Heat transfer engineering: fundamentals and techniques
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom
Academic Press
[2021]
|
Online-Zugang: | DE-1050 DE-91 DE-706 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xv, 422 Seiten) Illustrationen, Diagramme |
ISBN: | 9780128185049 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442306 | ||
003 | DE-604 | ||
005 | 20241121 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 xx a||| o|||| 00||| eng d | ||
020 | |a 9780128185049 |9 978-0-12-818504-9 | ||
024 | 7 | |a 10.1016/C2018-0-02085-X |2 doi | |
035 | |a (ZDB-30-PQE)EBC6404826 | ||
035 | |a (ZDB-30-PAD)EBC6404826 | ||
035 | |a (ZDB-89-EBL)EBL6404826 | ||
035 | |a (ZDB-33-EBS)9780128185032 | ||
035 | |a (OCoLC)1268191760 | ||
035 | |a (DE-599)BVBBV047442306 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-1050 |a DE-706 | ||
082 | 0 | |a 621.4022 | |
084 | |a UG 2500 |0 (DE-625)145618: |2 rvk | ||
084 | |a MTA 720 |2 stub | ||
100 | 1 | |a Balaji, C. |e Verfasser |0 (DE-588)1043395334 |4 aut | |
245 | 1 | 0 | |a Heat transfer engineering |b fundamentals and techniques |c C. Balaji, Balaji Srinivasan, Sateesh Gedupudi |
264 | 1 | |a London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom |b Academic Press |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (xv, 422 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title -- Copyright -- Dedication -- Contents -- Preface -- Chapter 1 - Introduction -- 1.1 - Thermodynamics and heat transfer -- 1.2 - Heat transfer and its applications -- 1.3 - Modes of heat transfer -- 1.4 - Conduction -- 1.5 - Convection -- 1.5.1 - Mechanism of convection -- 1.6 - Thermal radiation -- 1.7 - Combined modes of heat transfer -- 1.8 - Phase-change heat transfer -- 1.9 - Concept of continuum -- Problems -- References -- Chapter 2 - One-dimensional, steady state heat conduction -- 2.1 - Introduction -- 2.2 - Three-dimensional conduction equation -- 2.2.1 - Boundary conditions -- 2.3 - Steady state, one-dimensional conduction in a few commonly encountered systems -- 2.3.1 - Heat transfer in a plane wall -- 2.4 - Electrical analogy and thermal resistance -- 2.5 - Heat transfer in cylindrical coordinates -- 2.5.1 - Critical radius of insulation for cylinder -- 2.6 - Steady state conduction in a spherical shell -- 2.7 - Steady state conduction in a composite wall, cylinder and sphere -- 2.7.1 - Composite wall -- 2.7.1.1 - Parallel connection -- 2.7.1.2 - Series-parallel connection -- 2.7.1.3 - Thermal contact resistance -- 2.7.2 - Composite cylinder -- 2.7.3 - Composite sphere -- 2.8 - One-dimensional, steady state heat conduction with heat generation -- 2.8.1 - Plane wall with heat generation -- 2.9 - Fin heat transfer -- 2.10 - Analysis of fin heat transfer -- 2.10.1 - Case 1: Insulated tip -- Fin efficiency -- Effectiveness of the fin -- Rectangular fin -- 2.10.2 - Case 2: Long fin -- 2.10.3 - Case 3: Convecting tip -- 2.10.4 - Variable area fins -- References -- Chapter 3 - Conduction: One-dimensional transient and two-dimensional steady state -- 3.1 - Introduction -- 3.2 - Lumped capacitance method -- 3.3 - Semi-infinite approximation -- 3.4 - The method of separation of variables | |
505 | 8 | |a 3.5 - Analysis of two-dimensional, steady state systems -- References -- Chapter 4 - Fundamentals of convection -- 4.1 - Introduction -- 4.2 - Fundamentals of convective heat transfer -- 4.2.1 - Conduction, advection, and convection -- 4.2.2 - The microscopic picture -- 4.2.3 - Fundamental definition of convection -- 4.3 - The heat transfer coefficient -- 4.3.1 - Newton's law vs. the fundamental definition -- 4.3.2 - Average heat transfer coefficient -- 4.3.3 - Methods of estimating the heat transfer coefficient -- 4.4 - Governing equations -- 4.4.1 - General approach to conservation laws -- 4.4.2 - Law of conservation of mass -- 4.4.3 - Momentum equations -- 4.4.4 - Energy equation -- 4.4.5 - Summary of equations -- 4.5 - Summary -- References -- Chapter 5 - Forced convection -- 5.1 - Introduction -- 5.2 - Approximation using order of magnitude analysis -- 5.3 - Nondimensionalization of the governing equations -- 5.4 - Approximate solution to the boundary layer equations -- Solution to integral momentum and energy equations with trial velocity and temperature profiles -- Integral method for fluids with -- Flow over a cylinder -- Flow over a sphere -- Heat transfer in flows across a bank of tubes -- 5.5 - Turbulent flow -- Reynolds analogy -- 5.6 - Internal flows -- 5.6.1 - Governing equations and the quest for an analytical solution -- Noncircular ducts -- Thermal considerations -- The mean temperature -- Newton's law of cooling -- Fully developed conditions -- Internal flow with constant heat flux, -- Internal flow with constant wall temperature, -- Analytical solution for Nusselt number for a fully developed flow -- Correlation for turbulent flow inside tubes and ducts -- Problems -- References -- Chapter 6 - Natural convection -- 6.1 - Introduction -- 6.2 - Natural convection over a flat plate | |
505 | 8 | |a 6.3 - Boundary layer equations and nondimensional numbers -- 6.4 - Empirical correlations for natural convection -- References -- Chapter 7 - Heat exchangers -- 7.1 - Introduction -- 7.2 - Classification of heat exchangers -- Based on the nature of the heat exchange process -- Based on the direction of fluid flow -- Based on the mechanical design -- Based on the physical state of working fluid -- Based on the compactness -- 7.3 - Heat exchanger analysis -- 7.4 - The LMTD method -- 7.4.1 - The parallel-flow heat exchanger -- 7.4.2 - The counterflow heat exchanger -- 7.4.3 - Heat exchangers with phase change -- 7.4.4 - When is LMTD not applicable? -- 7.4.5 - Shell and tube heat exchanger -- 7.4.6 - Cross-flow heat exchanger -- 7.5 - The effectiveness-NTU method -- 7.5.1 - Effectiveness of a parallel-flow heat exchanger -- 7.5.2 - Effectiveness of a counterflow heat exchanger -- 7.5.3 - Comparison between parallel-flow and counterflow heat exchangers -- 7.6 - Comparison between the LMTD and effectiveness-NTU methods -- 7.7 - Other considerations in the design of a heat exchanger -- References -- Chapter 8 - Thermal radiation -- 8.1 - Introduction -- 8.2 - Concepts and definitions in radiation -- 8.3 - Black body and laws of black body radiation -- 8.3.1 - Black body -- 8.3.2 - Spectral directional intensity -- 8.3.3 - Planck's distribution -- 8.3.4 - Wien's displacement law -- 8.3.5 - Stefan-Boltzmann law -- 8.3.6 - Universal black body curve -- 8.4 - Properties of real surfaces -- 8.4.1 Emissivity (ε) -- 8.4.2 - Apportioning of radiation falling on a surface -- 8.4.3 - Spectral directional absorptivity -- 8.5 - Kirchoff's law -- 8.6 - Net radiative heat transfer from a surface -- 8.7 - Radiation heat transfer between surfaces -- 8.8 - Radiation view factor and its determination -- 8.8.1 - View factor algebra -- 8.9 - The radiosity-irradiation method | |
505 | 8 | |a 8.10 - Introduction to gas radiation -- 8.11 - Equation of transfer or radiative transfer equation (RTE) -- 8.11.1 - Determination of heat fluxes -- 8.11.2 - Enclosure analysis in the presence of an absorbing or emitting gas -- 8.11.3 - Calculation of emissivities and absorptivities for a mixture of gases -- References -- Chapter 9 - Numerical heat transfer -- 9.1 - Introduction -- 9.2 - Three broad approaches to numerical methods -- 9.3 - Equations and their classification -- 9.3.1 - Classification based on linearity and order -- 9.3.2 - Classification based on information propagation -- 9.4 - Basics of the finite difference method -- 9.4.1 - Taylor series and finite difference formulae -- 9.4.2 - Overall process for the finite difference method -- 9.5 - Steady conduction -- 9.6 - Unsteady conduction -- 9.7 - Introduction to methods for convection -- 9.8 - Practical considerations in engineering problems -- Chapter 10 - Machine learning in heat transfer -- 10.1 - Introduction -- 10.2 - Physics versus data methods -- 10.2.1 - Physics and data in heat transfer -- 10.2.2 - Artificial intelligence and machine learning -- 10.2.3 - Common algorithms in machine learning -- 10.3 - Neural networks for heat transfer -- 10.3.1 - The learning paradigm -- 10.3.2 - Linear regression -- 10.3.3 - Neural networks -- 10.4 - Practical considerations in engineering problems -- 10.5 - Applications in heat transfer -- 10.6 - Summary -- References -- Chapter 11 - Boiling and condensation -- 11.1 - Introduction -- 11.2 - Boiling -- 11.3 - Pool boiling -- 11.3.1 - Pool boiling curve -- 11.3.2 - Nucleation -- 11.3.3 - Nucleate boiling -- 11.3.4 - Critical heat flux -- 11.3.5 - Film boiling -- 11.4 - Flow boiling -- 11.4.1 - Flow boiling regimes -- 11.4.2 - The Chen correlation -- 11.4.3 - Critical heat flux in flow boiling | |
505 | 8 | |a 11.4.4 - A brief overview of flow boiling in micro-channels -- 11.5 - Condensation -- 11.6 - Film condensation on a vertical plate -- 11.7 - Condensation on horizontal tubes -- 11.8 - Two-phase pressure drop -- 11.8.1 - Total pressure drop -- Problems -- References -- Chapter 12 - Introduction to convective mass transfer -- 12.1 - Introduction -- 12.2 - Fick's law of diffusion -- 12.3 - The convective mass transfer coefficient -- 12.4 - The velocity, thermal, and concentration boundary layers -- 12.5 - Analogy between momentum, heat transfer, and mass transfer -- 12.5.1 - The Reynolds analogy -- 12.5.2 - The Chilton-Colburn analogy -- 12.6 - Convective mass transfer relations -- 12.6.1 - Flow over a flat plate -- 12.6.2 - Internal flow -- 12.7 - A note on the convective heat and mass analogy -- 12.8 - Simultaneous heat and mass transfer -- References -- Index -- Back cover | |
700 | 1 | |a Srinivasan, Balaji |e Verfasser |4 aut | |
700 | 1 | |a Gedupudi, Sateesh |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-12-818503-2 |
912 | |a ZDB-30-PQE | ||
912 | |a ZDB-33-EBS | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032844458 | |
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6404826 |l DE-1050 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6404826 |l DE-91 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://doi.org/10.1016/C2018-0-02085-X |l DE-706 |p ZDB-33-EBS |q UBY_PDA_EBS_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1816337200437002240 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Balaji, C. Srinivasan, Balaji Gedupudi, Sateesh |
author_GND | (DE-588)1043395334 |
author_facet | Balaji, C. Srinivasan, Balaji Gedupudi, Sateesh |
author_role | aut aut aut |
author_sort | Balaji, C. |
author_variant | c b cb b s bs s g sg |
building | Verbundindex |
bvnumber | BV047442306 |
classification_rvk | UG 2500 |
classification_tum | MTA 720 |
collection | ZDB-30-PQE ZDB-33-EBS |
contents | Cover -- Title -- Copyright -- Dedication -- Contents -- Preface -- Chapter 1 - Introduction -- 1.1 - Thermodynamics and heat transfer -- 1.2 - Heat transfer and its applications -- 1.3 - Modes of heat transfer -- 1.4 - Conduction -- 1.5 - Convection -- 1.5.1 - Mechanism of convection -- 1.6 - Thermal radiation -- 1.7 - Combined modes of heat transfer -- 1.8 - Phase-change heat transfer -- 1.9 - Concept of continuum -- Problems -- References -- Chapter 2 - One-dimensional, steady state heat conduction -- 2.1 - Introduction -- 2.2 - Three-dimensional conduction equation -- 2.2.1 - Boundary conditions -- 2.3 - Steady state, one-dimensional conduction in a few commonly encountered systems -- 2.3.1 - Heat transfer in a plane wall -- 2.4 - Electrical analogy and thermal resistance -- 2.5 - Heat transfer in cylindrical coordinates -- 2.5.1 - Critical radius of insulation for cylinder -- 2.6 - Steady state conduction in a spherical shell -- 2.7 - Steady state conduction in a composite wall, cylinder and sphere -- 2.7.1 - Composite wall -- 2.7.1.1 - Parallel connection -- 2.7.1.2 - Series-parallel connection -- 2.7.1.3 - Thermal contact resistance -- 2.7.2 - Composite cylinder -- 2.7.3 - Composite sphere -- 2.8 - One-dimensional, steady state heat conduction with heat generation -- 2.8.1 - Plane wall with heat generation -- 2.9 - Fin heat transfer -- 2.10 - Analysis of fin heat transfer -- 2.10.1 - Case 1: Insulated tip -- Fin efficiency -- Effectiveness of the fin -- Rectangular fin -- 2.10.2 - Case 2: Long fin -- 2.10.3 - Case 3: Convecting tip -- 2.10.4 - Variable area fins -- References -- Chapter 3 - Conduction: One-dimensional transient and two-dimensional steady state -- 3.1 - Introduction -- 3.2 - Lumped capacitance method -- 3.3 - Semi-infinite approximation -- 3.4 - The method of separation of variables 3.5 - Analysis of two-dimensional, steady state systems -- References -- Chapter 4 - Fundamentals of convection -- 4.1 - Introduction -- 4.2 - Fundamentals of convective heat transfer -- 4.2.1 - Conduction, advection, and convection -- 4.2.2 - The microscopic picture -- 4.2.3 - Fundamental definition of convection -- 4.3 - The heat transfer coefficient -- 4.3.1 - Newton's law vs. the fundamental definition -- 4.3.2 - Average heat transfer coefficient -- 4.3.3 - Methods of estimating the heat transfer coefficient -- 4.4 - Governing equations -- 4.4.1 - General approach to conservation laws -- 4.4.2 - Law of conservation of mass -- 4.4.3 - Momentum equations -- 4.4.4 - Energy equation -- 4.4.5 - Summary of equations -- 4.5 - Summary -- References -- Chapter 5 - Forced convection -- 5.1 - Introduction -- 5.2 - Approximation using order of magnitude analysis -- 5.3 - Nondimensionalization of the governing equations -- 5.4 - Approximate solution to the boundary layer equations -- Solution to integral momentum and energy equations with trial velocity and temperature profiles -- Integral method for fluids with -- Flow over a cylinder -- Flow over a sphere -- Heat transfer in flows across a bank of tubes -- 5.5 - Turbulent flow -- Reynolds analogy -- 5.6 - Internal flows -- 5.6.1 - Governing equations and the quest for an analytical solution -- Noncircular ducts -- Thermal considerations -- The mean temperature -- Newton's law of cooling -- Fully developed conditions -- Internal flow with constant heat flux, -- Internal flow with constant wall temperature, -- Analytical solution for Nusselt number for a fully developed flow -- Correlation for turbulent flow inside tubes and ducts -- Problems -- References -- Chapter 6 - Natural convection -- 6.1 - Introduction -- 6.2 - Natural convection over a flat plate 6.3 - Boundary layer equations and nondimensional numbers -- 6.4 - Empirical correlations for natural convection -- References -- Chapter 7 - Heat exchangers -- 7.1 - Introduction -- 7.2 - Classification of heat exchangers -- Based on the nature of the heat exchange process -- Based on the direction of fluid flow -- Based on the mechanical design -- Based on the physical state of working fluid -- Based on the compactness -- 7.3 - Heat exchanger analysis -- 7.4 - The LMTD method -- 7.4.1 - The parallel-flow heat exchanger -- 7.4.2 - The counterflow heat exchanger -- 7.4.3 - Heat exchangers with phase change -- 7.4.4 - When is LMTD not applicable? -- 7.4.5 - Shell and tube heat exchanger -- 7.4.6 - Cross-flow heat exchanger -- 7.5 - The effectiveness-NTU method -- 7.5.1 - Effectiveness of a parallel-flow heat exchanger -- 7.5.2 - Effectiveness of a counterflow heat exchanger -- 7.5.3 - Comparison between parallel-flow and counterflow heat exchangers -- 7.6 - Comparison between the LMTD and effectiveness-NTU methods -- 7.7 - Other considerations in the design of a heat exchanger -- References -- Chapter 8 - Thermal radiation -- 8.1 - Introduction -- 8.2 - Concepts and definitions in radiation -- 8.3 - Black body and laws of black body radiation -- 8.3.1 - Black body -- 8.3.2 - Spectral directional intensity -- 8.3.3 - Planck's distribution -- 8.3.4 - Wien's displacement law -- 8.3.5 - Stefan-Boltzmann law -- 8.3.6 - Universal black body curve -- 8.4 - Properties of real surfaces -- 8.4.1 Emissivity (ε) -- 8.4.2 - Apportioning of radiation falling on a surface -- 8.4.3 - Spectral directional absorptivity -- 8.5 - Kirchoff's law -- 8.6 - Net radiative heat transfer from a surface -- 8.7 - Radiation heat transfer between surfaces -- 8.8 - Radiation view factor and its determination -- 8.8.1 - View factor algebra -- 8.9 - The radiosity-irradiation method 8.10 - Introduction to gas radiation -- 8.11 - Equation of transfer or radiative transfer equation (RTE) -- 8.11.1 - Determination of heat fluxes -- 8.11.2 - Enclosure analysis in the presence of an absorbing or emitting gas -- 8.11.3 - Calculation of emissivities and absorptivities for a mixture of gases -- References -- Chapter 9 - Numerical heat transfer -- 9.1 - Introduction -- 9.2 - Three broad approaches to numerical methods -- 9.3 - Equations and their classification -- 9.3.1 - Classification based on linearity and order -- 9.3.2 - Classification based on information propagation -- 9.4 - Basics of the finite difference method -- 9.4.1 - Taylor series and finite difference formulae -- 9.4.2 - Overall process for the finite difference method -- 9.5 - Steady conduction -- 9.6 - Unsteady conduction -- 9.7 - Introduction to methods for convection -- 9.8 - Practical considerations in engineering problems -- Chapter 10 - Machine learning in heat transfer -- 10.1 - Introduction -- 10.2 - Physics versus data methods -- 10.2.1 - Physics and data in heat transfer -- 10.2.2 - Artificial intelligence and machine learning -- 10.2.3 - Common algorithms in machine learning -- 10.3 - Neural networks for heat transfer -- 10.3.1 - The learning paradigm -- 10.3.2 - Linear regression -- 10.3.3 - Neural networks -- 10.4 - Practical considerations in engineering problems -- 10.5 - Applications in heat transfer -- 10.6 - Summary -- References -- Chapter 11 - Boiling and condensation -- 11.1 - Introduction -- 11.2 - Boiling -- 11.3 - Pool boiling -- 11.3.1 - Pool boiling curve -- 11.3.2 - Nucleation -- 11.3.3 - Nucleate boiling -- 11.3.4 - Critical heat flux -- 11.3.5 - Film boiling -- 11.4 - Flow boiling -- 11.4.1 - Flow boiling regimes -- 11.4.2 - The Chen correlation -- 11.4.3 - Critical heat flux in flow boiling 11.4.4 - A brief overview of flow boiling in micro-channels -- 11.5 - Condensation -- 11.6 - Film condensation on a vertical plate -- 11.7 - Condensation on horizontal tubes -- 11.8 - Two-phase pressure drop -- 11.8.1 - Total pressure drop -- Problems -- References -- Chapter 12 - Introduction to convective mass transfer -- 12.1 - Introduction -- 12.2 - Fick's law of diffusion -- 12.3 - The convective mass transfer coefficient -- 12.4 - The velocity, thermal, and concentration boundary layers -- 12.5 - Analogy between momentum, heat transfer, and mass transfer -- 12.5.1 - The Reynolds analogy -- 12.5.2 - The Chilton-Colburn analogy -- 12.6 - Convective mass transfer relations -- 12.6.1 - Flow over a flat plate -- 12.6.2 - Internal flow -- 12.7 - A note on the convective heat and mass analogy -- 12.8 - Simultaneous heat and mass transfer -- References -- Index -- Back cover |
ctrlnum | (ZDB-30-PQE)EBC6404826 (ZDB-30-PAD)EBC6404826 (ZDB-89-EBL)EBL6404826 (ZDB-33-EBS)9780128185032 (OCoLC)1268191760 (DE-599)BVBBV047442306 |
dewey-full | 621.4022 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.4022 |
dewey-search | 621.4022 |
dewey-sort | 3621.4022 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Energietechnik |
discipline_str_mv | Physik Energietechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV047442306</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241121</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128185049</subfield><subfield code="9">978-0-12-818504-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/C2018-0-02085-X</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6404826</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6404826</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6404826</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)9780128185032</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1268191760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442306</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.4022</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 2500</subfield><subfield code="0">(DE-625)145618:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 720</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Balaji, C.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1043395334</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heat transfer engineering</subfield><subfield code="b">fundamentals and techniques</subfield><subfield code="c">C. Balaji, Balaji Srinivasan, Sateesh Gedupudi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom</subfield><subfield code="b">Academic Press</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 422 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title -- Copyright -- Dedication -- Contents -- Preface -- Chapter 1 - Introduction -- 1.1 - Thermodynamics and heat transfer -- 1.2 - Heat transfer and its applications -- 1.3 - Modes of heat transfer -- 1.4 - Conduction -- 1.5 - Convection -- 1.5.1 - Mechanism of convection -- 1.6 - Thermal radiation -- 1.7 - Combined modes of heat transfer -- 1.8 - Phase-change heat transfer -- 1.9 - Concept of continuum -- Problems -- References -- Chapter 2 - One-dimensional, steady state heat conduction -- 2.1 - Introduction -- 2.2 - Three-dimensional conduction equation -- 2.2.1 - Boundary conditions -- 2.3 - Steady state, one-dimensional conduction in a few commonly encountered systems -- 2.3.1 - Heat transfer in a plane wall -- 2.4 - Electrical analogy and thermal resistance -- 2.5 - Heat transfer in cylindrical coordinates -- 2.5.1 - Critical radius of insulation for cylinder -- 2.6 - Steady state conduction in a spherical shell -- 2.7 - Steady state conduction in a composite wall, cylinder and sphere -- 2.7.1 - Composite wall -- 2.7.1.1 - Parallel connection -- 2.7.1.2 - Series-parallel connection -- 2.7.1.3 - Thermal contact resistance -- 2.7.2 - Composite cylinder -- 2.7.3 - Composite sphere -- 2.8 - One-dimensional, steady state heat conduction with heat generation -- 2.8.1 - Plane wall with heat generation -- 2.9 - Fin heat transfer -- 2.10 - Analysis of fin heat transfer -- 2.10.1 - Case 1: Insulated tip -- Fin efficiency -- Effectiveness of the fin -- Rectangular fin -- 2.10.2 - Case 2: Long fin -- 2.10.3 - Case 3: Convecting tip -- 2.10.4 - Variable area fins -- References -- Chapter 3 - Conduction: One-dimensional transient and two-dimensional steady state -- 3.1 - Introduction -- 3.2 - Lumped capacitance method -- 3.3 - Semi-infinite approximation -- 3.4 - The method of separation of variables</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.5 - Analysis of two-dimensional, steady state systems -- References -- Chapter 4 - Fundamentals of convection -- 4.1 - Introduction -- 4.2 - Fundamentals of convective heat transfer -- 4.2.1 - Conduction, advection, and convection -- 4.2.2 - The microscopic picture -- 4.2.3 - Fundamental definition of convection -- 4.3 - The heat transfer coefficient -- 4.3.1 - Newton's law vs. the fundamental definition -- 4.3.2 - Average heat transfer coefficient -- 4.3.3 - Methods of estimating the heat transfer coefficient -- 4.4 - Governing equations -- 4.4.1 - General approach to conservation laws -- 4.4.2 - Law of conservation of mass -- 4.4.3 - Momentum equations -- 4.4.4 - Energy equation -- 4.4.5 - Summary of equations -- 4.5 - Summary -- References -- Chapter 5 - Forced convection -- 5.1 - Introduction -- 5.2 - Approximation using order of magnitude analysis -- 5.3 - Nondimensionalization of the governing equations -- 5.4 - Approximate solution to the boundary layer equations -- Solution to integral momentum and energy equations with trial velocity and temperature profiles -- Integral method for fluids with -- Flow over a cylinder -- Flow over a sphere -- Heat transfer in flows across a bank of tubes -- 5.5 - Turbulent flow -- Reynolds analogy -- 5.6 - Internal flows -- 5.6.1 - Governing equations and the quest for an analytical solution -- Noncircular ducts -- Thermal considerations -- The mean temperature -- Newton's law of cooling -- Fully developed conditions -- Internal flow with constant heat flux, -- Internal flow with constant wall temperature, -- Analytical solution for Nusselt number for a fully developed flow -- Correlation for turbulent flow inside tubes and ducts -- Problems -- References -- Chapter 6 - Natural convection -- 6.1 - Introduction -- 6.2 - Natural convection over a flat plate</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.3 - Boundary layer equations and nondimensional numbers -- 6.4 - Empirical correlations for natural convection -- References -- Chapter 7 - Heat exchangers -- 7.1 - Introduction -- 7.2 - Classification of heat exchangers -- Based on the nature of the heat exchange process -- Based on the direction of fluid flow -- Based on the mechanical design -- Based on the physical state of working fluid -- Based on the compactness -- 7.3 - Heat exchanger analysis -- 7.4 - The LMTD method -- 7.4.1 - The parallel-flow heat exchanger -- 7.4.2 - The counterflow heat exchanger -- 7.4.3 - Heat exchangers with phase change -- 7.4.4 - When is LMTD not applicable? -- 7.4.5 - Shell and tube heat exchanger -- 7.4.6 - Cross-flow heat exchanger -- 7.5 - The effectiveness-NTU method -- 7.5.1 - Effectiveness of a parallel-flow heat exchanger -- 7.5.2 - Effectiveness of a counterflow heat exchanger -- 7.5.3 - Comparison between parallel-flow and counterflow heat exchangers -- 7.6 - Comparison between the LMTD and effectiveness-NTU methods -- 7.7 - Other considerations in the design of a heat exchanger -- References -- Chapter 8 - Thermal radiation -- 8.1 - Introduction -- 8.2 - Concepts and definitions in radiation -- 8.3 - Black body and laws of black body radiation -- 8.3.1 - Black body -- 8.3.2 - Spectral directional intensity -- 8.3.3 - Planck's distribution -- 8.3.4 - Wien's displacement law -- 8.3.5 - Stefan-Boltzmann law -- 8.3.6 - Universal black body curve -- 8.4 - Properties of real surfaces -- 8.4.1 Emissivity (ε) -- 8.4.2 - Apportioning of radiation falling on a surface -- 8.4.3 - Spectral directional absorptivity -- 8.5 - Kirchoff's law -- 8.6 - Net radiative heat transfer from a surface -- 8.7 - Radiation heat transfer between surfaces -- 8.8 - Radiation view factor and its determination -- 8.8.1 - View factor algebra -- 8.9 - The radiosity-irradiation method</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.10 - Introduction to gas radiation -- 8.11 - Equation of transfer or radiative transfer equation (RTE) -- 8.11.1 - Determination of heat fluxes -- 8.11.2 - Enclosure analysis in the presence of an absorbing or emitting gas -- 8.11.3 - Calculation of emissivities and absorptivities for a mixture of gases -- References -- Chapter 9 - Numerical heat transfer -- 9.1 - Introduction -- 9.2 - Three broad approaches to numerical methods -- 9.3 - Equations and their classification -- 9.3.1 - Classification based on linearity and order -- 9.3.2 - Classification based on information propagation -- 9.4 - Basics of the finite difference method -- 9.4.1 - Taylor series and finite difference formulae -- 9.4.2 - Overall process for the finite difference method -- 9.5 - Steady conduction -- 9.6 - Unsteady conduction -- 9.7 - Introduction to methods for convection -- 9.8 - Practical considerations in engineering problems -- Chapter 10 - Machine learning in heat transfer -- 10.1 - Introduction -- 10.2 - Physics versus data methods -- 10.2.1 - Physics and data in heat transfer -- 10.2.2 - Artificial intelligence and machine learning -- 10.2.3 - Common algorithms in machine learning -- 10.3 - Neural networks for heat transfer -- 10.3.1 - The learning paradigm -- 10.3.2 - Linear regression -- 10.3.3 - Neural networks -- 10.4 - Practical considerations in engineering problems -- 10.5 - Applications in heat transfer -- 10.6 - Summary -- References -- Chapter 11 - Boiling and condensation -- 11.1 - Introduction -- 11.2 - Boiling -- 11.3 - Pool boiling -- 11.3.1 - Pool boiling curve -- 11.3.2 - Nucleation -- 11.3.3 - Nucleate boiling -- 11.3.4 - Critical heat flux -- 11.3.5 - Film boiling -- 11.4 - Flow boiling -- 11.4.1 - Flow boiling regimes -- 11.4.2 - The Chen correlation -- 11.4.3 - Critical heat flux in flow boiling</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11.4.4 - A brief overview of flow boiling in micro-channels -- 11.5 - Condensation -- 11.6 - Film condensation on a vertical plate -- 11.7 - Condensation on horizontal tubes -- 11.8 - Two-phase pressure drop -- 11.8.1 - Total pressure drop -- Problems -- References -- Chapter 12 - Introduction to convective mass transfer -- 12.1 - Introduction -- 12.2 - Fick's law of diffusion -- 12.3 - The convective mass transfer coefficient -- 12.4 - The velocity, thermal, and concentration boundary layers -- 12.5 - Analogy between momentum, heat transfer, and mass transfer -- 12.5.1 - The Reynolds analogy -- 12.5.2 - The Chilton-Colburn analogy -- 12.6 - Convective mass transfer relations -- 12.6.1 - Flow over a flat plate -- 12.6.2 - Internal flow -- 12.7 - A note on the convective heat and mass analogy -- 12.8 - Simultaneous heat and mass transfer -- References -- Index -- Back cover</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Srinivasan, Balaji</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gedupudi, Sateesh</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-12-818503-2</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844458</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6404826</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6404826</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1016/C2018-0-02085-X</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-33-EBS</subfield><subfield code="q">UBY_PDA_EBS_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047442306 |
illustrated | Illustrated |
index_date | 2024-07-03T18:01:24Z |
indexdate | 2024-11-21T13:02:17Z |
institution | BVB |
isbn | 9780128185049 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844458 |
oclc_num | 1268191760 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-1050 DE-706 |
owner_facet | DE-91 DE-BY-TUM DE-1050 DE-706 |
physical | 1 Online-Ressource (xv, 422 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-33-EBS ZDB-30-PQE FHD01_PQE_Kauf ZDB-30-PQE TUM_PDA_PQE_Kauf ZDB-33-EBS UBY_PDA_EBS_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Academic Press |
record_format | marc |
spelling | Balaji, C. Verfasser (DE-588)1043395334 aut Heat transfer engineering fundamentals and techniques C. Balaji, Balaji Srinivasan, Sateesh Gedupudi London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom Academic Press [2021] © 2021 1 Online-Ressource (xv, 422 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Title -- Copyright -- Dedication -- Contents -- Preface -- Chapter 1 - Introduction -- 1.1 - Thermodynamics and heat transfer -- 1.2 - Heat transfer and its applications -- 1.3 - Modes of heat transfer -- 1.4 - Conduction -- 1.5 - Convection -- 1.5.1 - Mechanism of convection -- 1.6 - Thermal radiation -- 1.7 - Combined modes of heat transfer -- 1.8 - Phase-change heat transfer -- 1.9 - Concept of continuum -- Problems -- References -- Chapter 2 - One-dimensional, steady state heat conduction -- 2.1 - Introduction -- 2.2 - Three-dimensional conduction equation -- 2.2.1 - Boundary conditions -- 2.3 - Steady state, one-dimensional conduction in a few commonly encountered systems -- 2.3.1 - Heat transfer in a plane wall -- 2.4 - Electrical analogy and thermal resistance -- 2.5 - Heat transfer in cylindrical coordinates -- 2.5.1 - Critical radius of insulation for cylinder -- 2.6 - Steady state conduction in a spherical shell -- 2.7 - Steady state conduction in a composite wall, cylinder and sphere -- 2.7.1 - Composite wall -- 2.7.1.1 - Parallel connection -- 2.7.1.2 - Series-parallel connection -- 2.7.1.3 - Thermal contact resistance -- 2.7.2 - Composite cylinder -- 2.7.3 - Composite sphere -- 2.8 - One-dimensional, steady state heat conduction with heat generation -- 2.8.1 - Plane wall with heat generation -- 2.9 - Fin heat transfer -- 2.10 - Analysis of fin heat transfer -- 2.10.1 - Case 1: Insulated tip -- Fin efficiency -- Effectiveness of the fin -- Rectangular fin -- 2.10.2 - Case 2: Long fin -- 2.10.3 - Case 3: Convecting tip -- 2.10.4 - Variable area fins -- References -- Chapter 3 - Conduction: One-dimensional transient and two-dimensional steady state -- 3.1 - Introduction -- 3.2 - Lumped capacitance method -- 3.3 - Semi-infinite approximation -- 3.4 - The method of separation of variables 3.5 - Analysis of two-dimensional, steady state systems -- References -- Chapter 4 - Fundamentals of convection -- 4.1 - Introduction -- 4.2 - Fundamentals of convective heat transfer -- 4.2.1 - Conduction, advection, and convection -- 4.2.2 - The microscopic picture -- 4.2.3 - Fundamental definition of convection -- 4.3 - The heat transfer coefficient -- 4.3.1 - Newton's law vs. the fundamental definition -- 4.3.2 - Average heat transfer coefficient -- 4.3.3 - Methods of estimating the heat transfer coefficient -- 4.4 - Governing equations -- 4.4.1 - General approach to conservation laws -- 4.4.2 - Law of conservation of mass -- 4.4.3 - Momentum equations -- 4.4.4 - Energy equation -- 4.4.5 - Summary of equations -- 4.5 - Summary -- References -- Chapter 5 - Forced convection -- 5.1 - Introduction -- 5.2 - Approximation using order of magnitude analysis -- 5.3 - Nondimensionalization of the governing equations -- 5.4 - Approximate solution to the boundary layer equations -- Solution to integral momentum and energy equations with trial velocity and temperature profiles -- Integral method for fluids with -- Flow over a cylinder -- Flow over a sphere -- Heat transfer in flows across a bank of tubes -- 5.5 - Turbulent flow -- Reynolds analogy -- 5.6 - Internal flows -- 5.6.1 - Governing equations and the quest for an analytical solution -- Noncircular ducts -- Thermal considerations -- The mean temperature -- Newton's law of cooling -- Fully developed conditions -- Internal flow with constant heat flux, -- Internal flow with constant wall temperature, -- Analytical solution for Nusselt number for a fully developed flow -- Correlation for turbulent flow inside tubes and ducts -- Problems -- References -- Chapter 6 - Natural convection -- 6.1 - Introduction -- 6.2 - Natural convection over a flat plate 6.3 - Boundary layer equations and nondimensional numbers -- 6.4 - Empirical correlations for natural convection -- References -- Chapter 7 - Heat exchangers -- 7.1 - Introduction -- 7.2 - Classification of heat exchangers -- Based on the nature of the heat exchange process -- Based on the direction of fluid flow -- Based on the mechanical design -- Based on the physical state of working fluid -- Based on the compactness -- 7.3 - Heat exchanger analysis -- 7.4 - The LMTD method -- 7.4.1 - The parallel-flow heat exchanger -- 7.4.2 - The counterflow heat exchanger -- 7.4.3 - Heat exchangers with phase change -- 7.4.4 - When is LMTD not applicable? -- 7.4.5 - Shell and tube heat exchanger -- 7.4.6 - Cross-flow heat exchanger -- 7.5 - The effectiveness-NTU method -- 7.5.1 - Effectiveness of a parallel-flow heat exchanger -- 7.5.2 - Effectiveness of a counterflow heat exchanger -- 7.5.3 - Comparison between parallel-flow and counterflow heat exchangers -- 7.6 - Comparison between the LMTD and effectiveness-NTU methods -- 7.7 - Other considerations in the design of a heat exchanger -- References -- Chapter 8 - Thermal radiation -- 8.1 - Introduction -- 8.2 - Concepts and definitions in radiation -- 8.3 - Black body and laws of black body radiation -- 8.3.1 - Black body -- 8.3.2 - Spectral directional intensity -- 8.3.3 - Planck's distribution -- 8.3.4 - Wien's displacement law -- 8.3.5 - Stefan-Boltzmann law -- 8.3.6 - Universal black body curve -- 8.4 - Properties of real surfaces -- 8.4.1 Emissivity (ε) -- 8.4.2 - Apportioning of radiation falling on a surface -- 8.4.3 - Spectral directional absorptivity -- 8.5 - Kirchoff's law -- 8.6 - Net radiative heat transfer from a surface -- 8.7 - Radiation heat transfer between surfaces -- 8.8 - Radiation view factor and its determination -- 8.8.1 - View factor algebra -- 8.9 - The radiosity-irradiation method 8.10 - Introduction to gas radiation -- 8.11 - Equation of transfer or radiative transfer equation (RTE) -- 8.11.1 - Determination of heat fluxes -- 8.11.2 - Enclosure analysis in the presence of an absorbing or emitting gas -- 8.11.3 - Calculation of emissivities and absorptivities for a mixture of gases -- References -- Chapter 9 - Numerical heat transfer -- 9.1 - Introduction -- 9.2 - Three broad approaches to numerical methods -- 9.3 - Equations and their classification -- 9.3.1 - Classification based on linearity and order -- 9.3.2 - Classification based on information propagation -- 9.4 - Basics of the finite difference method -- 9.4.1 - Taylor series and finite difference formulae -- 9.4.2 - Overall process for the finite difference method -- 9.5 - Steady conduction -- 9.6 - Unsteady conduction -- 9.7 - Introduction to methods for convection -- 9.8 - Practical considerations in engineering problems -- Chapter 10 - Machine learning in heat transfer -- 10.1 - Introduction -- 10.2 - Physics versus data methods -- 10.2.1 - Physics and data in heat transfer -- 10.2.2 - Artificial intelligence and machine learning -- 10.2.3 - Common algorithms in machine learning -- 10.3 - Neural networks for heat transfer -- 10.3.1 - The learning paradigm -- 10.3.2 - Linear regression -- 10.3.3 - Neural networks -- 10.4 - Practical considerations in engineering problems -- 10.5 - Applications in heat transfer -- 10.6 - Summary -- References -- Chapter 11 - Boiling and condensation -- 11.1 - Introduction -- 11.2 - Boiling -- 11.3 - Pool boiling -- 11.3.1 - Pool boiling curve -- 11.3.2 - Nucleation -- 11.3.3 - Nucleate boiling -- 11.3.4 - Critical heat flux -- 11.3.5 - Film boiling -- 11.4 - Flow boiling -- 11.4.1 - Flow boiling regimes -- 11.4.2 - The Chen correlation -- 11.4.3 - Critical heat flux in flow boiling 11.4.4 - A brief overview of flow boiling in micro-channels -- 11.5 - Condensation -- 11.6 - Film condensation on a vertical plate -- 11.7 - Condensation on horizontal tubes -- 11.8 - Two-phase pressure drop -- 11.8.1 - Total pressure drop -- Problems -- References -- Chapter 12 - Introduction to convective mass transfer -- 12.1 - Introduction -- 12.2 - Fick's law of diffusion -- 12.3 - The convective mass transfer coefficient -- 12.4 - The velocity, thermal, and concentration boundary layers -- 12.5 - Analogy between momentum, heat transfer, and mass transfer -- 12.5.1 - The Reynolds analogy -- 12.5.2 - The Chilton-Colburn analogy -- 12.6 - Convective mass transfer relations -- 12.6.1 - Flow over a flat plate -- 12.6.2 - Internal flow -- 12.7 - A note on the convective heat and mass analogy -- 12.8 - Simultaneous heat and mass transfer -- References -- Index -- Back cover Srinivasan, Balaji Verfasser aut Gedupudi, Sateesh Verfasser aut Erscheint auch als Druck-Ausgabe 978-0-12-818503-2 |
spellingShingle | Balaji, C. Srinivasan, Balaji Gedupudi, Sateesh Heat transfer engineering fundamentals and techniques Cover -- Title -- Copyright -- Dedication -- Contents -- Preface -- Chapter 1 - Introduction -- 1.1 - Thermodynamics and heat transfer -- 1.2 - Heat transfer and its applications -- 1.3 - Modes of heat transfer -- 1.4 - Conduction -- 1.5 - Convection -- 1.5.1 - Mechanism of convection -- 1.6 - Thermal radiation -- 1.7 - Combined modes of heat transfer -- 1.8 - Phase-change heat transfer -- 1.9 - Concept of continuum -- Problems -- References -- Chapter 2 - One-dimensional, steady state heat conduction -- 2.1 - Introduction -- 2.2 - Three-dimensional conduction equation -- 2.2.1 - Boundary conditions -- 2.3 - Steady state, one-dimensional conduction in a few commonly encountered systems -- 2.3.1 - Heat transfer in a plane wall -- 2.4 - Electrical analogy and thermal resistance -- 2.5 - Heat transfer in cylindrical coordinates -- 2.5.1 - Critical radius of insulation for cylinder -- 2.6 - Steady state conduction in a spherical shell -- 2.7 - Steady state conduction in a composite wall, cylinder and sphere -- 2.7.1 - Composite wall -- 2.7.1.1 - Parallel connection -- 2.7.1.2 - Series-parallel connection -- 2.7.1.3 - Thermal contact resistance -- 2.7.2 - Composite cylinder -- 2.7.3 - Composite sphere -- 2.8 - One-dimensional, steady state heat conduction with heat generation -- 2.8.1 - Plane wall with heat generation -- 2.9 - Fin heat transfer -- 2.10 - Analysis of fin heat transfer -- 2.10.1 - Case 1: Insulated tip -- Fin efficiency -- Effectiveness of the fin -- Rectangular fin -- 2.10.2 - Case 2: Long fin -- 2.10.3 - Case 3: Convecting tip -- 2.10.4 - Variable area fins -- References -- Chapter 3 - Conduction: One-dimensional transient and two-dimensional steady state -- 3.1 - Introduction -- 3.2 - Lumped capacitance method -- 3.3 - Semi-infinite approximation -- 3.4 - The method of separation of variables 3.5 - Analysis of two-dimensional, steady state systems -- References -- Chapter 4 - Fundamentals of convection -- 4.1 - Introduction -- 4.2 - Fundamentals of convective heat transfer -- 4.2.1 - Conduction, advection, and convection -- 4.2.2 - The microscopic picture -- 4.2.3 - Fundamental definition of convection -- 4.3 - The heat transfer coefficient -- 4.3.1 - Newton's law vs. the fundamental definition -- 4.3.2 - Average heat transfer coefficient -- 4.3.3 - Methods of estimating the heat transfer coefficient -- 4.4 - Governing equations -- 4.4.1 - General approach to conservation laws -- 4.4.2 - Law of conservation of mass -- 4.4.3 - Momentum equations -- 4.4.4 - Energy equation -- 4.4.5 - Summary of equations -- 4.5 - Summary -- References -- Chapter 5 - Forced convection -- 5.1 - Introduction -- 5.2 - Approximation using order of magnitude analysis -- 5.3 - Nondimensionalization of the governing equations -- 5.4 - Approximate solution to the boundary layer equations -- Solution to integral momentum and energy equations with trial velocity and temperature profiles -- Integral method for fluids with -- Flow over a cylinder -- Flow over a sphere -- Heat transfer in flows across a bank of tubes -- 5.5 - Turbulent flow -- Reynolds analogy -- 5.6 - Internal flows -- 5.6.1 - Governing equations and the quest for an analytical solution -- Noncircular ducts -- Thermal considerations -- The mean temperature -- Newton's law of cooling -- Fully developed conditions -- Internal flow with constant heat flux, -- Internal flow with constant wall temperature, -- Analytical solution for Nusselt number for a fully developed flow -- Correlation for turbulent flow inside tubes and ducts -- Problems -- References -- Chapter 6 - Natural convection -- 6.1 - Introduction -- 6.2 - Natural convection over a flat plate 6.3 - Boundary layer equations and nondimensional numbers -- 6.4 - Empirical correlations for natural convection -- References -- Chapter 7 - Heat exchangers -- 7.1 - Introduction -- 7.2 - Classification of heat exchangers -- Based on the nature of the heat exchange process -- Based on the direction of fluid flow -- Based on the mechanical design -- Based on the physical state of working fluid -- Based on the compactness -- 7.3 - Heat exchanger analysis -- 7.4 - The LMTD method -- 7.4.1 - The parallel-flow heat exchanger -- 7.4.2 - The counterflow heat exchanger -- 7.4.3 - Heat exchangers with phase change -- 7.4.4 - When is LMTD not applicable? -- 7.4.5 - Shell and tube heat exchanger -- 7.4.6 - Cross-flow heat exchanger -- 7.5 - The effectiveness-NTU method -- 7.5.1 - Effectiveness of a parallel-flow heat exchanger -- 7.5.2 - Effectiveness of a counterflow heat exchanger -- 7.5.3 - Comparison between parallel-flow and counterflow heat exchangers -- 7.6 - Comparison between the LMTD and effectiveness-NTU methods -- 7.7 - Other considerations in the design of a heat exchanger -- References -- Chapter 8 - Thermal radiation -- 8.1 - Introduction -- 8.2 - Concepts and definitions in radiation -- 8.3 - Black body and laws of black body radiation -- 8.3.1 - Black body -- 8.3.2 - Spectral directional intensity -- 8.3.3 - Planck's distribution -- 8.3.4 - Wien's displacement law -- 8.3.5 - Stefan-Boltzmann law -- 8.3.6 - Universal black body curve -- 8.4 - Properties of real surfaces -- 8.4.1 Emissivity (ε) -- 8.4.2 - Apportioning of radiation falling on a surface -- 8.4.3 - Spectral directional absorptivity -- 8.5 - Kirchoff's law -- 8.6 - Net radiative heat transfer from a surface -- 8.7 - Radiation heat transfer between surfaces -- 8.8 - Radiation view factor and its determination -- 8.8.1 - View factor algebra -- 8.9 - The radiosity-irradiation method 8.10 - Introduction to gas radiation -- 8.11 - Equation of transfer or radiative transfer equation (RTE) -- 8.11.1 - Determination of heat fluxes -- 8.11.2 - Enclosure analysis in the presence of an absorbing or emitting gas -- 8.11.3 - Calculation of emissivities and absorptivities for a mixture of gases -- References -- Chapter 9 - Numerical heat transfer -- 9.1 - Introduction -- 9.2 - Three broad approaches to numerical methods -- 9.3 - Equations and their classification -- 9.3.1 - Classification based on linearity and order -- 9.3.2 - Classification based on information propagation -- 9.4 - Basics of the finite difference method -- 9.4.1 - Taylor series and finite difference formulae -- 9.4.2 - Overall process for the finite difference method -- 9.5 - Steady conduction -- 9.6 - Unsteady conduction -- 9.7 - Introduction to methods for convection -- 9.8 - Practical considerations in engineering problems -- Chapter 10 - Machine learning in heat transfer -- 10.1 - Introduction -- 10.2 - Physics versus data methods -- 10.2.1 - Physics and data in heat transfer -- 10.2.2 - Artificial intelligence and machine learning -- 10.2.3 - Common algorithms in machine learning -- 10.3 - Neural networks for heat transfer -- 10.3.1 - The learning paradigm -- 10.3.2 - Linear regression -- 10.3.3 - Neural networks -- 10.4 - Practical considerations in engineering problems -- 10.5 - Applications in heat transfer -- 10.6 - Summary -- References -- Chapter 11 - Boiling and condensation -- 11.1 - Introduction -- 11.2 - Boiling -- 11.3 - Pool boiling -- 11.3.1 - Pool boiling curve -- 11.3.2 - Nucleation -- 11.3.3 - Nucleate boiling -- 11.3.4 - Critical heat flux -- 11.3.5 - Film boiling -- 11.4 - Flow boiling -- 11.4.1 - Flow boiling regimes -- 11.4.2 - The Chen correlation -- 11.4.3 - Critical heat flux in flow boiling 11.4.4 - A brief overview of flow boiling in micro-channels -- 11.5 - Condensation -- 11.6 - Film condensation on a vertical plate -- 11.7 - Condensation on horizontal tubes -- 11.8 - Two-phase pressure drop -- 11.8.1 - Total pressure drop -- Problems -- References -- Chapter 12 - Introduction to convective mass transfer -- 12.1 - Introduction -- 12.2 - Fick's law of diffusion -- 12.3 - The convective mass transfer coefficient -- 12.4 - The velocity, thermal, and concentration boundary layers -- 12.5 - Analogy between momentum, heat transfer, and mass transfer -- 12.5.1 - The Reynolds analogy -- 12.5.2 - The Chilton-Colburn analogy -- 12.6 - Convective mass transfer relations -- 12.6.1 - Flow over a flat plate -- 12.6.2 - Internal flow -- 12.7 - A note on the convective heat and mass analogy -- 12.8 - Simultaneous heat and mass transfer -- References -- Index -- Back cover |
title | Heat transfer engineering fundamentals and techniques |
title_auth | Heat transfer engineering fundamentals and techniques |
title_exact_search | Heat transfer engineering fundamentals and techniques |
title_exact_search_txtP | Heat transfer engineering fundamentals and techniques |
title_full | Heat transfer engineering fundamentals and techniques C. Balaji, Balaji Srinivasan, Sateesh Gedupudi |
title_fullStr | Heat transfer engineering fundamentals and techniques C. Balaji, Balaji Srinivasan, Sateesh Gedupudi |
title_full_unstemmed | Heat transfer engineering fundamentals and techniques C. Balaji, Balaji Srinivasan, Sateesh Gedupudi |
title_short | Heat transfer engineering |
title_sort | heat transfer engineering fundamentals and techniques |
title_sub | fundamentals and techniques |
work_keys_str_mv | AT balajic heattransferengineeringfundamentalsandtechniques AT srinivasanbalaji heattransferengineeringfundamentalsandtechniques AT gedupudisateesh heattransferengineeringfundamentalsandtechniques |