Engineering Thermodynamics: Fundamental and Advanced Topics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Milton
Taylor & Francis Group
2020
|
Schlagworte: | |
Online-Zugang: | UBY01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (489 Seiten) |
ISBN: | 9781000291681 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442209 | ||
003 | DE-604 | ||
005 | 20220307 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781000291681 |9 978-1-00-029168-1 | ||
035 | |a (ZDB-30-PQE)EBC6385045 | ||
035 | |a (ZDB-30-PAD)EBC6385045 | ||
035 | |a (ZDB-89-EBL)EBL6385045 | ||
035 | |a (ZDB-4-NLEBK)2666967 | ||
035 | |a (OCoLC)1235594755 | ||
035 | |a (DE-599)BVBBV047442209 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 621 | |
100 | 1 | |a Venkateswarlu, Kavati |e Verfasser |4 aut | |
245 | 1 | 0 | |a Engineering Thermodynamics |b Fundamental and Advanced Topics |
264 | 1 | |a Milton |b Taylor & Francis Group |c 2020 | |
264 | 4 | |c ©2021 | |
300 | |a 1 Online-Ressource (489 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- dedication -- Table of Contents -- Foreword -- Preface -- Acknowledgments -- Author -- Chapter 1 Introduction and Basic Concepts -- 1.1 Introduction to Thermodynamics -- 1.2 Thermodynamic Systems -- 1.3 Thermodynamic Properties -- 1.4 State, Processes, and Cycles -- 1.5 Homogeneous and Heterogeneous Systems -- 1.6 Thermodynamic Equilibrium -- 1.7 Specific Volume and Density -- 1.8 Pressure -- 1.9 Pressure-Measuring Devices -- Example Problems -- Review Questions -- Exercise Problems -- Chapter 2 Temperature: Zeroth Law of Thermodynamics -- 2.1 Temperature -- 2.2 Zeroth Law of Thermodynamics -- 2.3 Thermometers-Temperature Measurement -- 2.3.1 Reference Points -- 2.3.2 Liquid-in-Glass Tube Thermometer -- 2.3.3 Gas Thermometers -- 2.3.4 Electrical Resistance Thermometer -- 2.3.5 Thermocouple -- 2.4 Temperature Scales -- 2.4.1 Ideal Gas Temperature Scale -- 2.4.2 International Temperature Scale -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 3 Energy and the First Law of Thermodynamics -- 3.1 Energy Analysis -- 3.2 Different Forms of Stored Energy -- 3.3 Point Function and Path Function -- 3.4 Heat Transfer -- 3.5 Work Transfer -- 3.6 Different Forms of Work -- 3.7 Relationship Between Heat and Work -- 3.8 First Law of Thermodynamics -- 3.9 Moving Boundary Work (pdV Work) -- 3.10 Energy Analysis of Closed Systems -- 3.10.1 First Law for a Closed System Undergoing a Cycle -- 3.10.2 First Law for a Closed System Undergoing a Change of State -- 3.11 Specific Heat and Latent Heat -- 3.12 Internal Energy, Enthalpy, and Specific Heats of Ideal Gases -- 3.13 Perpetual Motion Machine of the First Kind-PMM1 -- 3.14 Energy Efficiency -- 3.14.1 Energy Conversion Efficiency -- 3.14.2 Energy-Efficient Buildings | |
505 | 8 | |a 3.14.3 Cost-Effectiveness of Reflective White Materials -- 3.14.4 Energy-Efficient Motors -- 3.14.5 Energy-Efficient Compressors -- 3.15 Energy Sustainability -- 3.16 Energy Security -- 3.17 Energy Conservation -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 4 Properties of Pure Substances -- 4.1 Pure Substances and Their Phases -- 4.2 Phase Change Processes of Pure Substances -- 4.3 p-v Diagram of a Pure Substance -- 4.4 T-v Diagram of a Pure Substance -- 4.5 p-T Diagram of a Pure Substance -- 4.6 p-v-T Surface -- 4.7 T-s Diagram of a Pure Substance -- 4.8 h-s Diagram or Mollier Diagram -- 4.9 Quality or Dryness Fraction-Property Tables -- 4.9.1 Quality or Dryness Fraction -- 4.9.2 Compressed Liquid or Subcooled Liquid -- 4.9.3 Superheated Vapor -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 5 First Law Analysis of Control Volumes -- 5.1 Control Volume -- 5.2 Mass Balance -- 5.3 Flow Work -- 5.4 Steady-Flow Processes -- 5.5 First Law Analysis of Steady-Flow Processes -- 5.6 Steady-Flow Energy Equation Needs -- 5.7 Steady-Flow Devices -- 5.7.1 Turbines and Compressors -- 5.7.2 Nozzles and Diffusers -- 5.7.3 Throttling -- 5.7.4 Heat Transfer -- 5.8 First Law Analysis of Unsteady-Flow Processes -- Example Problems -- Review Questions -- Exercise Problems -- Design Problems -- Chapter 6 Second Law of Thermodynamics -- 6.1 Limitations of the First Law of Thermodynamics -- 6.2 Second Law Statements -- 6.2.1 Kelvin-Planck Statement -- 6.2.2 Clausius Statement of the Second Law -- 6.2.3 Equivalence of Kelvin-Planck and Clausius Statements -- 6.3 Reversible and Irreversible Processes -- 6.3.1 Reversible Process -- 6.3.2 Irreversible Process -- 6.4 Second Law Application to Power Cycles -- 6.4.1 Thermal Efficiency of Power Cycles | |
505 | 8 | |a 6.4.2 Corollaries of the Second Law for Power Cycles -- 6.5 Refrigeration and Heat Pump Cycles -- 6.5.1 Refrigeration Cycles -- 6.5.2 Heat Pump Cycles -- 6.5.3 Energy Efficiency Ratio and Seasonal Energy Efficiency Ratio -- 6.5.4 Corollaries of the Second Law for Refrigeration and Heat Pump Cycles -- 6.6 Thermodynamic Temperature Scale -- 6.7 Carnot Cycle -- 6.7.1 The Carnot Power Cycle -- 6.7.2 The Carnot Refrigerator and Heat Pump Cycles -- Example Problems -- Review Questions -- Exercise Problems -- Design Problems -- Chapter 7 Entropy -- 7.1 Inequality of Clausius -- 7.2 Entropy-A Property of a System -- 7.3 Principle of Entropy -- 7.4 The Concept of Entropy -- 7.5 The Tds Equations -- 7.6 Entropy Change of Pure Substances -- 7.7 Entropy Change of an Ideal Gas -- 7.8 Entropy Change of Solids and Liquids -- 7.9 Entropy Balance -- 7.9.1 Entropy Change of a System -- 7.9.2 Entropy Transfer by Heat and Mass Transfer -- 7.9.3 Entropy Generation-Closed System and Control Volume -- 7.10 Isentropic Process -- 7.11 Isentropic Efficiency -- 7.11.1 Isentropic Efficiency of a Turbine -- 7.11.2 Isentropic Efficiency of a Compressor and a Pump -- 7.11.3 Isentropic Efficiency of a Nozzle -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 8 Properties of Gases and Gas Mixtures -- 8.1 Ideal Gas Equation of State -- 8.2 Other Equations of State -- 8.3 Compressibility Factor-The Deviation of Real Gases from the Ideal Gas Behaviour -- 8.4 Gas Compression-Reducing the Work of Compression -- 8.5 Properties of Gas Mixtures -- 8.6 Internal Energy, Enthalpy, and Specidic Heats of Gas Mixtures -- 8.7 Entropy of Gas Mixtures -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 9 Concept of Available Energy (Exergy) -- 9.1 Available Energy (Exergy) | |
505 | 8 | |a 9.2 Reversible Work and Irreversibility -- 9.2.1 Useful Work -- 9.2.2 Reversible Work -- 9.3 Exergy Change of a System -- 9.3.1 Exergy of a Flow Stream (Open System) Exchanging Heat Only with Surroundings -- 9.3.2 Exergy of Non-Flowing Fluids (Closed Systems) -- 9.4 Exergy Transfer by Heat, Work, and Mass -- 9.5 Second-Law Efficiency -- 9.6 Exergy Destruction -- 9.7 Exergy Balance -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 10 Vapor and Advanced Power Cycles -- 10.1 Carnot Vapor Cycle -- 10.2 Rankine Cycle -- 10.3 Comparison of Rankine and Carnot Cycles -- 10.4 Mean Temperature of the Heat Addition -- 10.5 Efficiency Improvement of the Rankine Cycle -- 10.6 Reheat Rankine Cycle -- 10.7 Regenerative Rankine Cycle -- 10.8 Ideal Working Fluids for Vapor Cycles -- 10.9 Binary Vapor Cycles -- 10.10 Organic Rankine Cycle -- 10.10.1 Efficiency of the Cycle -- 10.10.2 The Ideal Working Fluids for the Combined ORC -- 10.11 Cogeneration -- 10.12 Exergy Analysis of Vapor Power Cycles -- 10.13 Combined Cycle Power Plants -- 10.13.1 The Effect of Operating Parameters on Combined Cycle Performance -- 10.13.2 Combined Cycle Power Plant Integrated with ORC -- 10.13.3 Combined Cycle Power Plant Integrated with Absorption Refrigeration System -- 10.14 Integrated Coal Gasification Combined Cycle (IGCC) Power Plants -- 10.14.1 Working of IGCC Power Plant -- 10.14.2 Carbon Dioxide Capture from IGCC Power Plant -- 10.15 Power Cycles for Nuclear Plants -- 10.15.1 Nuclear Power Plant -- 10.15.2 Nuclear Fuels -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 11 Gas Power Cycles -- 11.1 General Analysis of Cycles -- 11.2 Carnot Cycle -- 11.3 Air-Standard Cycles-Assumptions -- 11.4 Reciprocating Engines-An Overview -- 11.5 Otto Cycle -- 11.6 Diesel Cycle | |
505 | 8 | |a 11.7 Dual Cycle -- 11.8 Comparison of Otto, Diesel, And Dual Cycles -- 11.8.1 Based on Same Compression Ratio and Heat Rejection -- 11.8.2 Based on Same Maximum Pressure and Temperature -- 11.9 Stirling and Ericsson Cycles -- 11.10 Brayton Cycle-Gas Turbine Power Plants -- 11.11 Brayton Cycle with Regeneration -- 11.12 Brayton Cycle with Intercooling, Reheating, and Regeneration -- 11.12.1 Brayton Cycle with Intercooling -- 11.12.2 Brayton Cycle with Reheating -- 11.12.3 Brayton Cycle with Intercooling, Reheating, And Regeneration -- 11.13 Gas Turbines for Jet Propulsion -- 11.13.1 Rocket Engine -- 11.13.2 Compressors Used in Jet Engines -- 11.14 Exergy Analysis of Gas Power Cycles -- 11.15 New Combustion Systems for Gas Turbines -- 11.15.1 Trapped Vortex Combustion (TVC) -- 11.15.2 Rich Burn, Quick-Mix, Lean Burn (RQL) -- 11.15.3 Double Annular Combustor (DAC) -- 11.15.4 Axially Staged Combustors (ASC) -- 11.15.5 Twin Annular Premixing Swirler Combustors (TAPS) -- 11.15.6 Lean Direct Injection (LDI) -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 12 Refrigeration Cycles -- 12.1 Reversed Carnot Cycle -- 12.2 Refrigerators and Heat Pumps -- 12.3 Vapor Compression Refrigeration Cycle -- 12.3.1 COP of Vapor Compression Refrigeration System -- 12.3.2 Exergy Analysis of Vapor Compression Refrigeration Cycle -- 12.4 Refrigerants -- 12.4.1 Low-Global Warming Potential (Low-GWP) Refrigerants -- 12.4.2 Current Low-GWP Refrigerant Options -- 12.5 Vapor Absorption Refrigeration Cycle -- 12.6 Gas Cycle Refrigeration -- 12.7 Innovative Vapor Compression Refrigeration Systems -- 12.7.1 Multistage Vapor Compression Refrigeration Systems -- 12.7.2 Cascade Refrigeration System -- 12.7.3 Liquefaction of Gases -- 12.8 Energy Conservation in Domestic Refrigerators | |
505 | 8 | |a 12.8.1 Effect of Room Temperature on Energy Consumption | |
650 | 4 | |a Thermodynamics | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Venkateswarlu, Kavati |t Engineering Thermodynamics |d Milton : Taylor & Francis Group,c2020 |z 9780367646288 |
912 | |a ZDB-30-PQE |a ZDB-4-NLEBK | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032844361 | ||
966 | e | |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2666967 |l UBY01 |p ZDB-4-NLEBK |q UBY01_DDA22 |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734755594240 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Venkateswarlu, Kavati |
author_facet | Venkateswarlu, Kavati |
author_role | aut |
author_sort | Venkateswarlu, Kavati |
author_variant | k v kv |
building | Verbundindex |
bvnumber | BV047442209 |
collection | ZDB-30-PQE ZDB-4-NLEBK |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- dedication -- Table of Contents -- Foreword -- Preface -- Acknowledgments -- Author -- Chapter 1 Introduction and Basic Concepts -- 1.1 Introduction to Thermodynamics -- 1.2 Thermodynamic Systems -- 1.3 Thermodynamic Properties -- 1.4 State, Processes, and Cycles -- 1.5 Homogeneous and Heterogeneous Systems -- 1.6 Thermodynamic Equilibrium -- 1.7 Specific Volume and Density -- 1.8 Pressure -- 1.9 Pressure-Measuring Devices -- Example Problems -- Review Questions -- Exercise Problems -- Chapter 2 Temperature: Zeroth Law of Thermodynamics -- 2.1 Temperature -- 2.2 Zeroth Law of Thermodynamics -- 2.3 Thermometers-Temperature Measurement -- 2.3.1 Reference Points -- 2.3.2 Liquid-in-Glass Tube Thermometer -- 2.3.3 Gas Thermometers -- 2.3.4 Electrical Resistance Thermometer -- 2.3.5 Thermocouple -- 2.4 Temperature Scales -- 2.4.1 Ideal Gas Temperature Scale -- 2.4.2 International Temperature Scale -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 3 Energy and the First Law of Thermodynamics -- 3.1 Energy Analysis -- 3.2 Different Forms of Stored Energy -- 3.3 Point Function and Path Function -- 3.4 Heat Transfer -- 3.5 Work Transfer -- 3.6 Different Forms of Work -- 3.7 Relationship Between Heat and Work -- 3.8 First Law of Thermodynamics -- 3.9 Moving Boundary Work (pdV Work) -- 3.10 Energy Analysis of Closed Systems -- 3.10.1 First Law for a Closed System Undergoing a Cycle -- 3.10.2 First Law for a Closed System Undergoing a Change of State -- 3.11 Specific Heat and Latent Heat -- 3.12 Internal Energy, Enthalpy, and Specific Heats of Ideal Gases -- 3.13 Perpetual Motion Machine of the First Kind-PMM1 -- 3.14 Energy Efficiency -- 3.14.1 Energy Conversion Efficiency -- 3.14.2 Energy-Efficient Buildings 3.14.3 Cost-Effectiveness of Reflective White Materials -- 3.14.4 Energy-Efficient Motors -- 3.14.5 Energy-Efficient Compressors -- 3.15 Energy Sustainability -- 3.16 Energy Security -- 3.17 Energy Conservation -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 4 Properties of Pure Substances -- 4.1 Pure Substances and Their Phases -- 4.2 Phase Change Processes of Pure Substances -- 4.3 p-v Diagram of a Pure Substance -- 4.4 T-v Diagram of a Pure Substance -- 4.5 p-T Diagram of a Pure Substance -- 4.6 p-v-T Surface -- 4.7 T-s Diagram of a Pure Substance -- 4.8 h-s Diagram or Mollier Diagram -- 4.9 Quality or Dryness Fraction-Property Tables -- 4.9.1 Quality or Dryness Fraction -- 4.9.2 Compressed Liquid or Subcooled Liquid -- 4.9.3 Superheated Vapor -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 5 First Law Analysis of Control Volumes -- 5.1 Control Volume -- 5.2 Mass Balance -- 5.3 Flow Work -- 5.4 Steady-Flow Processes -- 5.5 First Law Analysis of Steady-Flow Processes -- 5.6 Steady-Flow Energy Equation Needs -- 5.7 Steady-Flow Devices -- 5.7.1 Turbines and Compressors -- 5.7.2 Nozzles and Diffusers -- 5.7.3 Throttling -- 5.7.4 Heat Transfer -- 5.8 First Law Analysis of Unsteady-Flow Processes -- Example Problems -- Review Questions -- Exercise Problems -- Design Problems -- Chapter 6 Second Law of Thermodynamics -- 6.1 Limitations of the First Law of Thermodynamics -- 6.2 Second Law Statements -- 6.2.1 Kelvin-Planck Statement -- 6.2.2 Clausius Statement of the Second Law -- 6.2.3 Equivalence of Kelvin-Planck and Clausius Statements -- 6.3 Reversible and Irreversible Processes -- 6.3.1 Reversible Process -- 6.3.2 Irreversible Process -- 6.4 Second Law Application to Power Cycles -- 6.4.1 Thermal Efficiency of Power Cycles 6.4.2 Corollaries of the Second Law for Power Cycles -- 6.5 Refrigeration and Heat Pump Cycles -- 6.5.1 Refrigeration Cycles -- 6.5.2 Heat Pump Cycles -- 6.5.3 Energy Efficiency Ratio and Seasonal Energy Efficiency Ratio -- 6.5.4 Corollaries of the Second Law for Refrigeration and Heat Pump Cycles -- 6.6 Thermodynamic Temperature Scale -- 6.7 Carnot Cycle -- 6.7.1 The Carnot Power Cycle -- 6.7.2 The Carnot Refrigerator and Heat Pump Cycles -- Example Problems -- Review Questions -- Exercise Problems -- Design Problems -- Chapter 7 Entropy -- 7.1 Inequality of Clausius -- 7.2 Entropy-A Property of a System -- 7.3 Principle of Entropy -- 7.4 The Concept of Entropy -- 7.5 The Tds Equations -- 7.6 Entropy Change of Pure Substances -- 7.7 Entropy Change of an Ideal Gas -- 7.8 Entropy Change of Solids and Liquids -- 7.9 Entropy Balance -- 7.9.1 Entropy Change of a System -- 7.9.2 Entropy Transfer by Heat and Mass Transfer -- 7.9.3 Entropy Generation-Closed System and Control Volume -- 7.10 Isentropic Process -- 7.11 Isentropic Efficiency -- 7.11.1 Isentropic Efficiency of a Turbine -- 7.11.2 Isentropic Efficiency of a Compressor and a Pump -- 7.11.3 Isentropic Efficiency of a Nozzle -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 8 Properties of Gases and Gas Mixtures -- 8.1 Ideal Gas Equation of State -- 8.2 Other Equations of State -- 8.3 Compressibility Factor-The Deviation of Real Gases from the Ideal Gas Behaviour -- 8.4 Gas Compression-Reducing the Work of Compression -- 8.5 Properties of Gas Mixtures -- 8.6 Internal Energy, Enthalpy, and Specidic Heats of Gas Mixtures -- 8.7 Entropy of Gas Mixtures -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 9 Concept of Available Energy (Exergy) -- 9.1 Available Energy (Exergy) 9.2 Reversible Work and Irreversibility -- 9.2.1 Useful Work -- 9.2.2 Reversible Work -- 9.3 Exergy Change of a System -- 9.3.1 Exergy of a Flow Stream (Open System) Exchanging Heat Only with Surroundings -- 9.3.2 Exergy of Non-Flowing Fluids (Closed Systems) -- 9.4 Exergy Transfer by Heat, Work, and Mass -- 9.5 Second-Law Efficiency -- 9.6 Exergy Destruction -- 9.7 Exergy Balance -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 10 Vapor and Advanced Power Cycles -- 10.1 Carnot Vapor Cycle -- 10.2 Rankine Cycle -- 10.3 Comparison of Rankine and Carnot Cycles -- 10.4 Mean Temperature of the Heat Addition -- 10.5 Efficiency Improvement of the Rankine Cycle -- 10.6 Reheat Rankine Cycle -- 10.7 Regenerative Rankine Cycle -- 10.8 Ideal Working Fluids for Vapor Cycles -- 10.9 Binary Vapor Cycles -- 10.10 Organic Rankine Cycle -- 10.10.1 Efficiency of the Cycle -- 10.10.2 The Ideal Working Fluids for the Combined ORC -- 10.11 Cogeneration -- 10.12 Exergy Analysis of Vapor Power Cycles -- 10.13 Combined Cycle Power Plants -- 10.13.1 The Effect of Operating Parameters on Combined Cycle Performance -- 10.13.2 Combined Cycle Power Plant Integrated with ORC -- 10.13.3 Combined Cycle Power Plant Integrated with Absorption Refrigeration System -- 10.14 Integrated Coal Gasification Combined Cycle (IGCC) Power Plants -- 10.14.1 Working of IGCC Power Plant -- 10.14.2 Carbon Dioxide Capture from IGCC Power Plant -- 10.15 Power Cycles for Nuclear Plants -- 10.15.1 Nuclear Power Plant -- 10.15.2 Nuclear Fuels -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 11 Gas Power Cycles -- 11.1 General Analysis of Cycles -- 11.2 Carnot Cycle -- 11.3 Air-Standard Cycles-Assumptions -- 11.4 Reciprocating Engines-An Overview -- 11.5 Otto Cycle -- 11.6 Diesel Cycle 11.7 Dual Cycle -- 11.8 Comparison of Otto, Diesel, And Dual Cycles -- 11.8.1 Based on Same Compression Ratio and Heat Rejection -- 11.8.2 Based on Same Maximum Pressure and Temperature -- 11.9 Stirling and Ericsson Cycles -- 11.10 Brayton Cycle-Gas Turbine Power Plants -- 11.11 Brayton Cycle with Regeneration -- 11.12 Brayton Cycle with Intercooling, Reheating, and Regeneration -- 11.12.1 Brayton Cycle with Intercooling -- 11.12.2 Brayton Cycle with Reheating -- 11.12.3 Brayton Cycle with Intercooling, Reheating, And Regeneration -- 11.13 Gas Turbines for Jet Propulsion -- 11.13.1 Rocket Engine -- 11.13.2 Compressors Used in Jet Engines -- 11.14 Exergy Analysis of Gas Power Cycles -- 11.15 New Combustion Systems for Gas Turbines -- 11.15.1 Trapped Vortex Combustion (TVC) -- 11.15.2 Rich Burn, Quick-Mix, Lean Burn (RQL) -- 11.15.3 Double Annular Combustor (DAC) -- 11.15.4 Axially Staged Combustors (ASC) -- 11.15.5 Twin Annular Premixing Swirler Combustors (TAPS) -- 11.15.6 Lean Direct Injection (LDI) -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 12 Refrigeration Cycles -- 12.1 Reversed Carnot Cycle -- 12.2 Refrigerators and Heat Pumps -- 12.3 Vapor Compression Refrigeration Cycle -- 12.3.1 COP of Vapor Compression Refrigeration System -- 12.3.2 Exergy Analysis of Vapor Compression Refrigeration Cycle -- 12.4 Refrigerants -- 12.4.1 Low-Global Warming Potential (Low-GWP) Refrigerants -- 12.4.2 Current Low-GWP Refrigerant Options -- 12.5 Vapor Absorption Refrigeration Cycle -- 12.6 Gas Cycle Refrigeration -- 12.7 Innovative Vapor Compression Refrigeration Systems -- 12.7.1 Multistage Vapor Compression Refrigeration Systems -- 12.7.2 Cascade Refrigeration System -- 12.7.3 Liquefaction of Gases -- 12.8 Energy Conservation in Domestic Refrigerators 12.8.1 Effect of Room Temperature on Energy Consumption |
ctrlnum | (ZDB-30-PQE)EBC6385045 (ZDB-30-PAD)EBC6385045 (ZDB-89-EBL)EBL6385045 (ZDB-4-NLEBK)2666967 (OCoLC)1235594755 (DE-599)BVBBV047442209 |
dewey-full | 621 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621 |
dewey-search | 621 |
dewey-sort | 3621 |
dewey-tens | 620 - Engineering and allied operations |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10850nmm a2200457zc 4500</leader><controlfield tag="001">BV047442209</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220307 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000291681</subfield><subfield code="9">978-1-00-029168-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6385045</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6385045</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6385045</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-NLEBK)2666967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1235594755</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442209</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Venkateswarlu, Kavati</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Engineering Thermodynamics</subfield><subfield code="b">Fundamental and Advanced Topics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Milton</subfield><subfield code="b">Taylor & Francis Group</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (489 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- dedication -- Table of Contents -- Foreword -- Preface -- Acknowledgments -- Author -- Chapter 1 Introduction and Basic Concepts -- 1.1 Introduction to Thermodynamics -- 1.2 Thermodynamic Systems -- 1.3 Thermodynamic Properties -- 1.4 State, Processes, and Cycles -- 1.5 Homogeneous and Heterogeneous Systems -- 1.6 Thermodynamic Equilibrium -- 1.7 Specific Volume and Density -- 1.8 Pressure -- 1.9 Pressure-Measuring Devices -- Example Problems -- Review Questions -- Exercise Problems -- Chapter 2 Temperature: Zeroth Law of Thermodynamics -- 2.1 Temperature -- 2.2 Zeroth Law of Thermodynamics -- 2.3 Thermometers-Temperature Measurement -- 2.3.1 Reference Points -- 2.3.2 Liquid-in-Glass Tube Thermometer -- 2.3.3 Gas Thermometers -- 2.3.4 Electrical Resistance Thermometer -- 2.3.5 Thermocouple -- 2.4 Temperature Scales -- 2.4.1 Ideal Gas Temperature Scale -- 2.4.2 International Temperature Scale -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 3 Energy and the First Law of Thermodynamics -- 3.1 Energy Analysis -- 3.2 Different Forms of Stored Energy -- 3.3 Point Function and Path Function -- 3.4 Heat Transfer -- 3.5 Work Transfer -- 3.6 Different Forms of Work -- 3.7 Relationship Between Heat and Work -- 3.8 First Law of Thermodynamics -- 3.9 Moving Boundary Work (pdV Work) -- 3.10 Energy Analysis of Closed Systems -- 3.10.1 First Law for a Closed System Undergoing a Cycle -- 3.10.2 First Law for a Closed System Undergoing a Change of State -- 3.11 Specific Heat and Latent Heat -- 3.12 Internal Energy, Enthalpy, and Specific Heats of Ideal Gases -- 3.13 Perpetual Motion Machine of the First Kind-PMM1 -- 3.14 Energy Efficiency -- 3.14.1 Energy Conversion Efficiency -- 3.14.2 Energy-Efficient Buildings</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.14.3 Cost-Effectiveness of Reflective White Materials -- 3.14.4 Energy-Efficient Motors -- 3.14.5 Energy-Efficient Compressors -- 3.15 Energy Sustainability -- 3.16 Energy Security -- 3.17 Energy Conservation -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 4 Properties of Pure Substances -- 4.1 Pure Substances and Their Phases -- 4.2 Phase Change Processes of Pure Substances -- 4.3 p-v Diagram of a Pure Substance -- 4.4 T-v Diagram of a Pure Substance -- 4.5 p-T Diagram of a Pure Substance -- 4.6 p-v-T Surface -- 4.7 T-s Diagram of a Pure Substance -- 4.8 h-s Diagram or Mollier Diagram -- 4.9 Quality or Dryness Fraction-Property Tables -- 4.9.1 Quality or Dryness Fraction -- 4.9.2 Compressed Liquid or Subcooled Liquid -- 4.9.3 Superheated Vapor -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 5 First Law Analysis of Control Volumes -- 5.1 Control Volume -- 5.2 Mass Balance -- 5.3 Flow Work -- 5.4 Steady-Flow Processes -- 5.5 First Law Analysis of Steady-Flow Processes -- 5.6 Steady-Flow Energy Equation Needs -- 5.7 Steady-Flow Devices -- 5.7.1 Turbines and Compressors -- 5.7.2 Nozzles and Diffusers -- 5.7.3 Throttling -- 5.7.4 Heat Transfer -- 5.8 First Law Analysis of Unsteady-Flow Processes -- Example Problems -- Review Questions -- Exercise Problems -- Design Problems -- Chapter 6 Second Law of Thermodynamics -- 6.1 Limitations of the First Law of Thermodynamics -- 6.2 Second Law Statements -- 6.2.1 Kelvin-Planck Statement -- 6.2.2 Clausius Statement of the Second Law -- 6.2.3 Equivalence of Kelvin-Planck and Clausius Statements -- 6.3 Reversible and Irreversible Processes -- 6.3.1 Reversible Process -- 6.3.2 Irreversible Process -- 6.4 Second Law Application to Power Cycles -- 6.4.1 Thermal Efficiency of Power Cycles</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.4.2 Corollaries of the Second Law for Power Cycles -- 6.5 Refrigeration and Heat Pump Cycles -- 6.5.1 Refrigeration Cycles -- 6.5.2 Heat Pump Cycles -- 6.5.3 Energy Efficiency Ratio and Seasonal Energy Efficiency Ratio -- 6.5.4 Corollaries of the Second Law for Refrigeration and Heat Pump Cycles -- 6.6 Thermodynamic Temperature Scale -- 6.7 Carnot Cycle -- 6.7.1 The Carnot Power Cycle -- 6.7.2 The Carnot Refrigerator and Heat Pump Cycles -- Example Problems -- Review Questions -- Exercise Problems -- Design Problems -- Chapter 7 Entropy -- 7.1 Inequality of Clausius -- 7.2 Entropy-A Property of a System -- 7.3 Principle of Entropy -- 7.4 The Concept of Entropy -- 7.5 The Tds Equations -- 7.6 Entropy Change of Pure Substances -- 7.7 Entropy Change of an Ideal Gas -- 7.8 Entropy Change of Solids and Liquids -- 7.9 Entropy Balance -- 7.9.1 Entropy Change of a System -- 7.9.2 Entropy Transfer by Heat and Mass Transfer -- 7.9.3 Entropy Generation-Closed System and Control Volume -- 7.10 Isentropic Process -- 7.11 Isentropic Efficiency -- 7.11.1 Isentropic Efficiency of a Turbine -- 7.11.2 Isentropic Efficiency of a Compressor and a Pump -- 7.11.3 Isentropic Efficiency of a Nozzle -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 8 Properties of Gases and Gas Mixtures -- 8.1 Ideal Gas Equation of State -- 8.2 Other Equations of State -- 8.3 Compressibility Factor-The Deviation of Real Gases from the Ideal Gas Behaviour -- 8.4 Gas Compression-Reducing the Work of Compression -- 8.5 Properties of Gas Mixtures -- 8.6 Internal Energy, Enthalpy, and Specidic Heats of Gas Mixtures -- 8.7 Entropy of Gas Mixtures -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 9 Concept of Available Energy (Exergy) -- 9.1 Available Energy (Exergy)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.2 Reversible Work and Irreversibility -- 9.2.1 Useful Work -- 9.2.2 Reversible Work -- 9.3 Exergy Change of a System -- 9.3.1 Exergy of a Flow Stream (Open System) Exchanging Heat Only with Surroundings -- 9.3.2 Exergy of Non-Flowing Fluids (Closed Systems) -- 9.4 Exergy Transfer by Heat, Work, and Mass -- 9.5 Second-Law Efficiency -- 9.6 Exergy Destruction -- 9.7 Exergy Balance -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 10 Vapor and Advanced Power Cycles -- 10.1 Carnot Vapor Cycle -- 10.2 Rankine Cycle -- 10.3 Comparison of Rankine and Carnot Cycles -- 10.4 Mean Temperature of the Heat Addition -- 10.5 Efficiency Improvement of the Rankine Cycle -- 10.6 Reheat Rankine Cycle -- 10.7 Regenerative Rankine Cycle -- 10.8 Ideal Working Fluids for Vapor Cycles -- 10.9 Binary Vapor Cycles -- 10.10 Organic Rankine Cycle -- 10.10.1 Efficiency of the Cycle -- 10.10.2 The Ideal Working Fluids for the Combined ORC -- 10.11 Cogeneration -- 10.12 Exergy Analysis of Vapor Power Cycles -- 10.13 Combined Cycle Power Plants -- 10.13.1 The Effect of Operating Parameters on Combined Cycle Performance -- 10.13.2 Combined Cycle Power Plant Integrated with ORC -- 10.13.3 Combined Cycle Power Plant Integrated with Absorption Refrigeration System -- 10.14 Integrated Coal Gasification Combined Cycle (IGCC) Power Plants -- 10.14.1 Working of IGCC Power Plant -- 10.14.2 Carbon Dioxide Capture from IGCC Power Plant -- 10.15 Power Cycles for Nuclear Plants -- 10.15.1 Nuclear Power Plant -- 10.15.2 Nuclear Fuels -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 11 Gas Power Cycles -- 11.1 General Analysis of Cycles -- 11.2 Carnot Cycle -- 11.3 Air-Standard Cycles-Assumptions -- 11.4 Reciprocating Engines-An Overview -- 11.5 Otto Cycle -- 11.6 Diesel Cycle</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11.7 Dual Cycle -- 11.8 Comparison of Otto, Diesel, And Dual Cycles -- 11.8.1 Based on Same Compression Ratio and Heat Rejection -- 11.8.2 Based on Same Maximum Pressure and Temperature -- 11.9 Stirling and Ericsson Cycles -- 11.10 Brayton Cycle-Gas Turbine Power Plants -- 11.11 Brayton Cycle with Regeneration -- 11.12 Brayton Cycle with Intercooling, Reheating, and Regeneration -- 11.12.1 Brayton Cycle with Intercooling -- 11.12.2 Brayton Cycle with Reheating -- 11.12.3 Brayton Cycle with Intercooling, Reheating, And Regeneration -- 11.13 Gas Turbines for Jet Propulsion -- 11.13.1 Rocket Engine -- 11.13.2 Compressors Used in Jet Engines -- 11.14 Exergy Analysis of Gas Power Cycles -- 11.15 New Combustion Systems for Gas Turbines -- 11.15.1 Trapped Vortex Combustion (TVC) -- 11.15.2 Rich Burn, Quick-Mix, Lean Burn (RQL) -- 11.15.3 Double Annular Combustor (DAC) -- 11.15.4 Axially Staged Combustors (ASC) -- 11.15.5 Twin Annular Premixing Swirler Combustors (TAPS) -- 11.15.6 Lean Direct Injection (LDI) -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 12 Refrigeration Cycles -- 12.1 Reversed Carnot Cycle -- 12.2 Refrigerators and Heat Pumps -- 12.3 Vapor Compression Refrigeration Cycle -- 12.3.1 COP of Vapor Compression Refrigeration System -- 12.3.2 Exergy Analysis of Vapor Compression Refrigeration Cycle -- 12.4 Refrigerants -- 12.4.1 Low-Global Warming Potential (Low-GWP) Refrigerants -- 12.4.2 Current Low-GWP Refrigerant Options -- 12.5 Vapor Absorption Refrigeration Cycle -- 12.6 Gas Cycle Refrigeration -- 12.7 Innovative Vapor Compression Refrigeration Systems -- 12.7.1 Multistage Vapor Compression Refrigeration Systems -- 12.7.2 Cascade Refrigeration System -- 12.7.3 Liquefaction of Gases -- 12.8 Energy Conservation in Domestic Refrigerators</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.8.1 Effect of Room Temperature on Energy Consumption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Venkateswarlu, Kavati</subfield><subfield code="t">Engineering Thermodynamics</subfield><subfield code="d">Milton : Taylor & Francis Group,c2020</subfield><subfield code="z">9780367646288</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844361</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2666967</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="q">UBY01_DDA22</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047442209 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:24Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9781000291681 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844361 |
oclc_num | 1235594755 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (489 Seiten) |
psigel | ZDB-30-PQE ZDB-4-NLEBK ZDB-4-NLEBK UBY01_DDA22 |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Taylor & Francis Group |
record_format | marc |
spelling | Venkateswarlu, Kavati Verfasser aut Engineering Thermodynamics Fundamental and Advanced Topics Milton Taylor & Francis Group 2020 ©2021 1 Online-Ressource (489 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Half Title -- Title Page -- Copyright Page -- dedication -- Table of Contents -- Foreword -- Preface -- Acknowledgments -- Author -- Chapter 1 Introduction and Basic Concepts -- 1.1 Introduction to Thermodynamics -- 1.2 Thermodynamic Systems -- 1.3 Thermodynamic Properties -- 1.4 State, Processes, and Cycles -- 1.5 Homogeneous and Heterogeneous Systems -- 1.6 Thermodynamic Equilibrium -- 1.7 Specific Volume and Density -- 1.8 Pressure -- 1.9 Pressure-Measuring Devices -- Example Problems -- Review Questions -- Exercise Problems -- Chapter 2 Temperature: Zeroth Law of Thermodynamics -- 2.1 Temperature -- 2.2 Zeroth Law of Thermodynamics -- 2.3 Thermometers-Temperature Measurement -- 2.3.1 Reference Points -- 2.3.2 Liquid-in-Glass Tube Thermometer -- 2.3.3 Gas Thermometers -- 2.3.4 Electrical Resistance Thermometer -- 2.3.5 Thermocouple -- 2.4 Temperature Scales -- 2.4.1 Ideal Gas Temperature Scale -- 2.4.2 International Temperature Scale -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 3 Energy and the First Law of Thermodynamics -- 3.1 Energy Analysis -- 3.2 Different Forms of Stored Energy -- 3.3 Point Function and Path Function -- 3.4 Heat Transfer -- 3.5 Work Transfer -- 3.6 Different Forms of Work -- 3.7 Relationship Between Heat and Work -- 3.8 First Law of Thermodynamics -- 3.9 Moving Boundary Work (pdV Work) -- 3.10 Energy Analysis of Closed Systems -- 3.10.1 First Law for a Closed System Undergoing a Cycle -- 3.10.2 First Law for a Closed System Undergoing a Change of State -- 3.11 Specific Heat and Latent Heat -- 3.12 Internal Energy, Enthalpy, and Specific Heats of Ideal Gases -- 3.13 Perpetual Motion Machine of the First Kind-PMM1 -- 3.14 Energy Efficiency -- 3.14.1 Energy Conversion Efficiency -- 3.14.2 Energy-Efficient Buildings 3.14.3 Cost-Effectiveness of Reflective White Materials -- 3.14.4 Energy-Efficient Motors -- 3.14.5 Energy-Efficient Compressors -- 3.15 Energy Sustainability -- 3.16 Energy Security -- 3.17 Energy Conservation -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 4 Properties of Pure Substances -- 4.1 Pure Substances and Their Phases -- 4.2 Phase Change Processes of Pure Substances -- 4.3 p-v Diagram of a Pure Substance -- 4.4 T-v Diagram of a Pure Substance -- 4.5 p-T Diagram of a Pure Substance -- 4.6 p-v-T Surface -- 4.7 T-s Diagram of a Pure Substance -- 4.8 h-s Diagram or Mollier Diagram -- 4.9 Quality or Dryness Fraction-Property Tables -- 4.9.1 Quality or Dryness Fraction -- 4.9.2 Compressed Liquid or Subcooled Liquid -- 4.9.3 Superheated Vapor -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 5 First Law Analysis of Control Volumes -- 5.1 Control Volume -- 5.2 Mass Balance -- 5.3 Flow Work -- 5.4 Steady-Flow Processes -- 5.5 First Law Analysis of Steady-Flow Processes -- 5.6 Steady-Flow Energy Equation Needs -- 5.7 Steady-Flow Devices -- 5.7.1 Turbines and Compressors -- 5.7.2 Nozzles and Diffusers -- 5.7.3 Throttling -- 5.7.4 Heat Transfer -- 5.8 First Law Analysis of Unsteady-Flow Processes -- Example Problems -- Review Questions -- Exercise Problems -- Design Problems -- Chapter 6 Second Law of Thermodynamics -- 6.1 Limitations of the First Law of Thermodynamics -- 6.2 Second Law Statements -- 6.2.1 Kelvin-Planck Statement -- 6.2.2 Clausius Statement of the Second Law -- 6.2.3 Equivalence of Kelvin-Planck and Clausius Statements -- 6.3 Reversible and Irreversible Processes -- 6.3.1 Reversible Process -- 6.3.2 Irreversible Process -- 6.4 Second Law Application to Power Cycles -- 6.4.1 Thermal Efficiency of Power Cycles 6.4.2 Corollaries of the Second Law for Power Cycles -- 6.5 Refrigeration and Heat Pump Cycles -- 6.5.1 Refrigeration Cycles -- 6.5.2 Heat Pump Cycles -- 6.5.3 Energy Efficiency Ratio and Seasonal Energy Efficiency Ratio -- 6.5.4 Corollaries of the Second Law for Refrigeration and Heat Pump Cycles -- 6.6 Thermodynamic Temperature Scale -- 6.7 Carnot Cycle -- 6.7.1 The Carnot Power Cycle -- 6.7.2 The Carnot Refrigerator and Heat Pump Cycles -- Example Problems -- Review Questions -- Exercise Problems -- Design Problems -- Chapter 7 Entropy -- 7.1 Inequality of Clausius -- 7.2 Entropy-A Property of a System -- 7.3 Principle of Entropy -- 7.4 The Concept of Entropy -- 7.5 The Tds Equations -- 7.6 Entropy Change of Pure Substances -- 7.7 Entropy Change of an Ideal Gas -- 7.8 Entropy Change of Solids and Liquids -- 7.9 Entropy Balance -- 7.9.1 Entropy Change of a System -- 7.9.2 Entropy Transfer by Heat and Mass Transfer -- 7.9.3 Entropy Generation-Closed System and Control Volume -- 7.10 Isentropic Process -- 7.11 Isentropic Efficiency -- 7.11.1 Isentropic Efficiency of a Turbine -- 7.11.2 Isentropic Efficiency of a Compressor and a Pump -- 7.11.3 Isentropic Efficiency of a Nozzle -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 8 Properties of Gases and Gas Mixtures -- 8.1 Ideal Gas Equation of State -- 8.2 Other Equations of State -- 8.3 Compressibility Factor-The Deviation of Real Gases from the Ideal Gas Behaviour -- 8.4 Gas Compression-Reducing the Work of Compression -- 8.5 Properties of Gas Mixtures -- 8.6 Internal Energy, Enthalpy, and Specidic Heats of Gas Mixtures -- 8.7 Entropy of Gas Mixtures -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 9 Concept of Available Energy (Exergy) -- 9.1 Available Energy (Exergy) 9.2 Reversible Work and Irreversibility -- 9.2.1 Useful Work -- 9.2.2 Reversible Work -- 9.3 Exergy Change of a System -- 9.3.1 Exergy of a Flow Stream (Open System) Exchanging Heat Only with Surroundings -- 9.3.2 Exergy of Non-Flowing Fluids (Closed Systems) -- 9.4 Exergy Transfer by Heat, Work, and Mass -- 9.5 Second-Law Efficiency -- 9.6 Exergy Destruction -- 9.7 Exergy Balance -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 10 Vapor and Advanced Power Cycles -- 10.1 Carnot Vapor Cycle -- 10.2 Rankine Cycle -- 10.3 Comparison of Rankine and Carnot Cycles -- 10.4 Mean Temperature of the Heat Addition -- 10.5 Efficiency Improvement of the Rankine Cycle -- 10.6 Reheat Rankine Cycle -- 10.7 Regenerative Rankine Cycle -- 10.8 Ideal Working Fluids for Vapor Cycles -- 10.9 Binary Vapor Cycles -- 10.10 Organic Rankine Cycle -- 10.10.1 Efficiency of the Cycle -- 10.10.2 The Ideal Working Fluids for the Combined ORC -- 10.11 Cogeneration -- 10.12 Exergy Analysis of Vapor Power Cycles -- 10.13 Combined Cycle Power Plants -- 10.13.1 The Effect of Operating Parameters on Combined Cycle Performance -- 10.13.2 Combined Cycle Power Plant Integrated with ORC -- 10.13.3 Combined Cycle Power Plant Integrated with Absorption Refrigeration System -- 10.14 Integrated Coal Gasification Combined Cycle (IGCC) Power Plants -- 10.14.1 Working of IGCC Power Plant -- 10.14.2 Carbon Dioxide Capture from IGCC Power Plant -- 10.15 Power Cycles for Nuclear Plants -- 10.15.1 Nuclear Power Plant -- 10.15.2 Nuclear Fuels -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 11 Gas Power Cycles -- 11.1 General Analysis of Cycles -- 11.2 Carnot Cycle -- 11.3 Air-Standard Cycles-Assumptions -- 11.4 Reciprocating Engines-An Overview -- 11.5 Otto Cycle -- 11.6 Diesel Cycle 11.7 Dual Cycle -- 11.8 Comparison of Otto, Diesel, And Dual Cycles -- 11.8.1 Based on Same Compression Ratio and Heat Rejection -- 11.8.2 Based on Same Maximum Pressure and Temperature -- 11.9 Stirling and Ericsson Cycles -- 11.10 Brayton Cycle-Gas Turbine Power Plants -- 11.11 Brayton Cycle with Regeneration -- 11.12 Brayton Cycle with Intercooling, Reheating, and Regeneration -- 11.12.1 Brayton Cycle with Intercooling -- 11.12.2 Brayton Cycle with Reheating -- 11.12.3 Brayton Cycle with Intercooling, Reheating, And Regeneration -- 11.13 Gas Turbines for Jet Propulsion -- 11.13.1 Rocket Engine -- 11.13.2 Compressors Used in Jet Engines -- 11.14 Exergy Analysis of Gas Power Cycles -- 11.15 New Combustion Systems for Gas Turbines -- 11.15.1 Trapped Vortex Combustion (TVC) -- 11.15.2 Rich Burn, Quick-Mix, Lean Burn (RQL) -- 11.15.3 Double Annular Combustor (DAC) -- 11.15.4 Axially Staged Combustors (ASC) -- 11.15.5 Twin Annular Premixing Swirler Combustors (TAPS) -- 11.15.6 Lean Direct Injection (LDI) -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 12 Refrigeration Cycles -- 12.1 Reversed Carnot Cycle -- 12.2 Refrigerators and Heat Pumps -- 12.3 Vapor Compression Refrigeration Cycle -- 12.3.1 COP of Vapor Compression Refrigeration System -- 12.3.2 Exergy Analysis of Vapor Compression Refrigeration Cycle -- 12.4 Refrigerants -- 12.4.1 Low-Global Warming Potential (Low-GWP) Refrigerants -- 12.4.2 Current Low-GWP Refrigerant Options -- 12.5 Vapor Absorption Refrigeration Cycle -- 12.6 Gas Cycle Refrigeration -- 12.7 Innovative Vapor Compression Refrigeration Systems -- 12.7.1 Multistage Vapor Compression Refrigeration Systems -- 12.7.2 Cascade Refrigeration System -- 12.7.3 Liquefaction of Gases -- 12.8 Energy Conservation in Domestic Refrigerators 12.8.1 Effect of Room Temperature on Energy Consumption Thermodynamics Erscheint auch als Druck-Ausgabe Venkateswarlu, Kavati Engineering Thermodynamics Milton : Taylor & Francis Group,c2020 9780367646288 |
spellingShingle | Venkateswarlu, Kavati Engineering Thermodynamics Fundamental and Advanced Topics Cover -- Half Title -- Title Page -- Copyright Page -- dedication -- Table of Contents -- Foreword -- Preface -- Acknowledgments -- Author -- Chapter 1 Introduction and Basic Concepts -- 1.1 Introduction to Thermodynamics -- 1.2 Thermodynamic Systems -- 1.3 Thermodynamic Properties -- 1.4 State, Processes, and Cycles -- 1.5 Homogeneous and Heterogeneous Systems -- 1.6 Thermodynamic Equilibrium -- 1.7 Specific Volume and Density -- 1.8 Pressure -- 1.9 Pressure-Measuring Devices -- Example Problems -- Review Questions -- Exercise Problems -- Chapter 2 Temperature: Zeroth Law of Thermodynamics -- 2.1 Temperature -- 2.2 Zeroth Law of Thermodynamics -- 2.3 Thermometers-Temperature Measurement -- 2.3.1 Reference Points -- 2.3.2 Liquid-in-Glass Tube Thermometer -- 2.3.3 Gas Thermometers -- 2.3.4 Electrical Resistance Thermometer -- 2.3.5 Thermocouple -- 2.4 Temperature Scales -- 2.4.1 Ideal Gas Temperature Scale -- 2.4.2 International Temperature Scale -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 3 Energy and the First Law of Thermodynamics -- 3.1 Energy Analysis -- 3.2 Different Forms of Stored Energy -- 3.3 Point Function and Path Function -- 3.4 Heat Transfer -- 3.5 Work Transfer -- 3.6 Different Forms of Work -- 3.7 Relationship Between Heat and Work -- 3.8 First Law of Thermodynamics -- 3.9 Moving Boundary Work (pdV Work) -- 3.10 Energy Analysis of Closed Systems -- 3.10.1 First Law for a Closed System Undergoing a Cycle -- 3.10.2 First Law for a Closed System Undergoing a Change of State -- 3.11 Specific Heat and Latent Heat -- 3.12 Internal Energy, Enthalpy, and Specific Heats of Ideal Gases -- 3.13 Perpetual Motion Machine of the First Kind-PMM1 -- 3.14 Energy Efficiency -- 3.14.1 Energy Conversion Efficiency -- 3.14.2 Energy-Efficient Buildings 3.14.3 Cost-Effectiveness of Reflective White Materials -- 3.14.4 Energy-Efficient Motors -- 3.14.5 Energy-Efficient Compressors -- 3.15 Energy Sustainability -- 3.16 Energy Security -- 3.17 Energy Conservation -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 4 Properties of Pure Substances -- 4.1 Pure Substances and Their Phases -- 4.2 Phase Change Processes of Pure Substances -- 4.3 p-v Diagram of a Pure Substance -- 4.4 T-v Diagram of a Pure Substance -- 4.5 p-T Diagram of a Pure Substance -- 4.6 p-v-T Surface -- 4.7 T-s Diagram of a Pure Substance -- 4.8 h-s Diagram or Mollier Diagram -- 4.9 Quality or Dryness Fraction-Property Tables -- 4.9.1 Quality or Dryness Fraction -- 4.9.2 Compressed Liquid or Subcooled Liquid -- 4.9.3 Superheated Vapor -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 5 First Law Analysis of Control Volumes -- 5.1 Control Volume -- 5.2 Mass Balance -- 5.3 Flow Work -- 5.4 Steady-Flow Processes -- 5.5 First Law Analysis of Steady-Flow Processes -- 5.6 Steady-Flow Energy Equation Needs -- 5.7 Steady-Flow Devices -- 5.7.1 Turbines and Compressors -- 5.7.2 Nozzles and Diffusers -- 5.7.3 Throttling -- 5.7.4 Heat Transfer -- 5.8 First Law Analysis of Unsteady-Flow Processes -- Example Problems -- Review Questions -- Exercise Problems -- Design Problems -- Chapter 6 Second Law of Thermodynamics -- 6.1 Limitations of the First Law of Thermodynamics -- 6.2 Second Law Statements -- 6.2.1 Kelvin-Planck Statement -- 6.2.2 Clausius Statement of the Second Law -- 6.2.3 Equivalence of Kelvin-Planck and Clausius Statements -- 6.3 Reversible and Irreversible Processes -- 6.3.1 Reversible Process -- 6.3.2 Irreversible Process -- 6.4 Second Law Application to Power Cycles -- 6.4.1 Thermal Efficiency of Power Cycles 6.4.2 Corollaries of the Second Law for Power Cycles -- 6.5 Refrigeration and Heat Pump Cycles -- 6.5.1 Refrigeration Cycles -- 6.5.2 Heat Pump Cycles -- 6.5.3 Energy Efficiency Ratio and Seasonal Energy Efficiency Ratio -- 6.5.4 Corollaries of the Second Law for Refrigeration and Heat Pump Cycles -- 6.6 Thermodynamic Temperature Scale -- 6.7 Carnot Cycle -- 6.7.1 The Carnot Power Cycle -- 6.7.2 The Carnot Refrigerator and Heat Pump Cycles -- Example Problems -- Review Questions -- Exercise Problems -- Design Problems -- Chapter 7 Entropy -- 7.1 Inequality of Clausius -- 7.2 Entropy-A Property of a System -- 7.3 Principle of Entropy -- 7.4 The Concept of Entropy -- 7.5 The Tds Equations -- 7.6 Entropy Change of Pure Substances -- 7.7 Entropy Change of an Ideal Gas -- 7.8 Entropy Change of Solids and Liquids -- 7.9 Entropy Balance -- 7.9.1 Entropy Change of a System -- 7.9.2 Entropy Transfer by Heat and Mass Transfer -- 7.9.3 Entropy Generation-Closed System and Control Volume -- 7.10 Isentropic Process -- 7.11 Isentropic Efficiency -- 7.11.1 Isentropic Efficiency of a Turbine -- 7.11.2 Isentropic Efficiency of a Compressor and a Pump -- 7.11.3 Isentropic Efficiency of a Nozzle -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 8 Properties of Gases and Gas Mixtures -- 8.1 Ideal Gas Equation of State -- 8.2 Other Equations of State -- 8.3 Compressibility Factor-The Deviation of Real Gases from the Ideal Gas Behaviour -- 8.4 Gas Compression-Reducing the Work of Compression -- 8.5 Properties of Gas Mixtures -- 8.6 Internal Energy, Enthalpy, and Specidic Heats of Gas Mixtures -- 8.7 Entropy of Gas Mixtures -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 9 Concept of Available Energy (Exergy) -- 9.1 Available Energy (Exergy) 9.2 Reversible Work and Irreversibility -- 9.2.1 Useful Work -- 9.2.2 Reversible Work -- 9.3 Exergy Change of a System -- 9.3.1 Exergy of a Flow Stream (Open System) Exchanging Heat Only with Surroundings -- 9.3.2 Exergy of Non-Flowing Fluids (Closed Systems) -- 9.4 Exergy Transfer by Heat, Work, and Mass -- 9.5 Second-Law Efficiency -- 9.6 Exergy Destruction -- 9.7 Exergy Balance -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 10 Vapor and Advanced Power Cycles -- 10.1 Carnot Vapor Cycle -- 10.2 Rankine Cycle -- 10.3 Comparison of Rankine and Carnot Cycles -- 10.4 Mean Temperature of the Heat Addition -- 10.5 Efficiency Improvement of the Rankine Cycle -- 10.6 Reheat Rankine Cycle -- 10.7 Regenerative Rankine Cycle -- 10.8 Ideal Working Fluids for Vapor Cycles -- 10.9 Binary Vapor Cycles -- 10.10 Organic Rankine Cycle -- 10.10.1 Efficiency of the Cycle -- 10.10.2 The Ideal Working Fluids for the Combined ORC -- 10.11 Cogeneration -- 10.12 Exergy Analysis of Vapor Power Cycles -- 10.13 Combined Cycle Power Plants -- 10.13.1 The Effect of Operating Parameters on Combined Cycle Performance -- 10.13.2 Combined Cycle Power Plant Integrated with ORC -- 10.13.3 Combined Cycle Power Plant Integrated with Absorption Refrigeration System -- 10.14 Integrated Coal Gasification Combined Cycle (IGCC) Power Plants -- 10.14.1 Working of IGCC Power Plant -- 10.14.2 Carbon Dioxide Capture from IGCC Power Plant -- 10.15 Power Cycles for Nuclear Plants -- 10.15.1 Nuclear Power Plant -- 10.15.2 Nuclear Fuels -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 11 Gas Power Cycles -- 11.1 General Analysis of Cycles -- 11.2 Carnot Cycle -- 11.3 Air-Standard Cycles-Assumptions -- 11.4 Reciprocating Engines-An Overview -- 11.5 Otto Cycle -- 11.6 Diesel Cycle 11.7 Dual Cycle -- 11.8 Comparison of Otto, Diesel, And Dual Cycles -- 11.8.1 Based on Same Compression Ratio and Heat Rejection -- 11.8.2 Based on Same Maximum Pressure and Temperature -- 11.9 Stirling and Ericsson Cycles -- 11.10 Brayton Cycle-Gas Turbine Power Plants -- 11.11 Brayton Cycle with Regeneration -- 11.12 Brayton Cycle with Intercooling, Reheating, and Regeneration -- 11.12.1 Brayton Cycle with Intercooling -- 11.12.2 Brayton Cycle with Reheating -- 11.12.3 Brayton Cycle with Intercooling, Reheating, And Regeneration -- 11.13 Gas Turbines for Jet Propulsion -- 11.13.1 Rocket Engine -- 11.13.2 Compressors Used in Jet Engines -- 11.14 Exergy Analysis of Gas Power Cycles -- 11.15 New Combustion Systems for Gas Turbines -- 11.15.1 Trapped Vortex Combustion (TVC) -- 11.15.2 Rich Burn, Quick-Mix, Lean Burn (RQL) -- 11.15.3 Double Annular Combustor (DAC) -- 11.15.4 Axially Staged Combustors (ASC) -- 11.15.5 Twin Annular Premixing Swirler Combustors (TAPS) -- 11.15.6 Lean Direct Injection (LDI) -- Example Problems -- Review Questions -- Exercise Problems -- Design and Experiment Problems -- Chapter 12 Refrigeration Cycles -- 12.1 Reversed Carnot Cycle -- 12.2 Refrigerators and Heat Pumps -- 12.3 Vapor Compression Refrigeration Cycle -- 12.3.1 COP of Vapor Compression Refrigeration System -- 12.3.2 Exergy Analysis of Vapor Compression Refrigeration Cycle -- 12.4 Refrigerants -- 12.4.1 Low-Global Warming Potential (Low-GWP) Refrigerants -- 12.4.2 Current Low-GWP Refrigerant Options -- 12.5 Vapor Absorption Refrigeration Cycle -- 12.6 Gas Cycle Refrigeration -- 12.7 Innovative Vapor Compression Refrigeration Systems -- 12.7.1 Multistage Vapor Compression Refrigeration Systems -- 12.7.2 Cascade Refrigeration System -- 12.7.3 Liquefaction of Gases -- 12.8 Energy Conservation in Domestic Refrigerators 12.8.1 Effect of Room Temperature on Energy Consumption Thermodynamics |
title | Engineering Thermodynamics Fundamental and Advanced Topics |
title_auth | Engineering Thermodynamics Fundamental and Advanced Topics |
title_exact_search | Engineering Thermodynamics Fundamental and Advanced Topics |
title_exact_search_txtP | Engineering Thermodynamics Fundamental and Advanced Topics |
title_full | Engineering Thermodynamics Fundamental and Advanced Topics |
title_fullStr | Engineering Thermodynamics Fundamental and Advanced Topics |
title_full_unstemmed | Engineering Thermodynamics Fundamental and Advanced Topics |
title_short | Engineering Thermodynamics |
title_sort | engineering thermodynamics fundamental and advanced topics |
title_sub | Fundamental and Advanced Topics |
topic | Thermodynamics |
topic_facet | Thermodynamics |
work_keys_str_mv | AT venkateswarlukavati engineeringthermodynamicsfundamentalandadvancedtopics |