Lithium-ion batteries and solar cells: physical, chemical, and materials properties
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press, Taylor & Francis Group
2021
|
Ausgabe: | First edition |
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xv, 292 Seiten) Illustrationen, Diagramme |
ISBN: | 9781000337419 9781003138327 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442483 | ||
003 | DE-604 | ||
005 | 20230829 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781000337419 |9 978-1-00-033741-9 | ||
020 | |a 9781003138327 |9 978-1-00-313832-7 | ||
035 | |a (ZDB-30-PQE)EBC6420820 | ||
035 | |a (ZDB-30-PAD)EBC6420820 | ||
035 | |a (ZDB-89-EBL)EBL6420820 | ||
035 | |a (OCoLC)1226592049 | ||
035 | |a (DE-599)BVBBV047442483 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
084 | |a ZP 4100 |0 (DE-625)157977: |2 rvk | ||
084 | |a ZN 8730 |0 (DE-625)157644: |2 rvk | ||
084 | |a ZN 5160 |0 (DE-625)157437: |2 rvk | ||
084 | |a ERG 940 |2 stub | ||
245 | 1 | 0 | |a Lithium-ion batteries and solar cells |b physical, chemical, and materials properties |c edited by Ming-Fa Lin, Wen-Dung Hsu, and Jow-Lay Huang |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press, Taylor & Francis Group |c 2021 | |
264 | 4 | |c ©2021 | |
300 | |a 1 Online-Ressource (xv, 292 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- Chapter 1 Introduction -- 1.1 Introduction -- References -- Chapter 2 Diverse Phenomena in Stage-n Graphite Alkali-Intercalation Compounds -- 2.1 Introduction -- 2.2 Theoretical Calculations -- 2.3 Unique Stacking Configurations and Intercalant Distributions -- 2.4 Metallic and Semimetallic Behaviors -- 2.5 Concluding Remarks -- References -- Chapter 3 Effect of Nitrogen Doping on the Li-Storage Capacity of Graphene Nanomaterials: A First-Principles Study -- 3.1 Introduction -- 3.2 Computational Details -- 3.3 Results and Discussion -- 3.3.1 Formation Energy of N-Doped Defects in Graphene -- 3.3.2 Single Li-Adsorption on N-Doped Defects in Graphene -- 3.3.3 Li-Storage Capacity of N-Doped Defective Graphene -- 3.3.4 Migration Energy Barrier of N-Doped Defects in Graphene -- 3.4 Conclusion -- References -- Chapter 4 Fundamental Properties of Li[sub(+)]-Based Battery Anode: Li[sub(4)]Ti[sub(5)]O[sub(12)] -- 4.1 Introduction -- 4.2 Theoretical Simulation Methods -- 4.3 Rich Geometric Symmetries of 3D Li[sub(4)]Ti[sub(5)]O[sub(12)] Compound -- 4.4 Rich and Unique Electronic Properties -- 4.5 Concluding Remarks -- References -- Chapter 5 Diversified Properties in 3D Ternary Oxide Compound: Li[sub(2)]SiO[sub(3)] -- 5.1 Introduction -- 5.2 Numerical Simulations -- 5.3 Results and Discussion -- 5.3.1 Geometric Structures -- 5.3.2 Rich Electronic Properties -- 5.3.3 Comparisons, Measurements, and Applications -- 5.4 Concluding Remarks -- References -- Chapter 6 Electrolytes for High-Voltage Lithium-Ion Battery: A New Approach with Machine Learning -- 6.1 Introduction -- 6.2 Metrics for Molecular Selection -- 6.3 Experiments, First-Principles Calculation, and Machine Learning | |
505 | 8 | |a 6.4 Machine Learning Regression Model and Property Predictor -- 6.5 Property Predictor -- 6.6 Inverse Design and Deep Generative Machine Learning Model -- 6.7 Data -- 6.8 Our Adapted Model and Experience -- 6.9 Conclusions -- References -- Chapter 7 Geometric and Electronic Properties of Li[sup(+)]-Based Battery Cathode: Li[sub(x)]Co/NiO[sub(2)]Compounds -- 7.1 Introduction -- 7.2 Delicately Numerical VASP Calculations -- 7.3 Unusual Crystal Structures of 3D Ternary Li[sub(x)]Co/NiO[sub(2)] Materials -- 7.4 Rich and Unique Electronic Properties -- 7.5 Concluding Remarks -- References -- Chapter 8 Graphene as an Anode Material in Lithium-Ion Battery -- 8.1 Introduction -- 8.2 Synthesis of Graphene -- 8.3 Basic Characterizations of Graphene -- 8.3.1 Structure and Microstructure Analysis -- 8.3.2 Bonding/Binding Energy/Functional Groups and Phonon Modes -- 8.4 Graphene as Anode in Lithium-Ion Batteries -- 8.4.1 Graphene -- 8.4.2 Doped Graphene -- 8.4.3 Porous Graphene -- 8.4.4 Chemically Modified Graphene for Fast-Charging Lithium-Ion Battery (LIB) -- 8.4.5 Discussions -- 8.5 Conclusions -- Acknowledgement -- References -- Chapter 9 Liquid Plasma: A Synthesis of Carbon/Functionalized Nanocarbon for Battery, Solar Cell, and Capacitor Applications -- 9.1 Introduction -- 9.2 Formation of Various Forms of Nanocarbon in the Liquid Plasma Process -- 9.2.1 Formation of Unconventional Polymers in the Liquid Plasma Process -- 9.2.2 Direct Functionalization of Graphene in the Liquid Plasma Process -- 9.3 Applications of Nanocarbons Synthesized from the Liquid Plasma Process -- 9.3.1 Application Nanocarbon Hybrids/Composites for Fuel Cell Applications -- 9.3.2 Application Nanocarbon Hybrids/Composites for Specific Capacitance Applications -- 9.4 Future Prospective -- Acknowledgment -- References | |
505 | 8 | |a Chapter 10 Ionic Liquid-Based Electrolytes: Synthesis and Characteristics and Potential Applications in Rechargeable Batteries -- 10.1 Overview -- 10.1.1 Definition -- 10.1.2 Classification -- 10.2 Some Concepts of IL-Based Electrolytes for Li-Ion/Na-Ion Batteries -- 10.2.1 Low-Melting Alkaline Salts -- 10.2.1.1 Low-Melting lithium Salts -- 10.2.1.2 Mixtures of Alkaline Imide Salts -- 10.2.2 Alkaline Salts Dissolved in Organic Ionic Liquids -- 10.2.2.1 Effects of Cation Structure -- 10.2.2.2 Effects of Anion Structure -- 10.2.2.3 Effect of Organic Solvent Added to ILs -- 10.2.3 Solvent-in-Salt Electrolytes -- 10.2.4 Li[sup(+)]-Conducting Polymer Electrolytes Containing Ionic Liquids -- 10.3 Synthesis of Ionic Liquids -- 10.3.1 Typical Ionic Liquid Synthetic Route -- 10.3.1.1 Synthetic Route 1 (Quaternization) -- 10.3.1.2 Metathesis Reaction -- 10.4 Applying ILs for Li-Ion/Na-Ion Batteries -- References -- Chapter 11 Imidazolium-Based Ionogels via Facile Photopolymerization as Polymer Electrolytes for Lithium-Ion Batteries -- 11.1 Introduction -- 11.2 Experiment -- 11.2.1 Materials -- 11.2.2 Synthesis of Prepolymer, 1-Ethyl-3-Vinylimidazolium Bis (Trifluoromethanesulfonylimide) (1E3V-TFSI) -- 11.2.3 Anion Substitution of IL Additive -- 11.2.4 Preparation of Electrolytes -- 11.2.5 Sample Characterization -- 11.2.6 Ionic Conductivity and Linear Sweep Voltammetry (LSV) of Measurement -- 11.2.7 Battery Cell Assembly -- 11.2.8 Charge-Discharge Performance and Cycle Life -- 11.3 Results and Discussion -- 11.3.1 Preparation and Characterization -- 11.3.2 Thermal Properties of Electrolytes -- 11.3.3 Ionic Conductivity and Electrochemical Windows -- 11.3.4 Charge-Discharge Capacity and Cyclic Performance -- 11.4 Conclusion -- References -- Chapter 12 Back-Contact Perovskite Solar Cells -- 12.1 Introduction -- 12.2 Coplanar Back-Contact Structure | |
505 | 8 | |a 12.3 Non-Coplanar Back-Contact Structure -- 12.4 Conclusion -- References -- Chapter 13 Engineering of Conductive Polymer Using Simple Chemical Treatment in Silicon Nanowire-Based Hybrid Solar Cells -- 13.1 Introduction -- 13.2 PEDOT:PSS with Tunable Electrical Conductivity -- 13.2.1 PEDOT:PSS Fabricated by "Baytron P" Routes -- 13.2.2 PSS Functions in Commercial PEDOT:PSS Complex -- 13.2.3 PSS Investigations of Electrical Conductivity in PEDOT:PSS -- 13.3 Treated PEDOT:PSS for Silicon Nanowires-Based Hybrid Solar Cells -- 13.4 Conclusion -- Acknowledgment -- References -- Chapter 14 Concluding Remarks -- References -- Chapter 15 Open Issues and Potential Applications -- References -- Chapter 16 Problems -- References -- Index | |
650 | 0 | 7 | |a Lithium-Ionen-Akkumulator |0 (DE-588)7681721-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Solarzelle |0 (DE-588)4181740-0 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Lithium-Ionen-Akkumulator |0 (DE-588)7681721-0 |D s |
689 | 0 | 1 | |a Solarzelle |0 (DE-588)4181740-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Lin, Ming-Fa |0 (DE-588)1222112523 |4 edt | |
700 | 1 | |a Hsu, Wen-Dung |0 (DE-588)1222112663 |4 edt | |
700 | 1 | |a Huang, Jow-Lay |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a Lin, Ming-Fa |t Lithium-Ion Batteries and Solar Cells |d Milton : Taylor & Francis Group,c2021 |n Druck-Ausgabe, Hardcover |z 978-0-367-68623-9 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032844635 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6420820 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734952726528 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Lin, Ming-Fa Hsu, Wen-Dung Huang, Jow-Lay |
author2_role | edt edt edt |
author2_variant | m f l mfl w d h wdh j l h jlh |
author_GND | (DE-588)1222112523 (DE-588)1222112663 |
author_facet | Lin, Ming-Fa Hsu, Wen-Dung Huang, Jow-Lay |
building | Verbundindex |
bvnumber | BV047442483 |
classification_rvk | ZP 4100 ZN 8730 ZN 5160 |
classification_tum | ERG 940 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- Chapter 1 Introduction -- 1.1 Introduction -- References -- Chapter 2 Diverse Phenomena in Stage-n Graphite Alkali-Intercalation Compounds -- 2.1 Introduction -- 2.2 Theoretical Calculations -- 2.3 Unique Stacking Configurations and Intercalant Distributions -- 2.4 Metallic and Semimetallic Behaviors -- 2.5 Concluding Remarks -- References -- Chapter 3 Effect of Nitrogen Doping on the Li-Storage Capacity of Graphene Nanomaterials: A First-Principles Study -- 3.1 Introduction -- 3.2 Computational Details -- 3.3 Results and Discussion -- 3.3.1 Formation Energy of N-Doped Defects in Graphene -- 3.3.2 Single Li-Adsorption on N-Doped Defects in Graphene -- 3.3.3 Li-Storage Capacity of N-Doped Defective Graphene -- 3.3.4 Migration Energy Barrier of N-Doped Defects in Graphene -- 3.4 Conclusion -- References -- Chapter 4 Fundamental Properties of Li[sub(+)]-Based Battery Anode: Li[sub(4)]Ti[sub(5)]O[sub(12)] -- 4.1 Introduction -- 4.2 Theoretical Simulation Methods -- 4.3 Rich Geometric Symmetries of 3D Li[sub(4)]Ti[sub(5)]O[sub(12)] Compound -- 4.4 Rich and Unique Electronic Properties -- 4.5 Concluding Remarks -- References -- Chapter 5 Diversified Properties in 3D Ternary Oxide Compound: Li[sub(2)]SiO[sub(3)] -- 5.1 Introduction -- 5.2 Numerical Simulations -- 5.3 Results and Discussion -- 5.3.1 Geometric Structures -- 5.3.2 Rich Electronic Properties -- 5.3.3 Comparisons, Measurements, and Applications -- 5.4 Concluding Remarks -- References -- Chapter 6 Electrolytes for High-Voltage Lithium-Ion Battery: A New Approach with Machine Learning -- 6.1 Introduction -- 6.2 Metrics for Molecular Selection -- 6.3 Experiments, First-Principles Calculation, and Machine Learning 6.4 Machine Learning Regression Model and Property Predictor -- 6.5 Property Predictor -- 6.6 Inverse Design and Deep Generative Machine Learning Model -- 6.7 Data -- 6.8 Our Adapted Model and Experience -- 6.9 Conclusions -- References -- Chapter 7 Geometric and Electronic Properties of Li[sup(+)]-Based Battery Cathode: Li[sub(x)]Co/NiO[sub(2)]Compounds -- 7.1 Introduction -- 7.2 Delicately Numerical VASP Calculations -- 7.3 Unusual Crystal Structures of 3D Ternary Li[sub(x)]Co/NiO[sub(2)] Materials -- 7.4 Rich and Unique Electronic Properties -- 7.5 Concluding Remarks -- References -- Chapter 8 Graphene as an Anode Material in Lithium-Ion Battery -- 8.1 Introduction -- 8.2 Synthesis of Graphene -- 8.3 Basic Characterizations of Graphene -- 8.3.1 Structure and Microstructure Analysis -- 8.3.2 Bonding/Binding Energy/Functional Groups and Phonon Modes -- 8.4 Graphene as Anode in Lithium-Ion Batteries -- 8.4.1 Graphene -- 8.4.2 Doped Graphene -- 8.4.3 Porous Graphene -- 8.4.4 Chemically Modified Graphene for Fast-Charging Lithium-Ion Battery (LIB) -- 8.4.5 Discussions -- 8.5 Conclusions -- Acknowledgement -- References -- Chapter 9 Liquid Plasma: A Synthesis of Carbon/Functionalized Nanocarbon for Battery, Solar Cell, and Capacitor Applications -- 9.1 Introduction -- 9.2 Formation of Various Forms of Nanocarbon in the Liquid Plasma Process -- 9.2.1 Formation of Unconventional Polymers in the Liquid Plasma Process -- 9.2.2 Direct Functionalization of Graphene in the Liquid Plasma Process -- 9.3 Applications of Nanocarbons Synthesized from the Liquid Plasma Process -- 9.3.1 Application Nanocarbon Hybrids/Composites for Fuel Cell Applications -- 9.3.2 Application Nanocarbon Hybrids/Composites for Specific Capacitance Applications -- 9.4 Future Prospective -- Acknowledgment -- References Chapter 10 Ionic Liquid-Based Electrolytes: Synthesis and Characteristics and Potential Applications in Rechargeable Batteries -- 10.1 Overview -- 10.1.1 Definition -- 10.1.2 Classification -- 10.2 Some Concepts of IL-Based Electrolytes for Li-Ion/Na-Ion Batteries -- 10.2.1 Low-Melting Alkaline Salts -- 10.2.1.1 Low-Melting lithium Salts -- 10.2.1.2 Mixtures of Alkaline Imide Salts -- 10.2.2 Alkaline Salts Dissolved in Organic Ionic Liquids -- 10.2.2.1 Effects of Cation Structure -- 10.2.2.2 Effects of Anion Structure -- 10.2.2.3 Effect of Organic Solvent Added to ILs -- 10.2.3 Solvent-in-Salt Electrolytes -- 10.2.4 Li[sup(+)]-Conducting Polymer Electrolytes Containing Ionic Liquids -- 10.3 Synthesis of Ionic Liquids -- 10.3.1 Typical Ionic Liquid Synthetic Route -- 10.3.1.1 Synthetic Route 1 (Quaternization) -- 10.3.1.2 Metathesis Reaction -- 10.4 Applying ILs for Li-Ion/Na-Ion Batteries -- References -- Chapter 11 Imidazolium-Based Ionogels via Facile Photopolymerization as Polymer Electrolytes for Lithium-Ion Batteries -- 11.1 Introduction -- 11.2 Experiment -- 11.2.1 Materials -- 11.2.2 Synthesis of Prepolymer, 1-Ethyl-3-Vinylimidazolium Bis (Trifluoromethanesulfonylimide) (1E3V-TFSI) -- 11.2.3 Anion Substitution of IL Additive -- 11.2.4 Preparation of Electrolytes -- 11.2.5 Sample Characterization -- 11.2.6 Ionic Conductivity and Linear Sweep Voltammetry (LSV) of Measurement -- 11.2.7 Battery Cell Assembly -- 11.2.8 Charge-Discharge Performance and Cycle Life -- 11.3 Results and Discussion -- 11.3.1 Preparation and Characterization -- 11.3.2 Thermal Properties of Electrolytes -- 11.3.3 Ionic Conductivity and Electrochemical Windows -- 11.3.4 Charge-Discharge Capacity and Cyclic Performance -- 11.4 Conclusion -- References -- Chapter 12 Back-Contact Perovskite Solar Cells -- 12.1 Introduction -- 12.2 Coplanar Back-Contact Structure 12.3 Non-Coplanar Back-Contact Structure -- 12.4 Conclusion -- References -- Chapter 13 Engineering of Conductive Polymer Using Simple Chemical Treatment in Silicon Nanowire-Based Hybrid Solar Cells -- 13.1 Introduction -- 13.2 PEDOT:PSS with Tunable Electrical Conductivity -- 13.2.1 PEDOT:PSS Fabricated by "Baytron P" Routes -- 13.2.2 PSS Functions in Commercial PEDOT:PSS Complex -- 13.2.3 PSS Investigations of Electrical Conductivity in PEDOT:PSS -- 13.3 Treated PEDOT:PSS for Silicon Nanowires-Based Hybrid Solar Cells -- 13.4 Conclusion -- Acknowledgment -- References -- Chapter 14 Concluding Remarks -- References -- Chapter 15 Open Issues and Potential Applications -- References -- Chapter 16 Problems -- References -- Index |
ctrlnum | (ZDB-30-PQE)EBC6420820 (ZDB-30-PAD)EBC6420820 (ZDB-89-EBL)EBL6420820 (OCoLC)1226592049 (DE-599)BVBBV047442483 |
discipline | Energietechnik, Energiewirtschaft Energietechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Energietechnik, Energiewirtschaft Energietechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08469nmm a2200565zc 4500</leader><controlfield tag="001">BV047442483</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230829 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000337419</subfield><subfield code="9">978-1-00-033741-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003138327</subfield><subfield code="9">978-1-00-313832-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6420820</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6420820</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6420820</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1226592049</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442483</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 4100</subfield><subfield code="0">(DE-625)157977:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 8730</subfield><subfield code="0">(DE-625)157644:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 5160</subfield><subfield code="0">(DE-625)157437:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ERG 940</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lithium-ion batteries and solar cells</subfield><subfield code="b">physical, chemical, and materials properties</subfield><subfield code="c">edited by Ming-Fa Lin, Wen-Dung Hsu, and Jow-Lay Huang</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press, Taylor & Francis Group</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 292 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- Chapter 1 Introduction -- 1.1 Introduction -- References -- Chapter 2 Diverse Phenomena in Stage-n Graphite Alkali-Intercalation Compounds -- 2.1 Introduction -- 2.2 Theoretical Calculations -- 2.3 Unique Stacking Configurations and Intercalant Distributions -- 2.4 Metallic and Semimetallic Behaviors -- 2.5 Concluding Remarks -- References -- Chapter 3 Effect of Nitrogen Doping on the Li-Storage Capacity of Graphene Nanomaterials: A First-Principles Study -- 3.1 Introduction -- 3.2 Computational Details -- 3.3 Results and Discussion -- 3.3.1 Formation Energy of N-Doped Defects in Graphene -- 3.3.2 Single Li-Adsorption on N-Doped Defects in Graphene -- 3.3.3 Li-Storage Capacity of N-Doped Defective Graphene -- 3.3.4 Migration Energy Barrier of N-Doped Defects in Graphene -- 3.4 Conclusion -- References -- Chapter 4 Fundamental Properties of Li[sub(+)]-Based Battery Anode: Li[sub(4)]Ti[sub(5)]O[sub(12)] -- 4.1 Introduction -- 4.2 Theoretical Simulation Methods -- 4.3 Rich Geometric Symmetries of 3D Li[sub(4)]Ti[sub(5)]O[sub(12)] Compound -- 4.4 Rich and Unique Electronic Properties -- 4.5 Concluding Remarks -- References -- Chapter 5 Diversified Properties in 3D Ternary Oxide Compound: Li[sub(2)]SiO[sub(3)] -- 5.1 Introduction -- 5.2 Numerical Simulations -- 5.3 Results and Discussion -- 5.3.1 Geometric Structures -- 5.3.2 Rich Electronic Properties -- 5.3.3 Comparisons, Measurements, and Applications -- 5.4 Concluding Remarks -- References -- Chapter 6 Electrolytes for High-Voltage Lithium-Ion Battery: A New Approach with Machine Learning -- 6.1 Introduction -- 6.2 Metrics for Molecular Selection -- 6.3 Experiments, First-Principles Calculation, and Machine Learning</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.4 Machine Learning Regression Model and Property Predictor -- 6.5 Property Predictor -- 6.6 Inverse Design and Deep Generative Machine Learning Model -- 6.7 Data -- 6.8 Our Adapted Model and Experience -- 6.9 Conclusions -- References -- Chapter 7 Geometric and Electronic Properties of Li[sup(+)]-Based Battery Cathode: Li[sub(x)]Co/NiO[sub(2)]Compounds -- 7.1 Introduction -- 7.2 Delicately Numerical VASP Calculations -- 7.3 Unusual Crystal Structures of 3D Ternary Li[sub(x)]Co/NiO[sub(2)] Materials -- 7.4 Rich and Unique Electronic Properties -- 7.5 Concluding Remarks -- References -- Chapter 8 Graphene as an Anode Material in Lithium-Ion Battery -- 8.1 Introduction -- 8.2 Synthesis of Graphene -- 8.3 Basic Characterizations of Graphene -- 8.3.1 Structure and Microstructure Analysis -- 8.3.2 Bonding/Binding Energy/Functional Groups and Phonon Modes -- 8.4 Graphene as Anode in Lithium-Ion Batteries -- 8.4.1 Graphene -- 8.4.2 Doped Graphene -- 8.4.3 Porous Graphene -- 8.4.4 Chemically Modified Graphene for Fast-Charging Lithium-Ion Battery (LIB) -- 8.4.5 Discussions -- 8.5 Conclusions -- Acknowledgement -- References -- Chapter 9 Liquid Plasma: A Synthesis of Carbon/Functionalized Nanocarbon for Battery, Solar Cell, and Capacitor Applications -- 9.1 Introduction -- 9.2 Formation of Various Forms of Nanocarbon in the Liquid Plasma Process -- 9.2.1 Formation of Unconventional Polymers in the Liquid Plasma Process -- 9.2.2 Direct Functionalization of Graphene in the Liquid Plasma Process -- 9.3 Applications of Nanocarbons Synthesized from the Liquid Plasma Process -- 9.3.1 Application Nanocarbon Hybrids/Composites for Fuel Cell Applications -- 9.3.2 Application Nanocarbon Hybrids/Composites for Specific Capacitance Applications -- 9.4 Future Prospective -- Acknowledgment -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 10 Ionic Liquid-Based Electrolytes: Synthesis and Characteristics and Potential Applications in Rechargeable Batteries -- 10.1 Overview -- 10.1.1 Definition -- 10.1.2 Classification -- 10.2 Some Concepts of IL-Based Electrolytes for Li-Ion/Na-Ion Batteries -- 10.2.1 Low-Melting Alkaline Salts -- 10.2.1.1 Low-Melting lithium Salts -- 10.2.1.2 Mixtures of Alkaline Imide Salts -- 10.2.2 Alkaline Salts Dissolved in Organic Ionic Liquids -- 10.2.2.1 Effects of Cation Structure -- 10.2.2.2 Effects of Anion Structure -- 10.2.2.3 Effect of Organic Solvent Added to ILs -- 10.2.3 Solvent-in-Salt Electrolytes -- 10.2.4 Li[sup(+)]-Conducting Polymer Electrolytes Containing Ionic Liquids -- 10.3 Synthesis of Ionic Liquids -- 10.3.1 Typical Ionic Liquid Synthetic Route -- 10.3.1.1 Synthetic Route 1 (Quaternization) -- 10.3.1.2 Metathesis Reaction -- 10.4 Applying ILs for Li-Ion/Na-Ion Batteries -- References -- Chapter 11 Imidazolium-Based Ionogels via Facile Photopolymerization as Polymer Electrolytes for Lithium-Ion Batteries -- 11.1 Introduction -- 11.2 Experiment -- 11.2.1 Materials -- 11.2.2 Synthesis of Prepolymer, 1-Ethyl-3-Vinylimidazolium Bis (Trifluoromethanesulfonylimide) (1E3V-TFSI) -- 11.2.3 Anion Substitution of IL Additive -- 11.2.4 Preparation of Electrolytes -- 11.2.5 Sample Characterization -- 11.2.6 Ionic Conductivity and Linear Sweep Voltammetry (LSV) of Measurement -- 11.2.7 Battery Cell Assembly -- 11.2.8 Charge-Discharge Performance and Cycle Life -- 11.3 Results and Discussion -- 11.3.1 Preparation and Characterization -- 11.3.2 Thermal Properties of Electrolytes -- 11.3.3 Ionic Conductivity and Electrochemical Windows -- 11.3.4 Charge-Discharge Capacity and Cyclic Performance -- 11.4 Conclusion -- References -- Chapter 12 Back-Contact Perovskite Solar Cells -- 12.1 Introduction -- 12.2 Coplanar Back-Contact Structure</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.3 Non-Coplanar Back-Contact Structure -- 12.4 Conclusion -- References -- Chapter 13 Engineering of Conductive Polymer Using Simple Chemical Treatment in Silicon Nanowire-Based Hybrid Solar Cells -- 13.1 Introduction -- 13.2 PEDOT:PSS with Tunable Electrical Conductivity -- 13.2.1 PEDOT:PSS Fabricated by "Baytron P" Routes -- 13.2.2 PSS Functions in Commercial PEDOT:PSS Complex -- 13.2.3 PSS Investigations of Electrical Conductivity in PEDOT:PSS -- 13.3 Treated PEDOT:PSS for Silicon Nanowires-Based Hybrid Solar Cells -- 13.4 Conclusion -- Acknowledgment -- References -- Chapter 14 Concluding Remarks -- References -- Chapter 15 Open Issues and Potential Applications -- References -- Chapter 16 Problems -- References -- Index</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lithium-Ionen-Akkumulator</subfield><subfield code="0">(DE-588)7681721-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Solarzelle</subfield><subfield code="0">(DE-588)4181740-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lithium-Ionen-Akkumulator</subfield><subfield code="0">(DE-588)7681721-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Solarzelle</subfield><subfield code="0">(DE-588)4181740-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Ming-Fa</subfield><subfield code="0">(DE-588)1222112523</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hsu, Wen-Dung</subfield><subfield code="0">(DE-588)1222112663</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Jow-Lay</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Lin, Ming-Fa</subfield><subfield code="t">Lithium-Ion Batteries and Solar Cells</subfield><subfield code="d">Milton : Taylor & Francis Group,c2021</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-367-68623-9</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844635</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6420820</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV047442483 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:24Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9781000337419 9781003138327 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844635 |
oclc_num | 1226592049 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xv, 292 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | CRC Press, Taylor & Francis Group |
record_format | marc |
spelling | Lithium-ion batteries and solar cells physical, chemical, and materials properties edited by Ming-Fa Lin, Wen-Dung Hsu, and Jow-Lay Huang First edition Boca Raton ; London ; New York CRC Press, Taylor & Francis Group 2021 ©2021 1 Online-Ressource (xv, 292 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- Chapter 1 Introduction -- 1.1 Introduction -- References -- Chapter 2 Diverse Phenomena in Stage-n Graphite Alkali-Intercalation Compounds -- 2.1 Introduction -- 2.2 Theoretical Calculations -- 2.3 Unique Stacking Configurations and Intercalant Distributions -- 2.4 Metallic and Semimetallic Behaviors -- 2.5 Concluding Remarks -- References -- Chapter 3 Effect of Nitrogen Doping on the Li-Storage Capacity of Graphene Nanomaterials: A First-Principles Study -- 3.1 Introduction -- 3.2 Computational Details -- 3.3 Results and Discussion -- 3.3.1 Formation Energy of N-Doped Defects in Graphene -- 3.3.2 Single Li-Adsorption on N-Doped Defects in Graphene -- 3.3.3 Li-Storage Capacity of N-Doped Defective Graphene -- 3.3.4 Migration Energy Barrier of N-Doped Defects in Graphene -- 3.4 Conclusion -- References -- Chapter 4 Fundamental Properties of Li[sub(+)]-Based Battery Anode: Li[sub(4)]Ti[sub(5)]O[sub(12)] -- 4.1 Introduction -- 4.2 Theoretical Simulation Methods -- 4.3 Rich Geometric Symmetries of 3D Li[sub(4)]Ti[sub(5)]O[sub(12)] Compound -- 4.4 Rich and Unique Electronic Properties -- 4.5 Concluding Remarks -- References -- Chapter 5 Diversified Properties in 3D Ternary Oxide Compound: Li[sub(2)]SiO[sub(3)] -- 5.1 Introduction -- 5.2 Numerical Simulations -- 5.3 Results and Discussion -- 5.3.1 Geometric Structures -- 5.3.2 Rich Electronic Properties -- 5.3.3 Comparisons, Measurements, and Applications -- 5.4 Concluding Remarks -- References -- Chapter 6 Electrolytes for High-Voltage Lithium-Ion Battery: A New Approach with Machine Learning -- 6.1 Introduction -- 6.2 Metrics for Molecular Selection -- 6.3 Experiments, First-Principles Calculation, and Machine Learning 6.4 Machine Learning Regression Model and Property Predictor -- 6.5 Property Predictor -- 6.6 Inverse Design and Deep Generative Machine Learning Model -- 6.7 Data -- 6.8 Our Adapted Model and Experience -- 6.9 Conclusions -- References -- Chapter 7 Geometric and Electronic Properties of Li[sup(+)]-Based Battery Cathode: Li[sub(x)]Co/NiO[sub(2)]Compounds -- 7.1 Introduction -- 7.2 Delicately Numerical VASP Calculations -- 7.3 Unusual Crystal Structures of 3D Ternary Li[sub(x)]Co/NiO[sub(2)] Materials -- 7.4 Rich and Unique Electronic Properties -- 7.5 Concluding Remarks -- References -- Chapter 8 Graphene as an Anode Material in Lithium-Ion Battery -- 8.1 Introduction -- 8.2 Synthesis of Graphene -- 8.3 Basic Characterizations of Graphene -- 8.3.1 Structure and Microstructure Analysis -- 8.3.2 Bonding/Binding Energy/Functional Groups and Phonon Modes -- 8.4 Graphene as Anode in Lithium-Ion Batteries -- 8.4.1 Graphene -- 8.4.2 Doped Graphene -- 8.4.3 Porous Graphene -- 8.4.4 Chemically Modified Graphene for Fast-Charging Lithium-Ion Battery (LIB) -- 8.4.5 Discussions -- 8.5 Conclusions -- Acknowledgement -- References -- Chapter 9 Liquid Plasma: A Synthesis of Carbon/Functionalized Nanocarbon for Battery, Solar Cell, and Capacitor Applications -- 9.1 Introduction -- 9.2 Formation of Various Forms of Nanocarbon in the Liquid Plasma Process -- 9.2.1 Formation of Unconventional Polymers in the Liquid Plasma Process -- 9.2.2 Direct Functionalization of Graphene in the Liquid Plasma Process -- 9.3 Applications of Nanocarbons Synthesized from the Liquid Plasma Process -- 9.3.1 Application Nanocarbon Hybrids/Composites for Fuel Cell Applications -- 9.3.2 Application Nanocarbon Hybrids/Composites for Specific Capacitance Applications -- 9.4 Future Prospective -- Acknowledgment -- References Chapter 10 Ionic Liquid-Based Electrolytes: Synthesis and Characteristics and Potential Applications in Rechargeable Batteries -- 10.1 Overview -- 10.1.1 Definition -- 10.1.2 Classification -- 10.2 Some Concepts of IL-Based Electrolytes for Li-Ion/Na-Ion Batteries -- 10.2.1 Low-Melting Alkaline Salts -- 10.2.1.1 Low-Melting lithium Salts -- 10.2.1.2 Mixtures of Alkaline Imide Salts -- 10.2.2 Alkaline Salts Dissolved in Organic Ionic Liquids -- 10.2.2.1 Effects of Cation Structure -- 10.2.2.2 Effects of Anion Structure -- 10.2.2.3 Effect of Organic Solvent Added to ILs -- 10.2.3 Solvent-in-Salt Electrolytes -- 10.2.4 Li[sup(+)]-Conducting Polymer Electrolytes Containing Ionic Liquids -- 10.3 Synthesis of Ionic Liquids -- 10.3.1 Typical Ionic Liquid Synthetic Route -- 10.3.1.1 Synthetic Route 1 (Quaternization) -- 10.3.1.2 Metathesis Reaction -- 10.4 Applying ILs for Li-Ion/Na-Ion Batteries -- References -- Chapter 11 Imidazolium-Based Ionogels via Facile Photopolymerization as Polymer Electrolytes for Lithium-Ion Batteries -- 11.1 Introduction -- 11.2 Experiment -- 11.2.1 Materials -- 11.2.2 Synthesis of Prepolymer, 1-Ethyl-3-Vinylimidazolium Bis (Trifluoromethanesulfonylimide) (1E3V-TFSI) -- 11.2.3 Anion Substitution of IL Additive -- 11.2.4 Preparation of Electrolytes -- 11.2.5 Sample Characterization -- 11.2.6 Ionic Conductivity and Linear Sweep Voltammetry (LSV) of Measurement -- 11.2.7 Battery Cell Assembly -- 11.2.8 Charge-Discharge Performance and Cycle Life -- 11.3 Results and Discussion -- 11.3.1 Preparation and Characterization -- 11.3.2 Thermal Properties of Electrolytes -- 11.3.3 Ionic Conductivity and Electrochemical Windows -- 11.3.4 Charge-Discharge Capacity and Cyclic Performance -- 11.4 Conclusion -- References -- Chapter 12 Back-Contact Perovskite Solar Cells -- 12.1 Introduction -- 12.2 Coplanar Back-Contact Structure 12.3 Non-Coplanar Back-Contact Structure -- 12.4 Conclusion -- References -- Chapter 13 Engineering of Conductive Polymer Using Simple Chemical Treatment in Silicon Nanowire-Based Hybrid Solar Cells -- 13.1 Introduction -- 13.2 PEDOT:PSS with Tunable Electrical Conductivity -- 13.2.1 PEDOT:PSS Fabricated by "Baytron P" Routes -- 13.2.2 PSS Functions in Commercial PEDOT:PSS Complex -- 13.2.3 PSS Investigations of Electrical Conductivity in PEDOT:PSS -- 13.3 Treated PEDOT:PSS for Silicon Nanowires-Based Hybrid Solar Cells -- 13.4 Conclusion -- Acknowledgment -- References -- Chapter 14 Concluding Remarks -- References -- Chapter 15 Open Issues and Potential Applications -- References -- Chapter 16 Problems -- References -- Index Lithium-Ionen-Akkumulator (DE-588)7681721-0 gnd rswk-swf Solarzelle (DE-588)4181740-0 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Lithium-Ionen-Akkumulator (DE-588)7681721-0 s Solarzelle (DE-588)4181740-0 s DE-604 Lin, Ming-Fa (DE-588)1222112523 edt Hsu, Wen-Dung (DE-588)1222112663 edt Huang, Jow-Lay edt Erscheint auch als Lin, Ming-Fa Lithium-Ion Batteries and Solar Cells Milton : Taylor & Francis Group,c2021 Druck-Ausgabe, Hardcover 978-0-367-68623-9 |
spellingShingle | Lithium-ion batteries and solar cells physical, chemical, and materials properties Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- Chapter 1 Introduction -- 1.1 Introduction -- References -- Chapter 2 Diverse Phenomena in Stage-n Graphite Alkali-Intercalation Compounds -- 2.1 Introduction -- 2.2 Theoretical Calculations -- 2.3 Unique Stacking Configurations and Intercalant Distributions -- 2.4 Metallic and Semimetallic Behaviors -- 2.5 Concluding Remarks -- References -- Chapter 3 Effect of Nitrogen Doping on the Li-Storage Capacity of Graphene Nanomaterials: A First-Principles Study -- 3.1 Introduction -- 3.2 Computational Details -- 3.3 Results and Discussion -- 3.3.1 Formation Energy of N-Doped Defects in Graphene -- 3.3.2 Single Li-Adsorption on N-Doped Defects in Graphene -- 3.3.3 Li-Storage Capacity of N-Doped Defective Graphene -- 3.3.4 Migration Energy Barrier of N-Doped Defects in Graphene -- 3.4 Conclusion -- References -- Chapter 4 Fundamental Properties of Li[sub(+)]-Based Battery Anode: Li[sub(4)]Ti[sub(5)]O[sub(12)] -- 4.1 Introduction -- 4.2 Theoretical Simulation Methods -- 4.3 Rich Geometric Symmetries of 3D Li[sub(4)]Ti[sub(5)]O[sub(12)] Compound -- 4.4 Rich and Unique Electronic Properties -- 4.5 Concluding Remarks -- References -- Chapter 5 Diversified Properties in 3D Ternary Oxide Compound: Li[sub(2)]SiO[sub(3)] -- 5.1 Introduction -- 5.2 Numerical Simulations -- 5.3 Results and Discussion -- 5.3.1 Geometric Structures -- 5.3.2 Rich Electronic Properties -- 5.3.3 Comparisons, Measurements, and Applications -- 5.4 Concluding Remarks -- References -- Chapter 6 Electrolytes for High-Voltage Lithium-Ion Battery: A New Approach with Machine Learning -- 6.1 Introduction -- 6.2 Metrics for Molecular Selection -- 6.3 Experiments, First-Principles Calculation, and Machine Learning 6.4 Machine Learning Regression Model and Property Predictor -- 6.5 Property Predictor -- 6.6 Inverse Design and Deep Generative Machine Learning Model -- 6.7 Data -- 6.8 Our Adapted Model and Experience -- 6.9 Conclusions -- References -- Chapter 7 Geometric and Electronic Properties of Li[sup(+)]-Based Battery Cathode: Li[sub(x)]Co/NiO[sub(2)]Compounds -- 7.1 Introduction -- 7.2 Delicately Numerical VASP Calculations -- 7.3 Unusual Crystal Structures of 3D Ternary Li[sub(x)]Co/NiO[sub(2)] Materials -- 7.4 Rich and Unique Electronic Properties -- 7.5 Concluding Remarks -- References -- Chapter 8 Graphene as an Anode Material in Lithium-Ion Battery -- 8.1 Introduction -- 8.2 Synthesis of Graphene -- 8.3 Basic Characterizations of Graphene -- 8.3.1 Structure and Microstructure Analysis -- 8.3.2 Bonding/Binding Energy/Functional Groups and Phonon Modes -- 8.4 Graphene as Anode in Lithium-Ion Batteries -- 8.4.1 Graphene -- 8.4.2 Doped Graphene -- 8.4.3 Porous Graphene -- 8.4.4 Chemically Modified Graphene for Fast-Charging Lithium-Ion Battery (LIB) -- 8.4.5 Discussions -- 8.5 Conclusions -- Acknowledgement -- References -- Chapter 9 Liquid Plasma: A Synthesis of Carbon/Functionalized Nanocarbon for Battery, Solar Cell, and Capacitor Applications -- 9.1 Introduction -- 9.2 Formation of Various Forms of Nanocarbon in the Liquid Plasma Process -- 9.2.1 Formation of Unconventional Polymers in the Liquid Plasma Process -- 9.2.2 Direct Functionalization of Graphene in the Liquid Plasma Process -- 9.3 Applications of Nanocarbons Synthesized from the Liquid Plasma Process -- 9.3.1 Application Nanocarbon Hybrids/Composites for Fuel Cell Applications -- 9.3.2 Application Nanocarbon Hybrids/Composites for Specific Capacitance Applications -- 9.4 Future Prospective -- Acknowledgment -- References Chapter 10 Ionic Liquid-Based Electrolytes: Synthesis and Characteristics and Potential Applications in Rechargeable Batteries -- 10.1 Overview -- 10.1.1 Definition -- 10.1.2 Classification -- 10.2 Some Concepts of IL-Based Electrolytes for Li-Ion/Na-Ion Batteries -- 10.2.1 Low-Melting Alkaline Salts -- 10.2.1.1 Low-Melting lithium Salts -- 10.2.1.2 Mixtures of Alkaline Imide Salts -- 10.2.2 Alkaline Salts Dissolved in Organic Ionic Liquids -- 10.2.2.1 Effects of Cation Structure -- 10.2.2.2 Effects of Anion Structure -- 10.2.2.3 Effect of Organic Solvent Added to ILs -- 10.2.3 Solvent-in-Salt Electrolytes -- 10.2.4 Li[sup(+)]-Conducting Polymer Electrolytes Containing Ionic Liquids -- 10.3 Synthesis of Ionic Liquids -- 10.3.1 Typical Ionic Liquid Synthetic Route -- 10.3.1.1 Synthetic Route 1 (Quaternization) -- 10.3.1.2 Metathesis Reaction -- 10.4 Applying ILs for Li-Ion/Na-Ion Batteries -- References -- Chapter 11 Imidazolium-Based Ionogels via Facile Photopolymerization as Polymer Electrolytes for Lithium-Ion Batteries -- 11.1 Introduction -- 11.2 Experiment -- 11.2.1 Materials -- 11.2.2 Synthesis of Prepolymer, 1-Ethyl-3-Vinylimidazolium Bis (Trifluoromethanesulfonylimide) (1E3V-TFSI) -- 11.2.3 Anion Substitution of IL Additive -- 11.2.4 Preparation of Electrolytes -- 11.2.5 Sample Characterization -- 11.2.6 Ionic Conductivity and Linear Sweep Voltammetry (LSV) of Measurement -- 11.2.7 Battery Cell Assembly -- 11.2.8 Charge-Discharge Performance and Cycle Life -- 11.3 Results and Discussion -- 11.3.1 Preparation and Characterization -- 11.3.2 Thermal Properties of Electrolytes -- 11.3.3 Ionic Conductivity and Electrochemical Windows -- 11.3.4 Charge-Discharge Capacity and Cyclic Performance -- 11.4 Conclusion -- References -- Chapter 12 Back-Contact Perovskite Solar Cells -- 12.1 Introduction -- 12.2 Coplanar Back-Contact Structure 12.3 Non-Coplanar Back-Contact Structure -- 12.4 Conclusion -- References -- Chapter 13 Engineering of Conductive Polymer Using Simple Chemical Treatment in Silicon Nanowire-Based Hybrid Solar Cells -- 13.1 Introduction -- 13.2 PEDOT:PSS with Tunable Electrical Conductivity -- 13.2.1 PEDOT:PSS Fabricated by "Baytron P" Routes -- 13.2.2 PSS Functions in Commercial PEDOT:PSS Complex -- 13.2.3 PSS Investigations of Electrical Conductivity in PEDOT:PSS -- 13.3 Treated PEDOT:PSS for Silicon Nanowires-Based Hybrid Solar Cells -- 13.4 Conclusion -- Acknowledgment -- References -- Chapter 14 Concluding Remarks -- References -- Chapter 15 Open Issues and Potential Applications -- References -- Chapter 16 Problems -- References -- Index Lithium-Ionen-Akkumulator (DE-588)7681721-0 gnd Solarzelle (DE-588)4181740-0 gnd |
subject_GND | (DE-588)7681721-0 (DE-588)4181740-0 (DE-588)4143413-4 |
title | Lithium-ion batteries and solar cells physical, chemical, and materials properties |
title_auth | Lithium-ion batteries and solar cells physical, chemical, and materials properties |
title_exact_search | Lithium-ion batteries and solar cells physical, chemical, and materials properties |
title_exact_search_txtP | Lithium-ion batteries and solar cells physical, chemical, and materials properties |
title_full | Lithium-ion batteries and solar cells physical, chemical, and materials properties edited by Ming-Fa Lin, Wen-Dung Hsu, and Jow-Lay Huang |
title_fullStr | Lithium-ion batteries and solar cells physical, chemical, and materials properties edited by Ming-Fa Lin, Wen-Dung Hsu, and Jow-Lay Huang |
title_full_unstemmed | Lithium-ion batteries and solar cells physical, chemical, and materials properties edited by Ming-Fa Lin, Wen-Dung Hsu, and Jow-Lay Huang |
title_short | Lithium-ion batteries and solar cells |
title_sort | lithium ion batteries and solar cells physical chemical and materials properties |
title_sub | physical, chemical, and materials properties |
topic | Lithium-Ionen-Akkumulator (DE-588)7681721-0 gnd Solarzelle (DE-588)4181740-0 gnd |
topic_facet | Lithium-Ionen-Akkumulator Solarzelle Aufsatzsammlung |
work_keys_str_mv | AT linmingfa lithiumionbatteriesandsolarcellsphysicalchemicalandmaterialsproperties AT hsuwendung lithiumionbatteriesandsolarcellsphysicalchemicalandmaterialsproperties AT huangjowlay lithiumionbatteriesandsolarcellsphysicalchemicalandmaterialsproperties |