Optical sensing in power transformers:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2021
|
Schriftenreihe: | Wiley - IEEE Series
|
Schlagworte: | |
Online-Zugang: | DE-573 DE-863 DE-862 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xxix, 219 Seiten) |
ISBN: | 9781119765325 9781119765301 9781119765295 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442471 | ||
003 | DE-604 | ||
005 | 20241009 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781119765325 |c Online |9 978-1-119-76532-5 | ||
020 | |a 9781119765301 |9 978-1-119-76530-1 | ||
020 | |a 9781119765295 |9 978-1-119-76529-5 | ||
035 | |a (ZDB-30-PQE)EBC6420722 | ||
035 | |a (ZDB-30-PAD)EBC6420722 | ||
035 | |a (ZDB-89-EBL)EBL6420722 | ||
035 | |a (OCoLC)1231604049 | ||
035 | |a (DE-599)BVBBV047442471 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-863 |a DE-862 | ||
082 | 0 | |a 621.3140284 | |
084 | |a ZN 8330 |0 (DE-625)157613: |2 rvk | ||
100 | 1 | |a Jiang, Jun |e Verfasser |4 aut | |
245 | 1 | 0 | |a Optical sensing in power transformers |c Jun Jiang (Nanjing University of Aeronautics and Astronautics, Nanjing, China), Guoming Ma (North China Electric Power University, Beijing, China) |
264 | 1 | |a Hoboken, NJ |b Wiley |c 2021 | |
264 | 4 | |c ©2021 | |
300 | |a 1 Online-Ressource (xxix, 219 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Wiley - IEEE Series | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Acknowledgments -- About the Authors -- Acronyms -- List of Figures -- List of Tables -- Chapter 1 Power Transformer in a Power Grid -- 1.1 Typical Structure of a Power Transformer -- 1.2 Insulation Oil in a Power Transformer -- 1.3 Condition Monitoring of an Oil‐Immersed Power Transformer -- 1.3.1 Temperature -- 1.3.2 Moisture -- 1.3.3 Dissolved Gases Analysis -- 1.3.4 Partial Discharge -- 1.3.5 Combined Online Monitoring -- 1.4 Conclusion -- References -- Chapter 2 Temperature Detection with Optical Methods -- 2.1 Thermal Analysis in a Power Transformer -- 2.1.1 Heat Source in a Power Transformer -- 2.1.2 Heat Transfer in a Power Transformer -- 2.2 Fluorescence‐Based Temperature Detection -- 2.2.1 Detection Principle -- 2.2.2 Fabrication and Application -- 2.2.3 Merits and Drawbacks -- 2.3 FBG‐Based Temperature Detection -- 2.3.1 Detection Principle -- 2.3.2 Fabrication and Application -- 2.3.3 Merits and Drawbacks -- 2.4 Distribution Measurement -- 2.4.1 Quasi‐Distributed Temperature Sensing -- 2.4.2 Distribute Temperature Sensing -- 2.4.2.1 Light Scattering -- 2.4.2.2 Raman Based Distributed Temperature Sensing -- 2.4.2.3 Rayleigh‐Based Distributed Temperature Sensing -- 2.4.3 Merits and Drawbacks -- 2.5 Conclusion -- References -- Chapter 3 Moisture Detection with Optical Methods -- 3.1 Online Monitoring of Moisture in a Transformer -- 3.1.1 Distribution of Moisture in the Power Transformer -- 3.1.2 Typical Moisture Detection Techniques -- 3.2 FBG‐Based Moisture Detection -- 3.2.1 Detection Principle -- 3.2.2 Fabrication and Application -- 3.2.3 Merits and Drawbacks -- 3.3 Evanescent Wave‐Based Moisture Detection -- 3.3.1 Detection Principle -- 3.3.2 Fabrication of MNF -- 3.3.2.1 Chemical Etching Method -- 3.3.2.2 Fused Biconical Taper Method | |
505 | 8 | |a 3.3.3 MNF Moisture Detection -- 3.3.4 Merits and Drawbacks -- 3.4 Fabry-Perot‐Based Moisture Detection -- 3.4.1 Detection Principle -- 3.4.2 Fabrication and Application -- 3.4.3 Merits and Drawbacks -- 3.5 Conclusion -- References -- Chapter 4 Dissolved Gases Detection with Optical Methods -- 4.1 Online Dissolved Gases Analysis -- 4.1.1 General Quantitive Requirements of Online DGA -- 4.1.2 Advantages of Optical Techniques in DGA -- 4.2 Photoacoustic Spectrum Technique -- 4.2.1 Detection Principle of PAS -- 4.2.2 Application of a PAS‐Based Technique -- 4.2.3 Merits and Drawbacks -- 4.3 Fourier Transform Infrared Spectroscopy (FTIR) Technique -- 4.3.1 Detection Principle of FTIR -- 4.3.2 Application of the FTIR‐Based Techniques -- 4.3.2.1 FTIR Technique -- 4.3.2.2 Online FTIR Application -- 4.3.2.3 Combination of FTIR and PAS -- 4.3.3 Merits and Drawbacks -- 4.4 TDLAS‐Based Technique -- 4.4.1 Detection Principle of TDLAS -- 4.4.2 Application of the TDLAS‐Based Technique -- 4.4.2.1 Optical Lasers -- 4.4.2.2 Multi‐pass Gas Cell -- 4.4.2.3 Topology of Multi‐gas Detection -- 4.4.2.4 Laboratory Tests -- 4.4.2.5 Field Application -- 4.4.3 Merits and Drawbacks -- 4.5 Laser Raman Spectroscopy Technique -- 4.5.1 Detection Principle of Raman Spectroscopy -- 4.5.2 Application of Laser Raman Spectroscopy -- 4.5.3 Merits and Drawbacks -- 4.6 Fiber Bragg Grating (FBG) Technique -- 4.6.1 Detection Principle of FBG -- 4.6.2 Application of the FBG Technique -- 4.6.2.1 Standard FBG Sensor -- 4.6.2.2 Etched FBG Sensor -- 4.6.2.3 Side‐Polished FBG Sensor -- 4.6.3 Merits and Drawbacks -- 4.7 Discussion and Prediction -- 4.7.1 Comparison of Optical Fiber Techniques -- 4.7.2 Future Prospects of Optic‐Based Diagnosis -- 4.8 Conclusions -- References -- Chapter 5 Partial Discharge Detection with Optical Methods -- 5.1 PD Activities in Power Transformers | |
505 | 8 | |a 5.1.1 Online PD Detection Techniques -- 5.1.2 PD Induced Acoustic Emission -- 5.2 FBG‐Based Detection -- 5.2.1 FBG PD Detection Principle -- 5.2.2 PS‐FBG PD Detection -- 5.2.3 High Resolution FBG PD Detection -- 5.2.4 Merits and Drawbacks -- 5.3 FP‐Based PD Detection -- 5.3.1 FP‐Based Principle -- 5.3.2 Application of FP PD Detection -- 5.3.3 Sensitivity of an FP‐Based Sensor -- 5.3.3.1 The Diaphragm Thickness -- 5.3.3.2 The Diaphragm Material -- 5.3.3.3 The Diaphragm Shape -- 5.3.4 Merits and Drawbacks -- 5.4 Dual‐Beam Interference‐Based PD Detection -- 5.4.1 Principle of Different Interference Structures -- 5.4.1.1 Mach‐Zehnder Interference -- 5.4.1.2 Michelson Interference -- 5.4.1.3 Sagnac Interference -- 5.4.2 Application Cases -- 5.4.2.1 PD Detection Based on Mach‐Zehnder -- 5.4.2.2 PD Detection Based on Michelson -- 5.4.2.3 PD Detection Based on Sagnac -- 5.4.3 Sensitivity of an Interference‐Based Sensor -- 5.4.3.1 Sensor Parameter Variation -- 5.4.3.2 Phase Modulation and Demodulation Techniques -- 5.4.4 Merits and Drawbacks -- 5.5 Multiplexing Technology of an Optical Sensor -- 5.5.1 Multiplexing Technique with the Same Structure -- 5.5.2 Multiplexing Technique with the Different Structures -- 5.5.3 Distributed Optical Sensing Technique -- 5.6 Conclusion -- References -- Chapter 6 Other Parameters with Optical Methods -- 6.1 Winding Deformation and Vibration Detection in Optical Techniques -- 6.1.1 Winding Deformation Detection -- 6.1.1.1 Winding Deformation in Power Transformer -- 6.1.1.2 Winding Deformation Detection with an Optical Technique -- 6.1.2 Vibration Detection -- 6.1.2.1 Vibration in Power Transformers -- 6.1.2.2 Vibration Detection with Optical Techniques -- 6.1.3 Merits and Drawbacks -- 6.2 Voltage and Current Measurement with Optical Techniques -- 6.2.1 Current Measurement with Optical Technique | |
505 | 8 | |a 6.2.1.1 Principle of Optical Current Transducer -- 6.2.1.2 All‐Fiber Optical Current Transducer -- 6.2.2 Voltage Measurement with the Optical Technique -- 6.2.2.1 Principle of the Optical Voltage Transducer -- 6.2.2.2 All‐Fiber Optical Voltage Transducer -- 6.2.3 Merits and Drawbacks -- 6.3 Electric Field Measurement -- 6.4 Conclusion -- 6.5 Outlook -- 6.5.1 Profound and Extensive Interdisciplinary Combinations -- 6.5.2 Mature Scheme and Low Cost Manufacturing -- 6.5.3 Reliable Measurement and Long‐Term Stability -- 6.5.4 Pre‐factory Installation and Integration into a Monitoring System -- 6.5.5 Rapid Expansion and Development -- 6.5.6 Advanced Algorithms and Novel Diagnosis -- References -- Index -- EULA. | |
650 | 0 | 7 | |a Leistungstransformator |0 (DE-588)4167309-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zustandsüberwachung |0 (DE-588)4369492-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optischer Sensor |0 (DE-588)4075677-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Leistungstransformator |0 (DE-588)4167309-8 |D s |
689 | 0 | 1 | |a Optischer Sensor |0 (DE-588)4075677-4 |D s |
689 | 0 | 2 | |a Zustandsüberwachung |0 (DE-588)4369492-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ma, Guoming |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-119-76528-8 |a Jiang, Jun |t Optical Sensing in Power Transformers |d Newark : John Wiley & Sons, Incorporated,c2021 |
912 | |a ZDB-35-WIC |a ZDB-30-PQE |a ZDB-35-WEL | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032844623 | |
966 | e | |u https://ieeexplore.ieee.org/servlet/opac?bknumber=9295053 |l DE-573 |p ZDB-35-WEL |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/book/10.1002/9781119765325 |l DE-863 |p ZDB-35-WIC |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/book/10.1002/9781119765325 |l DE-862 |p ZDB-35-WIC |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1824556247755522048 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Jiang, Jun |
author_facet | Jiang, Jun |
author_role | aut |
author_sort | Jiang, Jun |
author_variant | j j jj |
building | Verbundindex |
bvnumber | BV047442471 |
classification_rvk | ZN 8330 |
collection | ZDB-35-WIC ZDB-30-PQE ZDB-35-WEL |
contents | Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Acknowledgments -- About the Authors -- Acronyms -- List of Figures -- List of Tables -- Chapter 1 Power Transformer in a Power Grid -- 1.1 Typical Structure of a Power Transformer -- 1.2 Insulation Oil in a Power Transformer -- 1.3 Condition Monitoring of an Oil‐Immersed Power Transformer -- 1.3.1 Temperature -- 1.3.2 Moisture -- 1.3.3 Dissolved Gases Analysis -- 1.3.4 Partial Discharge -- 1.3.5 Combined Online Monitoring -- 1.4 Conclusion -- References -- Chapter 2 Temperature Detection with Optical Methods -- 2.1 Thermal Analysis in a Power Transformer -- 2.1.1 Heat Source in a Power Transformer -- 2.1.2 Heat Transfer in a Power Transformer -- 2.2 Fluorescence‐Based Temperature Detection -- 2.2.1 Detection Principle -- 2.2.2 Fabrication and Application -- 2.2.3 Merits and Drawbacks -- 2.3 FBG‐Based Temperature Detection -- 2.3.1 Detection Principle -- 2.3.2 Fabrication and Application -- 2.3.3 Merits and Drawbacks -- 2.4 Distribution Measurement -- 2.4.1 Quasi‐Distributed Temperature Sensing -- 2.4.2 Distribute Temperature Sensing -- 2.4.2.1 Light Scattering -- 2.4.2.2 Raman Based Distributed Temperature Sensing -- 2.4.2.3 Rayleigh‐Based Distributed Temperature Sensing -- 2.4.3 Merits and Drawbacks -- 2.5 Conclusion -- References -- Chapter 3 Moisture Detection with Optical Methods -- 3.1 Online Monitoring of Moisture in a Transformer -- 3.1.1 Distribution of Moisture in the Power Transformer -- 3.1.2 Typical Moisture Detection Techniques -- 3.2 FBG‐Based Moisture Detection -- 3.2.1 Detection Principle -- 3.2.2 Fabrication and Application -- 3.2.3 Merits and Drawbacks -- 3.3 Evanescent Wave‐Based Moisture Detection -- 3.3.1 Detection Principle -- 3.3.2 Fabrication of MNF -- 3.3.2.1 Chemical Etching Method -- 3.3.2.2 Fused Biconical Taper Method 3.3.3 MNF Moisture Detection -- 3.3.4 Merits and Drawbacks -- 3.4 Fabry-Perot‐Based Moisture Detection -- 3.4.1 Detection Principle -- 3.4.2 Fabrication and Application -- 3.4.3 Merits and Drawbacks -- 3.5 Conclusion -- References -- Chapter 4 Dissolved Gases Detection with Optical Methods -- 4.1 Online Dissolved Gases Analysis -- 4.1.1 General Quantitive Requirements of Online DGA -- 4.1.2 Advantages of Optical Techniques in DGA -- 4.2 Photoacoustic Spectrum Technique -- 4.2.1 Detection Principle of PAS -- 4.2.2 Application of a PAS‐Based Technique -- 4.2.3 Merits and Drawbacks -- 4.3 Fourier Transform Infrared Spectroscopy (FTIR) Technique -- 4.3.1 Detection Principle of FTIR -- 4.3.2 Application of the FTIR‐Based Techniques -- 4.3.2.1 FTIR Technique -- 4.3.2.2 Online FTIR Application -- 4.3.2.3 Combination of FTIR and PAS -- 4.3.3 Merits and Drawbacks -- 4.4 TDLAS‐Based Technique -- 4.4.1 Detection Principle of TDLAS -- 4.4.2 Application of the TDLAS‐Based Technique -- 4.4.2.1 Optical Lasers -- 4.4.2.2 Multi‐pass Gas Cell -- 4.4.2.3 Topology of Multi‐gas Detection -- 4.4.2.4 Laboratory Tests -- 4.4.2.5 Field Application -- 4.4.3 Merits and Drawbacks -- 4.5 Laser Raman Spectroscopy Technique -- 4.5.1 Detection Principle of Raman Spectroscopy -- 4.5.2 Application of Laser Raman Spectroscopy -- 4.5.3 Merits and Drawbacks -- 4.6 Fiber Bragg Grating (FBG) Technique -- 4.6.1 Detection Principle of FBG -- 4.6.2 Application of the FBG Technique -- 4.6.2.1 Standard FBG Sensor -- 4.6.2.2 Etched FBG Sensor -- 4.6.2.3 Side‐Polished FBG Sensor -- 4.6.3 Merits and Drawbacks -- 4.7 Discussion and Prediction -- 4.7.1 Comparison of Optical Fiber Techniques -- 4.7.2 Future Prospects of Optic‐Based Diagnosis -- 4.8 Conclusions -- References -- Chapter 5 Partial Discharge Detection with Optical Methods -- 5.1 PD Activities in Power Transformers 5.1.1 Online PD Detection Techniques -- 5.1.2 PD Induced Acoustic Emission -- 5.2 FBG‐Based Detection -- 5.2.1 FBG PD Detection Principle -- 5.2.2 PS‐FBG PD Detection -- 5.2.3 High Resolution FBG PD Detection -- 5.2.4 Merits and Drawbacks -- 5.3 FP‐Based PD Detection -- 5.3.1 FP‐Based Principle -- 5.3.2 Application of FP PD Detection -- 5.3.3 Sensitivity of an FP‐Based Sensor -- 5.3.3.1 The Diaphragm Thickness -- 5.3.3.2 The Diaphragm Material -- 5.3.3.3 The Diaphragm Shape -- 5.3.4 Merits and Drawbacks -- 5.4 Dual‐Beam Interference‐Based PD Detection -- 5.4.1 Principle of Different Interference Structures -- 5.4.1.1 Mach‐Zehnder Interference -- 5.4.1.2 Michelson Interference -- 5.4.1.3 Sagnac Interference -- 5.4.2 Application Cases -- 5.4.2.1 PD Detection Based on Mach‐Zehnder -- 5.4.2.2 PD Detection Based on Michelson -- 5.4.2.3 PD Detection Based on Sagnac -- 5.4.3 Sensitivity of an Interference‐Based Sensor -- 5.4.3.1 Sensor Parameter Variation -- 5.4.3.2 Phase Modulation and Demodulation Techniques -- 5.4.4 Merits and Drawbacks -- 5.5 Multiplexing Technology of an Optical Sensor -- 5.5.1 Multiplexing Technique with the Same Structure -- 5.5.2 Multiplexing Technique with the Different Structures -- 5.5.3 Distributed Optical Sensing Technique -- 5.6 Conclusion -- References -- Chapter 6 Other Parameters with Optical Methods -- 6.1 Winding Deformation and Vibration Detection in Optical Techniques -- 6.1.1 Winding Deformation Detection -- 6.1.1.1 Winding Deformation in Power Transformer -- 6.1.1.2 Winding Deformation Detection with an Optical Technique -- 6.1.2 Vibration Detection -- 6.1.2.1 Vibration in Power Transformers -- 6.1.2.2 Vibration Detection with Optical Techniques -- 6.1.3 Merits and Drawbacks -- 6.2 Voltage and Current Measurement with Optical Techniques -- 6.2.1 Current Measurement with Optical Technique 6.2.1.1 Principle of Optical Current Transducer -- 6.2.1.2 All‐Fiber Optical Current Transducer -- 6.2.2 Voltage Measurement with the Optical Technique -- 6.2.2.1 Principle of the Optical Voltage Transducer -- 6.2.2.2 All‐Fiber Optical Voltage Transducer -- 6.2.3 Merits and Drawbacks -- 6.3 Electric Field Measurement -- 6.4 Conclusion -- 6.5 Outlook -- 6.5.1 Profound and Extensive Interdisciplinary Combinations -- 6.5.2 Mature Scheme and Low Cost Manufacturing -- 6.5.3 Reliable Measurement and Long‐Term Stability -- 6.5.4 Pre‐factory Installation and Integration into a Monitoring System -- 6.5.5 Rapid Expansion and Development -- 6.5.6 Advanced Algorithms and Novel Diagnosis -- References -- Index -- EULA. |
ctrlnum | (ZDB-30-PQE)EBC6420722 (ZDB-30-PAD)EBC6420722 (ZDB-89-EBL)EBL6420722 (OCoLC)1231604049 (DE-599)BVBBV047442471 |
dewey-full | 621.3140284 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3140284 |
dewey-search | 621.3140284 |
dewey-sort | 3621.3140284 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV047442471</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241009</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119765325</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-119-76532-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119765301</subfield><subfield code="9">978-1-119-76530-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119765295</subfield><subfield code="9">978-1-119-76529-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6420722</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6420722</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6420722</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1231604049</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442471</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3140284</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 8330</subfield><subfield code="0">(DE-625)157613:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiang, Jun</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optical sensing in power transformers</subfield><subfield code="c">Jun Jiang (Nanjing University of Aeronautics and Astronautics, Nanjing, China), Guoming Ma (North China Electric Power University, Beijing, China)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxix, 219 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley - IEEE Series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Acknowledgments -- About the Authors -- Acronyms -- List of Figures -- List of Tables -- Chapter 1 Power Transformer in a Power Grid -- 1.1 Typical Structure of a Power Transformer -- 1.2 Insulation Oil in a Power Transformer -- 1.3 Condition Monitoring of an Oil‐Immersed Power Transformer -- 1.3.1 Temperature -- 1.3.2 Moisture -- 1.3.3 Dissolved Gases Analysis -- 1.3.4 Partial Discharge -- 1.3.5 Combined Online Monitoring -- 1.4 Conclusion -- References -- Chapter 2 Temperature Detection with Optical Methods -- 2.1 Thermal Analysis in a Power Transformer -- 2.1.1 Heat Source in a Power Transformer -- 2.1.2 Heat Transfer in a Power Transformer -- 2.2 Fluorescence‐Based Temperature Detection -- 2.2.1 Detection Principle -- 2.2.2 Fabrication and Application -- 2.2.3 Merits and Drawbacks -- 2.3 FBG‐Based Temperature Detection -- 2.3.1 Detection Principle -- 2.3.2 Fabrication and Application -- 2.3.3 Merits and Drawbacks -- 2.4 Distribution Measurement -- 2.4.1 Quasi‐Distributed Temperature Sensing -- 2.4.2 Distribute Temperature Sensing -- 2.4.2.1 Light Scattering -- 2.4.2.2 Raman Based Distributed Temperature Sensing -- 2.4.2.3 Rayleigh‐Based Distributed Temperature Sensing -- 2.4.3 Merits and Drawbacks -- 2.5 Conclusion -- References -- Chapter 3 Moisture Detection with Optical Methods -- 3.1 Online Monitoring of Moisture in a Transformer -- 3.1.1 Distribution of Moisture in the Power Transformer -- 3.1.2 Typical Moisture Detection Techniques -- 3.2 FBG‐Based Moisture Detection -- 3.2.1 Detection Principle -- 3.2.2 Fabrication and Application -- 3.2.3 Merits and Drawbacks -- 3.3 Evanescent Wave‐Based Moisture Detection -- 3.3.1 Detection Principle -- 3.3.2 Fabrication of MNF -- 3.3.2.1 Chemical Etching Method -- 3.3.2.2 Fused Biconical Taper Method</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3.3 MNF Moisture Detection -- 3.3.4 Merits and Drawbacks -- 3.4 Fabry-Perot‐Based Moisture Detection -- 3.4.1 Detection Principle -- 3.4.2 Fabrication and Application -- 3.4.3 Merits and Drawbacks -- 3.5 Conclusion -- References -- Chapter 4 Dissolved Gases Detection with Optical Methods -- 4.1 Online Dissolved Gases Analysis -- 4.1.1 General Quantitive Requirements of Online DGA -- 4.1.2 Advantages of Optical Techniques in DGA -- 4.2 Photoacoustic Spectrum Technique -- 4.2.1 Detection Principle of PAS -- 4.2.2 Application of a PAS‐Based Technique -- 4.2.3 Merits and Drawbacks -- 4.3 Fourier Transform Infrared Spectroscopy (FTIR) Technique -- 4.3.1 Detection Principle of FTIR -- 4.3.2 Application of the FTIR‐Based Techniques -- 4.3.2.1 FTIR Technique -- 4.3.2.2 Online FTIR Application -- 4.3.2.3 Combination of FTIR and PAS -- 4.3.3 Merits and Drawbacks -- 4.4 TDLAS‐Based Technique -- 4.4.1 Detection Principle of TDLAS -- 4.4.2 Application of the TDLAS‐Based Technique -- 4.4.2.1 Optical Lasers -- 4.4.2.2 Multi‐pass Gas Cell -- 4.4.2.3 Topology of Multi‐gas Detection -- 4.4.2.4 Laboratory Tests -- 4.4.2.5 Field Application -- 4.4.3 Merits and Drawbacks -- 4.5 Laser Raman Spectroscopy Technique -- 4.5.1 Detection Principle of Raman Spectroscopy -- 4.5.2 Application of Laser Raman Spectroscopy -- 4.5.3 Merits and Drawbacks -- 4.6 Fiber Bragg Grating (FBG) Technique -- 4.6.1 Detection Principle of FBG -- 4.6.2 Application of the FBG Technique -- 4.6.2.1 Standard FBG Sensor -- 4.6.2.2 Etched FBG Sensor -- 4.6.2.3 Side‐Polished FBG Sensor -- 4.6.3 Merits and Drawbacks -- 4.7 Discussion and Prediction -- 4.7.1 Comparison of Optical Fiber Techniques -- 4.7.2 Future Prospects of Optic‐Based Diagnosis -- 4.8 Conclusions -- References -- Chapter 5 Partial Discharge Detection with Optical Methods -- 5.1 PD Activities in Power Transformers</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.1.1 Online PD Detection Techniques -- 5.1.2 PD Induced Acoustic Emission -- 5.2 FBG‐Based Detection -- 5.2.1 FBG PD Detection Principle -- 5.2.2 PS‐FBG PD Detection -- 5.2.3 High Resolution FBG PD Detection -- 5.2.4 Merits and Drawbacks -- 5.3 FP‐Based PD Detection -- 5.3.1 FP‐Based Principle -- 5.3.2 Application of FP PD Detection -- 5.3.3 Sensitivity of an FP‐Based Sensor -- 5.3.3.1 The Diaphragm Thickness -- 5.3.3.2 The Diaphragm Material -- 5.3.3.3 The Diaphragm Shape -- 5.3.4 Merits and Drawbacks -- 5.4 Dual‐Beam Interference‐Based PD Detection -- 5.4.1 Principle of Different Interference Structures -- 5.4.1.1 Mach‐Zehnder Interference -- 5.4.1.2 Michelson Interference -- 5.4.1.3 Sagnac Interference -- 5.4.2 Application Cases -- 5.4.2.1 PD Detection Based on Mach‐Zehnder -- 5.4.2.2 PD Detection Based on Michelson -- 5.4.2.3 PD Detection Based on Sagnac -- 5.4.3 Sensitivity of an Interference‐Based Sensor -- 5.4.3.1 Sensor Parameter Variation -- 5.4.3.2 Phase Modulation and Demodulation Techniques -- 5.4.4 Merits and Drawbacks -- 5.5 Multiplexing Technology of an Optical Sensor -- 5.5.1 Multiplexing Technique with the Same Structure -- 5.5.2 Multiplexing Technique with the Different Structures -- 5.5.3 Distributed Optical Sensing Technique -- 5.6 Conclusion -- References -- Chapter 6 Other Parameters with Optical Methods -- 6.1 Winding Deformation and Vibration Detection in Optical Techniques -- 6.1.1 Winding Deformation Detection -- 6.1.1.1 Winding Deformation in Power Transformer -- 6.1.1.2 Winding Deformation Detection with an Optical Technique -- 6.1.2 Vibration Detection -- 6.1.2.1 Vibration in Power Transformers -- 6.1.2.2 Vibration Detection with Optical Techniques -- 6.1.3 Merits and Drawbacks -- 6.2 Voltage and Current Measurement with Optical Techniques -- 6.2.1 Current Measurement with Optical Technique</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2.1.1 Principle of Optical Current Transducer -- 6.2.1.2 All‐Fiber Optical Current Transducer -- 6.2.2 Voltage Measurement with the Optical Technique -- 6.2.2.1 Principle of the Optical Voltage Transducer -- 6.2.2.2 All‐Fiber Optical Voltage Transducer -- 6.2.3 Merits and Drawbacks -- 6.3 Electric Field Measurement -- 6.4 Conclusion -- 6.5 Outlook -- 6.5.1 Profound and Extensive Interdisciplinary Combinations -- 6.5.2 Mature Scheme and Low Cost Manufacturing -- 6.5.3 Reliable Measurement and Long‐Term Stability -- 6.5.4 Pre‐factory Installation and Integration into a Monitoring System -- 6.5.5 Rapid Expansion and Development -- 6.5.6 Advanced Algorithms and Novel Diagnosis -- References -- Index -- EULA.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Leistungstransformator</subfield><subfield code="0">(DE-588)4167309-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zustandsüberwachung</subfield><subfield code="0">(DE-588)4369492-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optischer Sensor</subfield><subfield code="0">(DE-588)4075677-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Leistungstransformator</subfield><subfield code="0">(DE-588)4167309-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Optischer Sensor</subfield><subfield code="0">(DE-588)4075677-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Zustandsüberwachung</subfield><subfield code="0">(DE-588)4369492-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Guoming</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-119-76528-8</subfield><subfield code="a">Jiang, Jun</subfield><subfield code="t">Optical Sensing in Power Transformers</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-35-WEL</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844623</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/servlet/opac?bknumber=9295053</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-35-WEL</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/book/10.1002/9781119765325</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/book/10.1002/9781119765325</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047442471 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:24Z |
indexdate | 2025-02-20T07:20:32Z |
institution | BVB |
isbn | 9781119765325 9781119765301 9781119765295 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844623 |
oclc_num | 1231604049 |
open_access_boolean | |
owner | DE-573 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-573 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (xxix, 219 Seiten) |
psigel | ZDB-35-WIC ZDB-30-PQE ZDB-35-WEL |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Wiley |
record_format | marc |
series2 | Wiley - IEEE Series |
spellingShingle | Jiang, Jun Optical sensing in power transformers Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Acknowledgments -- About the Authors -- Acronyms -- List of Figures -- List of Tables -- Chapter 1 Power Transformer in a Power Grid -- 1.1 Typical Structure of a Power Transformer -- 1.2 Insulation Oil in a Power Transformer -- 1.3 Condition Monitoring of an Oil‐Immersed Power Transformer -- 1.3.1 Temperature -- 1.3.2 Moisture -- 1.3.3 Dissolved Gases Analysis -- 1.3.4 Partial Discharge -- 1.3.5 Combined Online Monitoring -- 1.4 Conclusion -- References -- Chapter 2 Temperature Detection with Optical Methods -- 2.1 Thermal Analysis in a Power Transformer -- 2.1.1 Heat Source in a Power Transformer -- 2.1.2 Heat Transfer in a Power Transformer -- 2.2 Fluorescence‐Based Temperature Detection -- 2.2.1 Detection Principle -- 2.2.2 Fabrication and Application -- 2.2.3 Merits and Drawbacks -- 2.3 FBG‐Based Temperature Detection -- 2.3.1 Detection Principle -- 2.3.2 Fabrication and Application -- 2.3.3 Merits and Drawbacks -- 2.4 Distribution Measurement -- 2.4.1 Quasi‐Distributed Temperature Sensing -- 2.4.2 Distribute Temperature Sensing -- 2.4.2.1 Light Scattering -- 2.4.2.2 Raman Based Distributed Temperature Sensing -- 2.4.2.3 Rayleigh‐Based Distributed Temperature Sensing -- 2.4.3 Merits and Drawbacks -- 2.5 Conclusion -- References -- Chapter 3 Moisture Detection with Optical Methods -- 3.1 Online Monitoring of Moisture in a Transformer -- 3.1.1 Distribution of Moisture in the Power Transformer -- 3.1.2 Typical Moisture Detection Techniques -- 3.2 FBG‐Based Moisture Detection -- 3.2.1 Detection Principle -- 3.2.2 Fabrication and Application -- 3.2.3 Merits and Drawbacks -- 3.3 Evanescent Wave‐Based Moisture Detection -- 3.3.1 Detection Principle -- 3.3.2 Fabrication of MNF -- 3.3.2.1 Chemical Etching Method -- 3.3.2.2 Fused Biconical Taper Method 3.3.3 MNF Moisture Detection -- 3.3.4 Merits and Drawbacks -- 3.4 Fabry-Perot‐Based Moisture Detection -- 3.4.1 Detection Principle -- 3.4.2 Fabrication and Application -- 3.4.3 Merits and Drawbacks -- 3.5 Conclusion -- References -- Chapter 4 Dissolved Gases Detection with Optical Methods -- 4.1 Online Dissolved Gases Analysis -- 4.1.1 General Quantitive Requirements of Online DGA -- 4.1.2 Advantages of Optical Techniques in DGA -- 4.2 Photoacoustic Spectrum Technique -- 4.2.1 Detection Principle of PAS -- 4.2.2 Application of a PAS‐Based Technique -- 4.2.3 Merits and Drawbacks -- 4.3 Fourier Transform Infrared Spectroscopy (FTIR) Technique -- 4.3.1 Detection Principle of FTIR -- 4.3.2 Application of the FTIR‐Based Techniques -- 4.3.2.1 FTIR Technique -- 4.3.2.2 Online FTIR Application -- 4.3.2.3 Combination of FTIR and PAS -- 4.3.3 Merits and Drawbacks -- 4.4 TDLAS‐Based Technique -- 4.4.1 Detection Principle of TDLAS -- 4.4.2 Application of the TDLAS‐Based Technique -- 4.4.2.1 Optical Lasers -- 4.4.2.2 Multi‐pass Gas Cell -- 4.4.2.3 Topology of Multi‐gas Detection -- 4.4.2.4 Laboratory Tests -- 4.4.2.5 Field Application -- 4.4.3 Merits and Drawbacks -- 4.5 Laser Raman Spectroscopy Technique -- 4.5.1 Detection Principle of Raman Spectroscopy -- 4.5.2 Application of Laser Raman Spectroscopy -- 4.5.3 Merits and Drawbacks -- 4.6 Fiber Bragg Grating (FBG) Technique -- 4.6.1 Detection Principle of FBG -- 4.6.2 Application of the FBG Technique -- 4.6.2.1 Standard FBG Sensor -- 4.6.2.2 Etched FBG Sensor -- 4.6.2.3 Side‐Polished FBG Sensor -- 4.6.3 Merits and Drawbacks -- 4.7 Discussion and Prediction -- 4.7.1 Comparison of Optical Fiber Techniques -- 4.7.2 Future Prospects of Optic‐Based Diagnosis -- 4.8 Conclusions -- References -- Chapter 5 Partial Discharge Detection with Optical Methods -- 5.1 PD Activities in Power Transformers 5.1.1 Online PD Detection Techniques -- 5.1.2 PD Induced Acoustic Emission -- 5.2 FBG‐Based Detection -- 5.2.1 FBG PD Detection Principle -- 5.2.2 PS‐FBG PD Detection -- 5.2.3 High Resolution FBG PD Detection -- 5.2.4 Merits and Drawbacks -- 5.3 FP‐Based PD Detection -- 5.3.1 FP‐Based Principle -- 5.3.2 Application of FP PD Detection -- 5.3.3 Sensitivity of an FP‐Based Sensor -- 5.3.3.1 The Diaphragm Thickness -- 5.3.3.2 The Diaphragm Material -- 5.3.3.3 The Diaphragm Shape -- 5.3.4 Merits and Drawbacks -- 5.4 Dual‐Beam Interference‐Based PD Detection -- 5.4.1 Principle of Different Interference Structures -- 5.4.1.1 Mach‐Zehnder Interference -- 5.4.1.2 Michelson Interference -- 5.4.1.3 Sagnac Interference -- 5.4.2 Application Cases -- 5.4.2.1 PD Detection Based on Mach‐Zehnder -- 5.4.2.2 PD Detection Based on Michelson -- 5.4.2.3 PD Detection Based on Sagnac -- 5.4.3 Sensitivity of an Interference‐Based Sensor -- 5.4.3.1 Sensor Parameter Variation -- 5.4.3.2 Phase Modulation and Demodulation Techniques -- 5.4.4 Merits and Drawbacks -- 5.5 Multiplexing Technology of an Optical Sensor -- 5.5.1 Multiplexing Technique with the Same Structure -- 5.5.2 Multiplexing Technique with the Different Structures -- 5.5.3 Distributed Optical Sensing Technique -- 5.6 Conclusion -- References -- Chapter 6 Other Parameters with Optical Methods -- 6.1 Winding Deformation and Vibration Detection in Optical Techniques -- 6.1.1 Winding Deformation Detection -- 6.1.1.1 Winding Deformation in Power Transformer -- 6.1.1.2 Winding Deformation Detection with an Optical Technique -- 6.1.2 Vibration Detection -- 6.1.2.1 Vibration in Power Transformers -- 6.1.2.2 Vibration Detection with Optical Techniques -- 6.1.3 Merits and Drawbacks -- 6.2 Voltage and Current Measurement with Optical Techniques -- 6.2.1 Current Measurement with Optical Technique 6.2.1.1 Principle of Optical Current Transducer -- 6.2.1.2 All‐Fiber Optical Current Transducer -- 6.2.2 Voltage Measurement with the Optical Technique -- 6.2.2.1 Principle of the Optical Voltage Transducer -- 6.2.2.2 All‐Fiber Optical Voltage Transducer -- 6.2.3 Merits and Drawbacks -- 6.3 Electric Field Measurement -- 6.4 Conclusion -- 6.5 Outlook -- 6.5.1 Profound and Extensive Interdisciplinary Combinations -- 6.5.2 Mature Scheme and Low Cost Manufacturing -- 6.5.3 Reliable Measurement and Long‐Term Stability -- 6.5.4 Pre‐factory Installation and Integration into a Monitoring System -- 6.5.5 Rapid Expansion and Development -- 6.5.6 Advanced Algorithms and Novel Diagnosis -- References -- Index -- EULA. Leistungstransformator (DE-588)4167309-8 gnd Zustandsüberwachung (DE-588)4369492-5 gnd Optischer Sensor (DE-588)4075677-4 gnd |
subject_GND | (DE-588)4167309-8 (DE-588)4369492-5 (DE-588)4075677-4 |
title | Optical sensing in power transformers |
title_auth | Optical sensing in power transformers |
title_exact_search | Optical sensing in power transformers |
title_exact_search_txtP | Optical Sensing in Power Transformers |
title_full | Optical sensing in power transformers Jun Jiang (Nanjing University of Aeronautics and Astronautics, Nanjing, China), Guoming Ma (North China Electric Power University, Beijing, China) |
title_fullStr | Optical sensing in power transformers Jun Jiang (Nanjing University of Aeronautics and Astronautics, Nanjing, China), Guoming Ma (North China Electric Power University, Beijing, China) |
title_full_unstemmed | Optical sensing in power transformers Jun Jiang (Nanjing University of Aeronautics and Astronautics, Nanjing, China), Guoming Ma (North China Electric Power University, Beijing, China) |
title_short | Optical sensing in power transformers |
title_sort | optical sensing in power transformers |
topic | Leistungstransformator (DE-588)4167309-8 gnd Zustandsüberwachung (DE-588)4369492-5 gnd Optischer Sensor (DE-588)4075677-4 gnd |
topic_facet | Leistungstransformator Zustandsüberwachung Optischer Sensor |
work_keys_str_mv | AT jiangjun opticalsensinginpowertransformers AT maguoming opticalsensinginpowertransformers |