a 9781119692706 |9 978-1-119-69270-6 | ||
035 | |a (ZDB-30-PQE)EBC6424571 | ||
035 | |a (ZDB-30-PAD)EBC6424571 | ||
035 | |a (ZDB-89-EBL)EBL6424571 | ||
035 | |a (OCoLC)1227389067 | ||
035 | |a (DE-599)BVBBV047442534 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-573 | ||
082 | 0 | |a 629.4643 | |
084 | |a VER 800 |2 stub | ||
084 | |a ELT 739 |2 stub | ||
245 | 1 | 0 | |a CubeSat antenna design |c edited by Nacer Chahat |
264 | 1 | |a [New York, NY] |b IEEE Press |c [2021] | |
264 | 1 | |a Hoboken, New Jersey |b Wiley | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (xix, 319 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright -- Contents -- Preface -- Editor Biography -- Notes on Contributors -- Chapter 1 Introduction -- 1.1 Description of CubeSats -- 1.1.1 Introduction -- 1.1.2 Form Factors -- 1.1.3 Brief Introduction to CubeSat Subsystems -- 1.1.4 CubeSat Antennas -- 1.1.5 Effect of Space Environment on Antennas -- 1.2 Conclusion -- 1.2 Acknowledgments -- 1.2 References -- Chapter 2 Mars Cube One -- 2.1 Mission Description -- 2.2 Iris Radio -- 2.3 X‐Band Subsystem -- 2.3.1 Frequency Allocation -- 2.3.2 Near Earth Communications Using Low Gain Antennas -- 2.3.3 Mars‐to‐Earth Communications -- 2.4 Entry, Descent, and Landing UHF Link -- 2.4.1 State‐of‐the‐Art of UHF Deployable CubeSat Antennas -- 2.4.2 Circularly Polarized Loop Antenna Concept -- 2.4.3 Mechanical Configuration and Deployment Scheme -- 2.4.4 Simulations and Measurements -- 2.4.5 In‐Flight Performance -- 2.5 Conclusions -- 2.5 Acknowledgments -- 2.5 References -- Chapter 3 Radar in a CubeSat: RainCube -- 3.1 Mission Description -- 3.2 Deployable High‐Gain Antenna -- 3.2.1 State of the Art -- 3.2.2 Parabolic Reflector Antenna Design -- 3.2.3 RainCube High‐Gain Antenna -- 3.2.4 Mechanical Deployment -- 3.2.5 Design and Testing for the Space Environment -- 3.2.6 In‐Flight Performance -- 3.3 Telecommunication Challenge -- 3.4 Conclusion -- 3.4 Acknowledgments -- 3.4 References -- Chapter 4 One Meter Reflectarray Antenna: OMERA -- 4.1 Introduction -- 4.2 Reflectarray Antennas -- 4.2.1 Introductions to Reflectarray -- 4.2.2 Advantages of Reflectarray -- 4.2.3 Drawbacks of Reflectarray -- 4.2.4 State of the Art -- 4.3 OMERA -- 4.3.1 Antenna Description -- 4.3.2 Deployable Feed -- 4.3.3 Reflectarray Design -- 4.3.4 Deployment Accuracy -- 4.3.5 Effect of Struts -- 4.3.6 Predicted Gain and Efficiency -- 4.3.7 Prototype and Measurements -- 4.4 Conclusion -- 4.4 Acknowledgments | |
505 | 8 | |a 4.4 References -- Chapter 5 X/Ka‐Band One Meter Mesh Reflector for 12U‐Class CubeSat -- 5.1 Introduction -- 5.2 Mechanical Design -- 5.2.1 Trade Studies -- 5.2.2 Structural Design of the Reflector -- 5.2.3 Deployment -- 5.3 X/Ka RF Design -- 5.3.1 Antenna Configuration and Simulation Model -- 5.3.2 X‐Band Feed and Mesh Reflector -- 5.3.3 Ka‐Band Mesh Reflector -- 5.3.4 X/Ka‐band Mesh Reflector -- 5.4 Conclusion -- 5.4 Acknowledgments -- 5.4 References -- Chapter 6 Inflatable Antenna for CubeSat -- 6.1 Introduction -- 6.2 Inflatable High Gain Antenna -- 6.2.1 State of the Art -- 6.2.2 Inflatable Antenna Design at X‐Band -- 6.2.3 Structural Design -- 6.2.4 Inflation and On‐Orbit Rigidization -- 6.3 Spacecraft Design Challenges -- 6.4 Conclusion -- 6.4 Acknowledgments -- 6.4 References -- Chapter 7 High Aperture Efficiency All‐Metal Patch Array -- 7.1 Introduction -- 7.2 State of the Art -- 7.3 Dual‐Band Circularly Polarized 8 × 8 Patch Array -- 7.3.1 Requirements -- 7.3.2 Unit Cell Optimization -- 7.3.3 8 × 8 Patch Array -- 7.3.4 Comparison With State‐of‐the‐Art -- 7.3.5 Other Array Configurations -- 7.4 Conclusion -- 7.4 Acknowledgments -- 7.4 References -- Chapter 8 Metasurface Antennas: Flat Antennas for Small Satellites -- 8.1 Introduction -- 8.2 Modulated Metasurface Antennas -- 8.2.1 State of the Art: Pros and Cons -- 8.2.2 Design of Modulated Metasurface Antennas -- 8.2.3 300 GHz Silicon Micro‐Machined MTS Antenna -- 8.2.4 Ka‐band Metal‐Only Telecommunication Antenna -- 8.3 Beam Synthesis Using Holographic Metasurface Antennas -- 8.3.1 Introduction -- 8.3.2 Examples Holographic Metasurface Antennas -- 8.3.3 W‐Band Pillbox Beam Steering Metasurface Antenna -- 8.3.4 Toward an Active Beam Steering Antenna -- 8.4 Conclusion -- 8.4 Acknowledgments -- 8.4 References -- Index -- EULA. | |
650 | 4 | |a Artificial satellites-Radio antennas-Design and construction | |
700 | 1 | |a Chahat, Nacer |d 1986- |0 (DE-588)1231010592 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a Chahat, Nacer |t CubeSat Antenna Design |d Newark : John Wiley & Sons, Incorporated,c2021 |n Druck-Ausgabe |z 978-1-119-69258-4 |
912 | |a ZDB-35-WEL |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032844686 | ||
966 | e | |u https://ieeexplore.ieee.org/servlet/opac?bknumber=9295049 |l FHI01 |p ZDB-35-WEL |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6424571 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734971600896 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Chahat, Nacer 1986- |
author2_role | edt |
author2_variant | n c nc |
author_GND | (DE-588)1231010592 |
author_facet | Chahat, Nacer 1986- |
building | Verbundindex |
bvnumber | BV047442534 |
classification_tum | VER 800 ELT 739 |
collection | ZDB-35-WEL ZDB-30-PQE |
contents | Cover -- Title Page -- Copyright -- Contents -- Preface -- Editor Biography -- Notes on Contributors -- Chapter 1 Introduction -- 1.1 Description of CubeSats -- 1.1.1 Introduction -- 1.1.2 Form Factors -- 1.1.3 Brief Introduction to CubeSat Subsystems -- 1.1.4 CubeSat Antennas -- 1.1.5 Effect of Space Environment on Antennas -- 1.2 Conclusion -- 1.2 Acknowledgments -- 1.2 References -- Chapter 2 Mars Cube One -- 2.1 Mission Description -- 2.2 Iris Radio -- 2.3 X‐Band Subsystem -- 2.3.1 Frequency Allocation -- 2.3.2 Near Earth Communications Using Low Gain Antennas -- 2.3.3 Mars‐to‐Earth Communications -- 2.4 Entry, Descent, and Landing UHF Link -- 2.4.1 State‐of‐the‐Art of UHF Deployable CubeSat Antennas -- 2.4.2 Circularly Polarized Loop Antenna Concept -- 2.4.3 Mechanical Configuration and Deployment Scheme -- 2.4.4 Simulations and Measurements -- 2.4.5 In‐Flight Performance -- 2.5 Conclusions -- 2.5 Acknowledgments -- 2.5 References -- Chapter 3 Radar in a CubeSat: RainCube -- 3.1 Mission Description -- 3.2 Deployable High‐Gain Antenna -- 3.2.1 State of the Art -- 3.2.2 Parabolic Reflector Antenna Design -- 3.2.3 RainCube High‐Gain Antenna -- 3.2.4 Mechanical Deployment -- 3.2.5 Design and Testing for the Space Environment -- 3.2.6 In‐Flight Performance -- 3.3 Telecommunication Challenge -- 3.4 Conclusion -- 3.4 Acknowledgments -- 3.4 References -- Chapter 4 One Meter Reflectarray Antenna: OMERA -- 4.1 Introduction -- 4.2 Reflectarray Antennas -- 4.2.1 Introductions to Reflectarray -- 4.2.2 Advantages of Reflectarray -- 4.2.3 Drawbacks of Reflectarray -- 4.2.4 State of the Art -- 4.3 OMERA -- 4.3.1 Antenna Description -- 4.3.2 Deployable Feed -- 4.3.3 Reflectarray Design -- 4.3.4 Deployment Accuracy -- 4.3.5 Effect of Struts -- 4.3.6 Predicted Gain and Efficiency -- 4.3.7 Prototype and Measurements -- 4.4 Conclusion -- 4.4 Acknowledgments 4.4 References -- Chapter 5 X/Ka‐Band One Meter Mesh Reflector for 12U‐Class CubeSat -- 5.1 Introduction -- 5.2 Mechanical Design -- 5.2.1 Trade Studies -- 5.2.2 Structural Design of the Reflector -- 5.2.3 Deployment -- 5.3 X/Ka RF Design -- 5.3.1 Antenna Configuration and Simulation Model -- 5.3.2 X‐Band Feed and Mesh Reflector -- 5.3.3 Ka‐Band Mesh Reflector -- 5.3.4 X/Ka‐band Mesh Reflector -- 5.4 Conclusion -- 5.4 Acknowledgments -- 5.4 References -- Chapter 6 Inflatable Antenna for CubeSat -- 6.1 Introduction -- 6.2 Inflatable High Gain Antenna -- 6.2.1 State of the Art -- 6.2.2 Inflatable Antenna Design at X‐Band -- 6.2.3 Structural Design -- 6.2.4 Inflation and On‐Orbit Rigidization -- 6.3 Spacecraft Design Challenges -- 6.4 Conclusion -- 6.4 Acknowledgments -- 6.4 References -- Chapter 7 High Aperture Efficiency All‐Metal Patch Array -- 7.1 Introduction -- 7.2 State of the Art -- 7.3 Dual‐Band Circularly Polarized 8 × 8 Patch Array -- 7.3.1 Requirements -- 7.3.2 Unit Cell Optimization -- 7.3.3 8 × 8 Patch Array -- 7.3.4 Comparison With State‐of‐the‐Art -- 7.3.5 Other Array Configurations -- 7.4 Conclusion -- 7.4 Acknowledgments -- 7.4 References -- Chapter 8 Metasurface Antennas: Flat Antennas for Small Satellites -- 8.1 Introduction -- 8.2 Modulated Metasurface Antennas -- 8.2.1 State of the Art: Pros and Cons -- 8.2.2 Design of Modulated Metasurface Antennas -- 8.2.3 300 GHz Silicon Micro‐Machined MTS Antenna -- 8.2.4 Ka‐band Metal‐Only Telecommunication Antenna -- 8.3 Beam Synthesis Using Holographic Metasurface Antennas -- 8.3.1 Introduction -- 8.3.2 Examples Holographic Metasurface Antennas -- 8.3.3 W‐Band Pillbox Beam Steering Metasurface Antenna -- 8.3.4 Toward an Active Beam Steering Antenna -- 8.4 Conclusion -- 8.4 Acknowledgments -- 8.4 References -- Index -- EULA. |
ctrlnum | (ZDB-30-PQE)EBC6424571 (ZDB-30-PAD)EBC6424571 (ZDB-89-EBL)EBL6424571 (OCoLC)1227389067 (DE-599)BVBBV047442534 |
dewey-full | 629.4643 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.4643 |
dewey-search | 629.4643 |
dewey-sort | 3629.4643 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik Verkehrstechnik Verkehr / Transport |
discipline_str_mv | Elektrotechnik Verkehrstechnik Verkehr / Transport |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05552nmm a2200469zc 4500</leader><controlfield tag="001">BV047442534</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119692713</subfield><subfield code="9">978-1-119-69271-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119692720</subfield><subfield code="9">978-1-119-69272-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119692706</subfield><subfield code="9">978-1-119-69270-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6424571</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6424571</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6424571</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227389067</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442534</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.4643</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VER 800</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 739</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CubeSat antenna design</subfield><subfield code="c">edited by Nacer Chahat</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[New York, NY]</subfield><subfield code="b">IEEE Press</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, New Jersey</subfield><subfield code="b">Wiley</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 319 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Contents -- Preface -- Editor Biography -- Notes on Contributors -- Chapter 1 Introduction -- 1.1 Description of CubeSats -- 1.1.1 Introduction -- 1.1.2 Form Factors -- 1.1.3 Brief Introduction to CubeSat Subsystems -- 1.1.4 CubeSat Antennas -- 1.1.5 Effect of Space Environment on Antennas -- 1.2 Conclusion -- 1.2 Acknowledgments -- 1.2 References -- Chapter 2 Mars Cube One -- 2.1 Mission Description -- 2.2 Iris Radio -- 2.3 X‐Band Subsystem -- 2.3.1 Frequency Allocation -- 2.3.2 Near Earth Communications Using Low Gain Antennas -- 2.3.3 Mars‐to‐Earth Communications -- 2.4 Entry, Descent, and Landing UHF Link -- 2.4.1 State‐of‐the‐Art of UHF Deployable CubeSat Antennas -- 2.4.2 Circularly Polarized Loop Antenna Concept -- 2.4.3 Mechanical Configuration and Deployment Scheme -- 2.4.4 Simulations and Measurements -- 2.4.5 In‐Flight Performance -- 2.5 Conclusions -- 2.5 Acknowledgments -- 2.5 References -- Chapter 3 Radar in a CubeSat: RainCube -- 3.1 Mission Description -- 3.2 Deployable High‐Gain Antenna -- 3.2.1 State of the Art -- 3.2.2 Parabolic Reflector Antenna Design -- 3.2.3 RainCube High‐Gain Antenna -- 3.2.4 Mechanical Deployment -- 3.2.5 Design and Testing for the Space Environment -- 3.2.6 In‐Flight Performance -- 3.3 Telecommunication Challenge -- 3.4 Conclusion -- 3.4 Acknowledgments -- 3.4 References -- Chapter 4 One Meter Reflectarray Antenna: OMERA -- 4.1 Introduction -- 4.2 Reflectarray Antennas -- 4.2.1 Introductions to Reflectarray -- 4.2.2 Advantages of Reflectarray -- 4.2.3 Drawbacks of Reflectarray -- 4.2.4 State of the Art -- 4.3 OMERA -- 4.3.1 Antenna Description -- 4.3.2 Deployable Feed -- 4.3.3 Reflectarray Design -- 4.3.4 Deployment Accuracy -- 4.3.5 Effect of Struts -- 4.3.6 Predicted Gain and Efficiency -- 4.3.7 Prototype and Measurements -- 4.4 Conclusion -- 4.4 Acknowledgments</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.4 References -- Chapter 5 X/Ka‐Band One Meter Mesh Reflector for 12U‐Class CubeSat -- 5.1 Introduction -- 5.2 Mechanical Design -- 5.2.1 Trade Studies -- 5.2.2 Structural Design of the Reflector -- 5.2.3 Deployment -- 5.3 X/Ka RF Design -- 5.3.1 Antenna Configuration and Simulation Model -- 5.3.2 X‐Band Feed and Mesh Reflector -- 5.3.3 Ka‐Band Mesh Reflector -- 5.3.4 X/Ka‐band Mesh Reflector -- 5.4 Conclusion -- 5.4 Acknowledgments -- 5.4 References -- Chapter 6 Inflatable Antenna for CubeSat -- 6.1 Introduction -- 6.2 Inflatable High Gain Antenna -- 6.2.1 State of the Art -- 6.2.2 Inflatable Antenna Design at X‐Band -- 6.2.3 Structural Design -- 6.2.4 Inflation and On‐Orbit Rigidization -- 6.3 Spacecraft Design Challenges -- 6.4 Conclusion -- 6.4 Acknowledgments -- 6.4 References -- Chapter 7 High Aperture Efficiency All‐Metal Patch Array -- 7.1 Introduction -- 7.2 State of the Art -- 7.3 Dual‐Band Circularly Polarized 8 × 8 Patch Array -- 7.3.1 Requirements -- 7.3.2 Unit Cell Optimization -- 7.3.3 8 × 8 Patch Array -- 7.3.4 Comparison With State‐of‐the‐Art -- 7.3.5 Other Array Configurations -- 7.4 Conclusion -- 7.4 Acknowledgments -- 7.4 References -- Chapter 8 Metasurface Antennas: Flat Antennas for Small Satellites -- 8.1 Introduction -- 8.2 Modulated Metasurface Antennas -- 8.2.1 State of the Art: Pros and Cons -- 8.2.2 Design of Modulated Metasurface Antennas -- 8.2.3 300 GHz Silicon Micro‐Machined MTS Antenna -- 8.2.4 Ka‐band Metal‐Only Telecommunication Antenna -- 8.3 Beam Synthesis Using Holographic Metasurface Antennas -- 8.3.1 Introduction -- 8.3.2 Examples Holographic Metasurface Antennas -- 8.3.3 W‐Band Pillbox Beam Steering Metasurface Antenna -- 8.3.4 Toward an Active Beam Steering Antenna -- 8.4 Conclusion -- 8.4 Acknowledgments -- 8.4 References -- Index -- EULA.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial satellites-Radio antennas-Design and construction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chahat, Nacer</subfield><subfield code="d">1986-</subfield><subfield code="0">(DE-588)1231010592</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Chahat, Nacer</subfield><subfield code="t">CubeSat Antenna Design</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2021</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-119-69258-4</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WEL</subfield><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844686</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/servlet/opac?bknumber=9295049</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-35-WEL</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6424571</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047442534 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:24Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9781119692713 9781119692720 9781119692706 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844686 |
oclc_num | 1227389067 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-573 |
owner_facet | DE-91 DE-BY-TUM DE-573 |
physical | 1 Online-Ressource (xix, 319 Seiten) Illustrationen, Diagramme |
psigel | ZDB-35-WEL ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | IEEE Press Wiley |
record_format | marc |
spelling | CubeSat antenna design edited by Nacer Chahat [New York, NY] IEEE Press [2021] Hoboken, New Jersey Wiley © 2021 1 Online-Ressource (xix, 319 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Title Page -- Copyright -- Contents -- Preface -- Editor Biography -- Notes on Contributors -- Chapter 1 Introduction -- 1.1 Description of CubeSats -- 1.1.1 Introduction -- 1.1.2 Form Factors -- 1.1.3 Brief Introduction to CubeSat Subsystems -- 1.1.4 CubeSat Antennas -- 1.1.5 Effect of Space Environment on Antennas -- 1.2 Conclusion -- 1.2 Acknowledgments -- 1.2 References -- Chapter 2 Mars Cube One -- 2.1 Mission Description -- 2.2 Iris Radio -- 2.3 X‐Band Subsystem -- 2.3.1 Frequency Allocation -- 2.3.2 Near Earth Communications Using Low Gain Antennas -- 2.3.3 Mars‐to‐Earth Communications -- 2.4 Entry, Descent, and Landing UHF Link -- 2.4.1 State‐of‐the‐Art of UHF Deployable CubeSat Antennas -- 2.4.2 Circularly Polarized Loop Antenna Concept -- 2.4.3 Mechanical Configuration and Deployment Scheme -- 2.4.4 Simulations and Measurements -- 2.4.5 In‐Flight Performance -- 2.5 Conclusions -- 2.5 Acknowledgments -- 2.5 References -- Chapter 3 Radar in a CubeSat: RainCube -- 3.1 Mission Description -- 3.2 Deployable High‐Gain Antenna -- 3.2.1 State of the Art -- 3.2.2 Parabolic Reflector Antenna Design -- 3.2.3 RainCube High‐Gain Antenna -- 3.2.4 Mechanical Deployment -- 3.2.5 Design and Testing for the Space Environment -- 3.2.6 In‐Flight Performance -- 3.3 Telecommunication Challenge -- 3.4 Conclusion -- 3.4 Acknowledgments -- 3.4 References -- Chapter 4 One Meter Reflectarray Antenna: OMERA -- 4.1 Introduction -- 4.2 Reflectarray Antennas -- 4.2.1 Introductions to Reflectarray -- 4.2.2 Advantages of Reflectarray -- 4.2.3 Drawbacks of Reflectarray -- 4.2.4 State of the Art -- 4.3 OMERA -- 4.3.1 Antenna Description -- 4.3.2 Deployable Feed -- 4.3.3 Reflectarray Design -- 4.3.4 Deployment Accuracy -- 4.3.5 Effect of Struts -- 4.3.6 Predicted Gain and Efficiency -- 4.3.7 Prototype and Measurements -- 4.4 Conclusion -- 4.4 Acknowledgments 4.4 References -- Chapter 5 X/Ka‐Band One Meter Mesh Reflector for 12U‐Class CubeSat -- 5.1 Introduction -- 5.2 Mechanical Design -- 5.2.1 Trade Studies -- 5.2.2 Structural Design of the Reflector -- 5.2.3 Deployment -- 5.3 X/Ka RF Design -- 5.3.1 Antenna Configuration and Simulation Model -- 5.3.2 X‐Band Feed and Mesh Reflector -- 5.3.3 Ka‐Band Mesh Reflector -- 5.3.4 X/Ka‐band Mesh Reflector -- 5.4 Conclusion -- 5.4 Acknowledgments -- 5.4 References -- Chapter 6 Inflatable Antenna for CubeSat -- 6.1 Introduction -- 6.2 Inflatable High Gain Antenna -- 6.2.1 State of the Art -- 6.2.2 Inflatable Antenna Design at X‐Band -- 6.2.3 Structural Design -- 6.2.4 Inflation and On‐Orbit Rigidization -- 6.3 Spacecraft Design Challenges -- 6.4 Conclusion -- 6.4 Acknowledgments -- 6.4 References -- Chapter 7 High Aperture Efficiency All‐Metal Patch Array -- 7.1 Introduction -- 7.2 State of the Art -- 7.3 Dual‐Band Circularly Polarized 8 × 8 Patch Array -- 7.3.1 Requirements -- 7.3.2 Unit Cell Optimization -- 7.3.3 8 × 8 Patch Array -- 7.3.4 Comparison With State‐of‐the‐Art -- 7.3.5 Other Array Configurations -- 7.4 Conclusion -- 7.4 Acknowledgments -- 7.4 References -- Chapter 8 Metasurface Antennas: Flat Antennas for Small Satellites -- 8.1 Introduction -- 8.2 Modulated Metasurface Antennas -- 8.2.1 State of the Art: Pros and Cons -- 8.2.2 Design of Modulated Metasurface Antennas -- 8.2.3 300 GHz Silicon Micro‐Machined MTS Antenna -- 8.2.4 Ka‐band Metal‐Only Telecommunication Antenna -- 8.3 Beam Synthesis Using Holographic Metasurface Antennas -- 8.3.1 Introduction -- 8.3.2 Examples Holographic Metasurface Antennas -- 8.3.3 W‐Band Pillbox Beam Steering Metasurface Antenna -- 8.3.4 Toward an Active Beam Steering Antenna -- 8.4 Conclusion -- 8.4 Acknowledgments -- 8.4 References -- Index -- EULA. Artificial satellites-Radio antennas-Design and construction Chahat, Nacer 1986- (DE-588)1231010592 edt Erscheint auch als Chahat, Nacer CubeSat Antenna Design Newark : John Wiley & Sons, Incorporated,c2021 Druck-Ausgabe 978-1-119-69258-4 |
spellingShingle | CubeSat antenna design Cover -- Title Page -- Copyright -- Contents -- Preface -- Editor Biography -- Notes on Contributors -- Chapter 1 Introduction -- 1.1 Description of CubeSats -- 1.1.1 Introduction -- 1.1.2 Form Factors -- 1.1.3 Brief Introduction to CubeSat Subsystems -- 1.1.4 CubeSat Antennas -- 1.1.5 Effect of Space Environment on Antennas -- 1.2 Conclusion -- 1.2 Acknowledgments -- 1.2 References -- Chapter 2 Mars Cube One -- 2.1 Mission Description -- 2.2 Iris Radio -- 2.3 X‐Band Subsystem -- 2.3.1 Frequency Allocation -- 2.3.2 Near Earth Communications Using Low Gain Antennas -- 2.3.3 Mars‐to‐Earth Communications -- 2.4 Entry, Descent, and Landing UHF Link -- 2.4.1 State‐of‐the‐Art of UHF Deployable CubeSat Antennas -- 2.4.2 Circularly Polarized Loop Antenna Concept -- 2.4.3 Mechanical Configuration and Deployment Scheme -- 2.4.4 Simulations and Measurements -- 2.4.5 In‐Flight Performance -- 2.5 Conclusions -- 2.5 Acknowledgments -- 2.5 References -- Chapter 3 Radar in a CubeSat: RainCube -- 3.1 Mission Description -- 3.2 Deployable High‐Gain Antenna -- 3.2.1 State of the Art -- 3.2.2 Parabolic Reflector Antenna Design -- 3.2.3 RainCube High‐Gain Antenna -- 3.2.4 Mechanical Deployment -- 3.2.5 Design and Testing for the Space Environment -- 3.2.6 In‐Flight Performance -- 3.3 Telecommunication Challenge -- 3.4 Conclusion -- 3.4 Acknowledgments -- 3.4 References -- Chapter 4 One Meter Reflectarray Antenna: OMERA -- 4.1 Introduction -- 4.2 Reflectarray Antennas -- 4.2.1 Introductions to Reflectarray -- 4.2.2 Advantages of Reflectarray -- 4.2.3 Drawbacks of Reflectarray -- 4.2.4 State of the Art -- 4.3 OMERA -- 4.3.1 Antenna Description -- 4.3.2 Deployable Feed -- 4.3.3 Reflectarray Design -- 4.3.4 Deployment Accuracy -- 4.3.5 Effect of Struts -- 4.3.6 Predicted Gain and Efficiency -- 4.3.7 Prototype and Measurements -- 4.4 Conclusion -- 4.4 Acknowledgments 4.4 References -- Chapter 5 X/Ka‐Band One Meter Mesh Reflector for 12U‐Class CubeSat -- 5.1 Introduction -- 5.2 Mechanical Design -- 5.2.1 Trade Studies -- 5.2.2 Structural Design of the Reflector -- 5.2.3 Deployment -- 5.3 X/Ka RF Design -- 5.3.1 Antenna Configuration and Simulation Model -- 5.3.2 X‐Band Feed and Mesh Reflector -- 5.3.3 Ka‐Band Mesh Reflector -- 5.3.4 X/Ka‐band Mesh Reflector -- 5.4 Conclusion -- 5.4 Acknowledgments -- 5.4 References -- Chapter 6 Inflatable Antenna for CubeSat -- 6.1 Introduction -- 6.2 Inflatable High Gain Antenna -- 6.2.1 State of the Art -- 6.2.2 Inflatable Antenna Design at X‐Band -- 6.2.3 Structural Design -- 6.2.4 Inflation and On‐Orbit Rigidization -- 6.3 Spacecraft Design Challenges -- 6.4 Conclusion -- 6.4 Acknowledgments -- 6.4 References -- Chapter 7 High Aperture Efficiency All‐Metal Patch Array -- 7.1 Introduction -- 7.2 State of the Art -- 7.3 Dual‐Band Circularly Polarized 8 × 8 Patch Array -- 7.3.1 Requirements -- 7.3.2 Unit Cell Optimization -- 7.3.3 8 × 8 Patch Array -- 7.3.4 Comparison With State‐of‐the‐Art -- 7.3.5 Other Array Configurations -- 7.4 Conclusion -- 7.4 Acknowledgments -- 7.4 References -- Chapter 8 Metasurface Antennas: Flat Antennas for Small Satellites -- 8.1 Introduction -- 8.2 Modulated Metasurface Antennas -- 8.2.1 State of the Art: Pros and Cons -- 8.2.2 Design of Modulated Metasurface Antennas -- 8.2.3 300 GHz Silicon Micro‐Machined MTS Antenna -- 8.2.4 Ka‐band Metal‐Only Telecommunication Antenna -- 8.3 Beam Synthesis Using Holographic Metasurface Antennas -- 8.3.1 Introduction -- 8.3.2 Examples Holographic Metasurface Antennas -- 8.3.3 W‐Band Pillbox Beam Steering Metasurface Antenna -- 8.3.4 Toward an Active Beam Steering Antenna -- 8.4 Conclusion -- 8.4 Acknowledgments -- 8.4 References -- Index -- EULA. Artificial satellites-Radio antennas-Design and construction |
title | CubeSat antenna design |
title_auth | CubeSat antenna design |
title_exact_search | CubeSat antenna design |
title_exact_search_txtP | CubeSat antenna design |
title_full | CubeSat antenna design edited by Nacer Chahat |
title_fullStr | CubeSat antenna design edited by Nacer Chahat |
title_full_unstemmed | CubeSat antenna design edited by Nacer Chahat |
title_short | CubeSat antenna design |
title_sort | cubesat antenna design |
topic | Artificial satellites-Radio antennas-Design and construction |
topic_facet | Artificial satellites-Radio antennas-Design and construction |
work_keys_str_mv | AT chahatnacer cubesatantennadesign |