Content-based image classification: efficient machine learning using robust feature extraction techniques
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Milton
CRC Press LLC
2020
|
Schlagworte: | |
Online-Zugang: | UPA01 Volltext |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xvi, 180 Seiten) |
ISBN: | 9780429352928 9781000280715 |
DOI: | 10.1201/9780429352928 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442161 | ||
003 | DE-604 | ||
005 | 20230403 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2020 |||| o||u| ||||||eng d | ||
020 | |a 9780429352928 |9 9780429352928 | ||
020 | |a 9781000280715 |9 978-1-00-028071-5 | ||
024 | 7 | |a 10.1201/9780429352928 |2 doi | |
035 | |a (ZDB-30-PQE)EBC6379676 | ||
035 | |a (ZDB-30-PAD)EBC6379676 | ||
035 | |a (ZDB-89-EBL)EBL6379676 | ||
035 | |a (OCoLC)1229166014 | ||
035 | |a (DE-599)BVBBV047442161 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-739 | ||
082 | 0 | |a 006.42 | |
084 | |a ST 330 |0 (DE-625)143663: |2 rvk | ||
100 | 1 | |a Das, Rik |d 1978- |e Verfasser |0 (DE-588)1212046153 |4 aut | |
245 | 1 | 0 | |a Content-based image classification |b efficient machine learning using robust feature extraction techniques |c Rik Das |
264 | 1 | |a Milton |b CRC Press LLC |c 2020 | |
264 | 4 | |c ©2021 | |
300 | |a 1 Online-Ressource (xvi, 180 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Author -- 1. Introduction to Content-Based Image Classification -- 1.1. Prelude -- 1.2. Metrics -- 1.2.1. Precision -- 1.2.2. True Positive (TP) Rate/Recall -- 1.2.3. Misclassification Rate (MR) -- 1.2.4. F1-Score -- 1.2.5. Accuracy -- 1.2.6. False Positive (FP) Rate -- 1.2.7. True Negative (TN) Rate -- 1.2.8. False Negative (FN) Rate -- 1.3. Classifiers -- 1.3.1. KNN Classifier -- 1.3.2. Random Forest Classifier -- 1.3.3. ANN Classifier -- 1.3.4. SVM Classifier -- 1.4. Datasets Used -- 1.4.1. Wang Dataset -- 1.4.2. Caltech Dataset -- 1.4.3. Corel Dataset -- 1.4.4. Oliva Torralba (OT-Scene) Dataset -- 1.5. Organization of the Book -- Chapter Summary -- References -- 2. A Review of Handcrafted Feature Extraction Techniques for Content-Based Image Classification -- 2.1. Prelude -- 2.2. Extraction of Features with Color Contents -- 2.3. Extraction of Features with Image Binarization -- 2.4. Extraction of Features with Image Transforms -- 2.5. Extraction of Features with Morphological Processing -- 2.6. Extraction of Features with Texture Content -- 2.7. Fusion of Features Extracted with Multiple Techniques -- 2.8. Techniques of Classification -- 2.9. Logic-Based Algorithms -- 2.9.1. Decision Trees -- 2.9.2. Learning a Set of Rules -- 2.9.3. Perceptron-Based Techniques -- 2.9.3.1 Single-Layer Perceptrons -- 2.9.3.2 Multilayer Perceptrons -- 2.9.4. Statistical Learning Algorithm -- 2.9.5. Support Vector Machine -- Chapter Summary -- References -- 3. Content-Based Feature Extraction: Color Averaging -- 3.1. Prelude -- 3.2. Block Truncation Coding -- 3.3. Feature Extraction Using Block Truncation Coding with Color Clumps -- 3.4. Code Example (MATLAB) -- 3.5. Coding Exercise | |
505 | 8 | |a 3.6. Feature Extraction Using Sorted Block Truncation Coding for Content-Based Image Classification -- 3.7. Code Example (MATLAB) -- 3.8. Coding Exercise -- 3.9. Comparison of Proposed Techniques -- 3.10. Comparison with Existing Techniques -- 3.11. Statistical Significance -- Chapter Summary -- References -- 4. Content-Based Feature Extraction: Image Binarization -- 4.1. Prelude -- 4.2. Feature Extraction Using Mean Threshold Selection -- 4.2.1. Feature Extraction with Multilevel Mean Threshold Selection -- 4.3. Code Example (MATLAB) -- 4.4. Coding Exercise -- 4.5. Feature Extraction from Significant Bit Planes Using Mean Threshold Selection -- 4.6. Code Example (MATLAB) -- 4.7. Coding Exercise -- 4.8. Feature Extraction from Even and Odd Image Varieties Using Mean Threshold Selection -- 4.9. Code Example (MATLAB) -- 4.10. Coding Exercise -- 4.11. Feature Extraction with Static and Dynamic Ternary Image Maps Using Mean Threshold Selection -- 4.12. Code Example (MATLAB) -- 4.13. Feature Extraction Using Local Threshold Selection -- 4.14. Code Example (MATLAB) -- 4.15. Coding Exercise -- 4.16. Comparing the Discussed Techniques for Performance Evaluation -- 4.17. Comparison with Existing Techniques -- 4.18. Statistical Significance -- Chapter Summary -- References -- 5. Content-Based Feature Extraction: Image Transforms -- 5.1. Prelude -- 5.2. Generating Partial Energy Coefficient from Transformed Images -- 5.3. Code Example (MATLAB) -- 5.4. Coding Exercise -- 5.5. Computational Complexity for the Image Transforms -- 5.6. Feature Extraction with Partial Energy Coefficient -- 5.6.1. Discrete Cosine Transform -- 5.6.2. Walsh Transform -- 5.6.3. Kekre Transform -- 5.6.4. Discrete Sine Transform -- 5.6.5. Discrete Hartley Transform -- 5.7. Evaluation of the Proposed Techniques -- 5.8. Comparison with Existing Techniques -- 5.9. Statistical Significance | |
505 | 8 | |a Chapter Summary -- References -- 6. Content-Based Feature Extraction: Morphological Operators -- 6.1. Prelude -- 6.2. Top-Hat Transform -- 6.3. Code Example (MATLAB) -- 6.4. Coding Exercise -- 6.5. Bottom-Hat Transform -- 6.6. Code Example (MATLAB) -- 6.7. Coding Exercise -- 6.8. Comparison of Proposed Techniques -- 6.9. Comparison with Existing Methods -- 6.10. Statistical Significance -- Chapter Summary -- References -- 7. Content-Based Feature Extraction: Texture Components -- 7.1. Prelude -- 7.2. Feature Extraction by Vector Quantization Codebook Representation Using Linde-Buzo-Grey (LBG) Algorithm -- 7.3. Code Example (MATLAB) -- 7.4. Coding Exercise -- 7.5. Feature Extraction by Gray Level Co-occurrence Matrix (GLCM) -- 7.6. Code Example (MATLAB) -- 7.7. Coding Exercise -- 7.8. Evaluation of Proposed Techniques -- 7.9. Comparison with Existing Methods -- 7.10. Statistical Significance -- Chapter Summary -- References -- 8. Fusion-Based Classification: A Comparison of Early Fusion and Late Fusion Architecture for Content-Based Features -- 8.1. Prelude -- 8.2. Image Preprocessing -- 8.3. Feature Extraction with Image Binarization -- 8.4. Feature Extraction Applying Discrete Cosine Transform (DCT) -- 8.5. Classification Framework -- 8.5.1. Method 1 -- 8.5.2. Method 2 -- 8.6. Classification Results -- Chapter Summary -- References -- 9. Future Directions: A Journey from Handcrafted Techniques to Representation Learning -- 9.1. Prelude -- 9.2. Representation Learning-Based Feature Extraction -- 9.3. Code Example (MATLAB) -- 9.4. Image Color Averaging Techniques -- 9.5. Binarization Techniques -- 9.6. Image Transforms -- 9.7. Morphological Operations -- 9.8. Texture Analysis -- 9.9. Multitechnique Feature Extraction for Decision Fusion-Based Classification -- 9.10. Comparison of Cross Domain Feature Extraction Techniques -- 9.11. Future Work | |
505 | 8 | |a References -- 10. WEKA: Beginners' Tutorial -- 10.1. Prelude -- 10.2. Getting Started with WEKA -- References -- Index | |
650 | 4 | |a Optical pattern recognition | |
650 | 0 | 7 | |a Klassifikation |0 (DE-588)4030958-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildverarbeitung |0 (DE-588)4006684-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Merkmalsextraktion |0 (DE-588)4314440-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bildverarbeitung |0 (DE-588)4006684-8 |D s |
689 | 0 | 1 | |a Klassifikation |0 (DE-588)4030958-7 |D s |
689 | 0 | 2 | |a Merkmalsextraktion |0 (DE-588)4314440-8 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Das, Rik |t Content-Based Image Classification |d Milton : CRC Press LLC,c2020 |z 9780367371609 |
856 | 4 | 0 | |u https://doi.org/10.1201/9780429352928 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-7-CSC |a ZDB-7-TFC |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032844312 | ||
966 | e | |u https://doi.org/10.1201/9780429352928 |l UPA01 |p ZDB-7-CSC |q UPA_PDA_CSC_Kauf2022 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734780760064 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Das, Rik 1978- |
author_GND | (DE-588)1212046153 |
author_facet | Das, Rik 1978- |
author_role | aut |
author_sort | Das, Rik 1978- |
author_variant | r d rd |
building | Verbundindex |
bvnumber | BV047442161 |
classification_rvk | ST 330 |
collection | ZDB-7-CSC ZDB-7-TFC ZDB-30-PQE |
contents | Intro -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Author -- 1. Introduction to Content-Based Image Classification -- 1.1. Prelude -- 1.2. Metrics -- 1.2.1. Precision -- 1.2.2. True Positive (TP) Rate/Recall -- 1.2.3. Misclassification Rate (MR) -- 1.2.4. F1-Score -- 1.2.5. Accuracy -- 1.2.6. False Positive (FP) Rate -- 1.2.7. True Negative (TN) Rate -- 1.2.8. False Negative (FN) Rate -- 1.3. Classifiers -- 1.3.1. KNN Classifier -- 1.3.2. Random Forest Classifier -- 1.3.3. ANN Classifier -- 1.3.4. SVM Classifier -- 1.4. Datasets Used -- 1.4.1. Wang Dataset -- 1.4.2. Caltech Dataset -- 1.4.3. Corel Dataset -- 1.4.4. Oliva Torralba (OT-Scene) Dataset -- 1.5. Organization of the Book -- Chapter Summary -- References -- 2. A Review of Handcrafted Feature Extraction Techniques for Content-Based Image Classification -- 2.1. Prelude -- 2.2. Extraction of Features with Color Contents -- 2.3. Extraction of Features with Image Binarization -- 2.4. Extraction of Features with Image Transforms -- 2.5. Extraction of Features with Morphological Processing -- 2.6. Extraction of Features with Texture Content -- 2.7. Fusion of Features Extracted with Multiple Techniques -- 2.8. Techniques of Classification -- 2.9. Logic-Based Algorithms -- 2.9.1. Decision Trees -- 2.9.2. Learning a Set of Rules -- 2.9.3. Perceptron-Based Techniques -- 2.9.3.1 Single-Layer Perceptrons -- 2.9.3.2 Multilayer Perceptrons -- 2.9.4. Statistical Learning Algorithm -- 2.9.5. Support Vector Machine -- Chapter Summary -- References -- 3. Content-Based Feature Extraction: Color Averaging -- 3.1. Prelude -- 3.2. Block Truncation Coding -- 3.3. Feature Extraction Using Block Truncation Coding with Color Clumps -- 3.4. Code Example (MATLAB) -- 3.5. Coding Exercise 3.6. Feature Extraction Using Sorted Block Truncation Coding for Content-Based Image Classification -- 3.7. Code Example (MATLAB) -- 3.8. Coding Exercise -- 3.9. Comparison of Proposed Techniques -- 3.10. Comparison with Existing Techniques -- 3.11. Statistical Significance -- Chapter Summary -- References -- 4. Content-Based Feature Extraction: Image Binarization -- 4.1. Prelude -- 4.2. Feature Extraction Using Mean Threshold Selection -- 4.2.1. Feature Extraction with Multilevel Mean Threshold Selection -- 4.3. Code Example (MATLAB) -- 4.4. Coding Exercise -- 4.5. Feature Extraction from Significant Bit Planes Using Mean Threshold Selection -- 4.6. Code Example (MATLAB) -- 4.7. Coding Exercise -- 4.8. Feature Extraction from Even and Odd Image Varieties Using Mean Threshold Selection -- 4.9. Code Example (MATLAB) -- 4.10. Coding Exercise -- 4.11. Feature Extraction with Static and Dynamic Ternary Image Maps Using Mean Threshold Selection -- 4.12. Code Example (MATLAB) -- 4.13. Feature Extraction Using Local Threshold Selection -- 4.14. Code Example (MATLAB) -- 4.15. Coding Exercise -- 4.16. Comparing the Discussed Techniques for Performance Evaluation -- 4.17. Comparison with Existing Techniques -- 4.18. Statistical Significance -- Chapter Summary -- References -- 5. Content-Based Feature Extraction: Image Transforms -- 5.1. Prelude -- 5.2. Generating Partial Energy Coefficient from Transformed Images -- 5.3. Code Example (MATLAB) -- 5.4. Coding Exercise -- 5.5. Computational Complexity for the Image Transforms -- 5.6. Feature Extraction with Partial Energy Coefficient -- 5.6.1. Discrete Cosine Transform -- 5.6.2. Walsh Transform -- 5.6.3. Kekre Transform -- 5.6.4. Discrete Sine Transform -- 5.6.5. Discrete Hartley Transform -- 5.7. Evaluation of the Proposed Techniques -- 5.8. Comparison with Existing Techniques -- 5.9. Statistical Significance Chapter Summary -- References -- 6. Content-Based Feature Extraction: Morphological Operators -- 6.1. Prelude -- 6.2. Top-Hat Transform -- 6.3. Code Example (MATLAB) -- 6.4. Coding Exercise -- 6.5. Bottom-Hat Transform -- 6.6. Code Example (MATLAB) -- 6.7. Coding Exercise -- 6.8. Comparison of Proposed Techniques -- 6.9. Comparison with Existing Methods -- 6.10. Statistical Significance -- Chapter Summary -- References -- 7. Content-Based Feature Extraction: Texture Components -- 7.1. Prelude -- 7.2. Feature Extraction by Vector Quantization Codebook Representation Using Linde-Buzo-Grey (LBG) Algorithm -- 7.3. Code Example (MATLAB) -- 7.4. Coding Exercise -- 7.5. Feature Extraction by Gray Level Co-occurrence Matrix (GLCM) -- 7.6. Code Example (MATLAB) -- 7.7. Coding Exercise -- 7.8. Evaluation of Proposed Techniques -- 7.9. Comparison with Existing Methods -- 7.10. Statistical Significance -- Chapter Summary -- References -- 8. Fusion-Based Classification: A Comparison of Early Fusion and Late Fusion Architecture for Content-Based Features -- 8.1. Prelude -- 8.2. Image Preprocessing -- 8.3. Feature Extraction with Image Binarization -- 8.4. Feature Extraction Applying Discrete Cosine Transform (DCT) -- 8.5. Classification Framework -- 8.5.1. Method 1 -- 8.5.2. Method 2 -- 8.6. Classification Results -- Chapter Summary -- References -- 9. Future Directions: A Journey from Handcrafted Techniques to Representation Learning -- 9.1. Prelude -- 9.2. Representation Learning-Based Feature Extraction -- 9.3. Code Example (MATLAB) -- 9.4. Image Color Averaging Techniques -- 9.5. Binarization Techniques -- 9.6. Image Transforms -- 9.7. Morphological Operations -- 9.8. Texture Analysis -- 9.9. Multitechnique Feature Extraction for Decision Fusion-Based Classification -- 9.10. Comparison of Cross Domain Feature Extraction Techniques -- 9.11. Future Work References -- 10. WEKA: Beginners' Tutorial -- 10.1. Prelude -- 10.2. Getting Started with WEKA -- References -- Index |
ctrlnum | (ZDB-30-PQE)EBC6379676 (ZDB-30-PAD)EBC6379676 (ZDB-89-EBL)EBL6379676 (OCoLC)1229166014 (DE-599)BVBBV047442161 |
dewey-full | 006.42 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.42 |
dewey-search | 006.42 |
dewey-sort | 16.42 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1201/9780429352928 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07765nmm a2200553zc 4500</leader><controlfield tag="001">BV047442161</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230403 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780429352928</subfield><subfield code="9">9780429352928</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000280715</subfield><subfield code="9">978-1-00-028071-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1201/9780429352928</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6379676</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6379676</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6379676</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1229166014</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442161</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.42</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Das, Rik</subfield><subfield code="d">1978-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1212046153</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Content-based image classification</subfield><subfield code="b">efficient machine learning using robust feature extraction techniques</subfield><subfield code="c">Rik Das</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Milton</subfield><subfield code="b">CRC Press LLC</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 180 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Author -- 1. Introduction to Content-Based Image Classification -- 1.1. Prelude -- 1.2. Metrics -- 1.2.1. Precision -- 1.2.2. True Positive (TP) Rate/Recall -- 1.2.3. Misclassification Rate (MR) -- 1.2.4. F1-Score -- 1.2.5. Accuracy -- 1.2.6. False Positive (FP) Rate -- 1.2.7. True Negative (TN) Rate -- 1.2.8. False Negative (FN) Rate -- 1.3. Classifiers -- 1.3.1. KNN Classifier -- 1.3.2. Random Forest Classifier -- 1.3.3. ANN Classifier -- 1.3.4. SVM Classifier -- 1.4. Datasets Used -- 1.4.1. Wang Dataset -- 1.4.2. Caltech Dataset -- 1.4.3. Corel Dataset -- 1.4.4. Oliva Torralba (OT-Scene) Dataset -- 1.5. Organization of the Book -- Chapter Summary -- References -- 2. A Review of Handcrafted Feature Extraction Techniques for Content-Based Image Classification -- 2.1. Prelude -- 2.2. Extraction of Features with Color Contents -- 2.3. Extraction of Features with Image Binarization -- 2.4. Extraction of Features with Image Transforms -- 2.5. Extraction of Features with Morphological Processing -- 2.6. Extraction of Features with Texture Content -- 2.7. Fusion of Features Extracted with Multiple Techniques -- 2.8. Techniques of Classification -- 2.9. Logic-Based Algorithms -- 2.9.1. Decision Trees -- 2.9.2. Learning a Set of Rules -- 2.9.3. Perceptron-Based Techniques -- 2.9.3.1 Single-Layer Perceptrons -- 2.9.3.2 Multilayer Perceptrons -- 2.9.4. Statistical Learning Algorithm -- 2.9.5. Support Vector Machine -- Chapter Summary -- References -- 3. Content-Based Feature Extraction: Color Averaging -- 3.1. Prelude -- 3.2. Block Truncation Coding -- 3.3. Feature Extraction Using Block Truncation Coding with Color Clumps -- 3.4. Code Example (MATLAB) -- 3.5. Coding Exercise</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.6. Feature Extraction Using Sorted Block Truncation Coding for Content-Based Image Classification -- 3.7. Code Example (MATLAB) -- 3.8. Coding Exercise -- 3.9. Comparison of Proposed Techniques -- 3.10. Comparison with Existing Techniques -- 3.11. Statistical Significance -- Chapter Summary -- References -- 4. Content-Based Feature Extraction: Image Binarization -- 4.1. Prelude -- 4.2. Feature Extraction Using Mean Threshold Selection -- 4.2.1. Feature Extraction with Multilevel Mean Threshold Selection -- 4.3. Code Example (MATLAB) -- 4.4. Coding Exercise -- 4.5. Feature Extraction from Significant Bit Planes Using Mean Threshold Selection -- 4.6. Code Example (MATLAB) -- 4.7. Coding Exercise -- 4.8. Feature Extraction from Even and Odd Image Varieties Using Mean Threshold Selection -- 4.9. Code Example (MATLAB) -- 4.10. Coding Exercise -- 4.11. Feature Extraction with Static and Dynamic Ternary Image Maps Using Mean Threshold Selection -- 4.12. Code Example (MATLAB) -- 4.13. Feature Extraction Using Local Threshold Selection -- 4.14. Code Example (MATLAB) -- 4.15. Coding Exercise -- 4.16. Comparing the Discussed Techniques for Performance Evaluation -- 4.17. Comparison with Existing Techniques -- 4.18. Statistical Significance -- Chapter Summary -- References -- 5. Content-Based Feature Extraction: Image Transforms -- 5.1. Prelude -- 5.2. Generating Partial Energy Coefficient from Transformed Images -- 5.3. Code Example (MATLAB) -- 5.4. Coding Exercise -- 5.5. Computational Complexity for the Image Transforms -- 5.6. Feature Extraction with Partial Energy Coefficient -- 5.6.1. Discrete Cosine Transform -- 5.6.2. Walsh Transform -- 5.6.3. Kekre Transform -- 5.6.4. Discrete Sine Transform -- 5.6.5. Discrete Hartley Transform -- 5.7. Evaluation of the Proposed Techniques -- 5.8. Comparison with Existing Techniques -- 5.9. Statistical Significance</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter Summary -- References -- 6. Content-Based Feature Extraction: Morphological Operators -- 6.1. Prelude -- 6.2. Top-Hat Transform -- 6.3. Code Example (MATLAB) -- 6.4. Coding Exercise -- 6.5. Bottom-Hat Transform -- 6.6. Code Example (MATLAB) -- 6.7. Coding Exercise -- 6.8. Comparison of Proposed Techniques -- 6.9. Comparison with Existing Methods -- 6.10. Statistical Significance -- Chapter Summary -- References -- 7. Content-Based Feature Extraction: Texture Components -- 7.1. Prelude -- 7.2. Feature Extraction by Vector Quantization Codebook Representation Using Linde-Buzo-Grey (LBG) Algorithm -- 7.3. Code Example (MATLAB) -- 7.4. Coding Exercise -- 7.5. Feature Extraction by Gray Level Co-occurrence Matrix (GLCM) -- 7.6. Code Example (MATLAB) -- 7.7. Coding Exercise -- 7.8. Evaluation of Proposed Techniques -- 7.9. Comparison with Existing Methods -- 7.10. Statistical Significance -- Chapter Summary -- References -- 8. Fusion-Based Classification: A Comparison of Early Fusion and Late Fusion Architecture for Content-Based Features -- 8.1. Prelude -- 8.2. Image Preprocessing -- 8.3. Feature Extraction with Image Binarization -- 8.4. Feature Extraction Applying Discrete Cosine Transform (DCT) -- 8.5. Classification Framework -- 8.5.1. Method 1 -- 8.5.2. Method 2 -- 8.6. Classification Results -- Chapter Summary -- References -- 9. Future Directions: A Journey from Handcrafted Techniques to Representation Learning -- 9.1. Prelude -- 9.2. Representation Learning-Based Feature Extraction -- 9.3. Code Example (MATLAB) -- 9.4. Image Color Averaging Techniques -- 9.5. Binarization Techniques -- 9.6. Image Transforms -- 9.7. Morphological Operations -- 9.8. Texture Analysis -- 9.9. Multitechnique Feature Extraction for Decision Fusion-Based Classification -- 9.10. Comparison of Cross Domain Feature Extraction Techniques -- 9.11. Future Work</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">References -- 10. WEKA: Beginners' Tutorial -- 10.1. Prelude -- 10.2. Getting Started with WEKA -- References -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical pattern recognition</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Klassifikation</subfield><subfield code="0">(DE-588)4030958-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Merkmalsextraktion</subfield><subfield code="0">(DE-588)4314440-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Klassifikation</subfield><subfield code="0">(DE-588)4030958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Merkmalsextraktion</subfield><subfield code="0">(DE-588)4314440-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Das, Rik</subfield><subfield code="t">Content-Based Image Classification</subfield><subfield code="d">Milton : CRC Press LLC,c2020</subfield><subfield code="z">9780367371609</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1201/9780429352928</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-7-CSC</subfield><subfield code="a">ZDB-7-TFC</subfield><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844312</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1201/9780429352928</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-7-CSC</subfield><subfield code="q">UPA_PDA_CSC_Kauf2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047442161 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:24Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9780429352928 9781000280715 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844312 |
oclc_num | 1229166014 |
open_access_boolean | |
owner | DE-83 DE-739 |
owner_facet | DE-83 DE-739 |
physical | 1 Online-Ressource (xvi, 180 Seiten) |
psigel | ZDB-7-CSC ZDB-7-TFC ZDB-30-PQE ZDB-7-CSC UPA_PDA_CSC_Kauf2022 |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | CRC Press LLC |
record_format | marc |
spelling | Das, Rik 1978- Verfasser (DE-588)1212046153 aut Content-based image classification efficient machine learning using robust feature extraction techniques Rik Das Milton CRC Press LLC 2020 ©2021 1 Online-Ressource (xvi, 180 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Intro -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Author -- 1. Introduction to Content-Based Image Classification -- 1.1. Prelude -- 1.2. Metrics -- 1.2.1. Precision -- 1.2.2. True Positive (TP) Rate/Recall -- 1.2.3. Misclassification Rate (MR) -- 1.2.4. F1-Score -- 1.2.5. Accuracy -- 1.2.6. False Positive (FP) Rate -- 1.2.7. True Negative (TN) Rate -- 1.2.8. False Negative (FN) Rate -- 1.3. Classifiers -- 1.3.1. KNN Classifier -- 1.3.2. Random Forest Classifier -- 1.3.3. ANN Classifier -- 1.3.4. SVM Classifier -- 1.4. Datasets Used -- 1.4.1. Wang Dataset -- 1.4.2. Caltech Dataset -- 1.4.3. Corel Dataset -- 1.4.4. Oliva Torralba (OT-Scene) Dataset -- 1.5. Organization of the Book -- Chapter Summary -- References -- 2. A Review of Handcrafted Feature Extraction Techniques for Content-Based Image Classification -- 2.1. Prelude -- 2.2. Extraction of Features with Color Contents -- 2.3. Extraction of Features with Image Binarization -- 2.4. Extraction of Features with Image Transforms -- 2.5. Extraction of Features with Morphological Processing -- 2.6. Extraction of Features with Texture Content -- 2.7. Fusion of Features Extracted with Multiple Techniques -- 2.8. Techniques of Classification -- 2.9. Logic-Based Algorithms -- 2.9.1. Decision Trees -- 2.9.2. Learning a Set of Rules -- 2.9.3. Perceptron-Based Techniques -- 2.9.3.1 Single-Layer Perceptrons -- 2.9.3.2 Multilayer Perceptrons -- 2.9.4. Statistical Learning Algorithm -- 2.9.5. Support Vector Machine -- Chapter Summary -- References -- 3. Content-Based Feature Extraction: Color Averaging -- 3.1. Prelude -- 3.2. Block Truncation Coding -- 3.3. Feature Extraction Using Block Truncation Coding with Color Clumps -- 3.4. Code Example (MATLAB) -- 3.5. Coding Exercise 3.6. Feature Extraction Using Sorted Block Truncation Coding for Content-Based Image Classification -- 3.7. Code Example (MATLAB) -- 3.8. Coding Exercise -- 3.9. Comparison of Proposed Techniques -- 3.10. Comparison with Existing Techniques -- 3.11. Statistical Significance -- Chapter Summary -- References -- 4. Content-Based Feature Extraction: Image Binarization -- 4.1. Prelude -- 4.2. Feature Extraction Using Mean Threshold Selection -- 4.2.1. Feature Extraction with Multilevel Mean Threshold Selection -- 4.3. Code Example (MATLAB) -- 4.4. Coding Exercise -- 4.5. Feature Extraction from Significant Bit Planes Using Mean Threshold Selection -- 4.6. Code Example (MATLAB) -- 4.7. Coding Exercise -- 4.8. Feature Extraction from Even and Odd Image Varieties Using Mean Threshold Selection -- 4.9. Code Example (MATLAB) -- 4.10. Coding Exercise -- 4.11. Feature Extraction with Static and Dynamic Ternary Image Maps Using Mean Threshold Selection -- 4.12. Code Example (MATLAB) -- 4.13. Feature Extraction Using Local Threshold Selection -- 4.14. Code Example (MATLAB) -- 4.15. Coding Exercise -- 4.16. Comparing the Discussed Techniques for Performance Evaluation -- 4.17. Comparison with Existing Techniques -- 4.18. Statistical Significance -- Chapter Summary -- References -- 5. Content-Based Feature Extraction: Image Transforms -- 5.1. Prelude -- 5.2. Generating Partial Energy Coefficient from Transformed Images -- 5.3. Code Example (MATLAB) -- 5.4. Coding Exercise -- 5.5. Computational Complexity for the Image Transforms -- 5.6. Feature Extraction with Partial Energy Coefficient -- 5.6.1. Discrete Cosine Transform -- 5.6.2. Walsh Transform -- 5.6.3. Kekre Transform -- 5.6.4. Discrete Sine Transform -- 5.6.5. Discrete Hartley Transform -- 5.7. Evaluation of the Proposed Techniques -- 5.8. Comparison with Existing Techniques -- 5.9. Statistical Significance Chapter Summary -- References -- 6. Content-Based Feature Extraction: Morphological Operators -- 6.1. Prelude -- 6.2. Top-Hat Transform -- 6.3. Code Example (MATLAB) -- 6.4. Coding Exercise -- 6.5. Bottom-Hat Transform -- 6.6. Code Example (MATLAB) -- 6.7. Coding Exercise -- 6.8. Comparison of Proposed Techniques -- 6.9. Comparison with Existing Methods -- 6.10. Statistical Significance -- Chapter Summary -- References -- 7. Content-Based Feature Extraction: Texture Components -- 7.1. Prelude -- 7.2. Feature Extraction by Vector Quantization Codebook Representation Using Linde-Buzo-Grey (LBG) Algorithm -- 7.3. Code Example (MATLAB) -- 7.4. Coding Exercise -- 7.5. Feature Extraction by Gray Level Co-occurrence Matrix (GLCM) -- 7.6. Code Example (MATLAB) -- 7.7. Coding Exercise -- 7.8. Evaluation of Proposed Techniques -- 7.9. Comparison with Existing Methods -- 7.10. Statistical Significance -- Chapter Summary -- References -- 8. Fusion-Based Classification: A Comparison of Early Fusion and Late Fusion Architecture for Content-Based Features -- 8.1. Prelude -- 8.2. Image Preprocessing -- 8.3. Feature Extraction with Image Binarization -- 8.4. Feature Extraction Applying Discrete Cosine Transform (DCT) -- 8.5. Classification Framework -- 8.5.1. Method 1 -- 8.5.2. Method 2 -- 8.6. Classification Results -- Chapter Summary -- References -- 9. Future Directions: A Journey from Handcrafted Techniques to Representation Learning -- 9.1. Prelude -- 9.2. Representation Learning-Based Feature Extraction -- 9.3. Code Example (MATLAB) -- 9.4. Image Color Averaging Techniques -- 9.5. Binarization Techniques -- 9.6. Image Transforms -- 9.7. Morphological Operations -- 9.8. Texture Analysis -- 9.9. Multitechnique Feature Extraction for Decision Fusion-Based Classification -- 9.10. Comparison of Cross Domain Feature Extraction Techniques -- 9.11. Future Work References -- 10. WEKA: Beginners' Tutorial -- 10.1. Prelude -- 10.2. Getting Started with WEKA -- References -- Index Optical pattern recognition Klassifikation (DE-588)4030958-7 gnd rswk-swf Bildverarbeitung (DE-588)4006684-8 gnd rswk-swf Merkmalsextraktion (DE-588)4314440-8 gnd rswk-swf Bildverarbeitung (DE-588)4006684-8 s Klassifikation (DE-588)4030958-7 s Merkmalsextraktion (DE-588)4314440-8 s DE-604 Erscheint auch als Druck-Ausgabe Das, Rik Content-Based Image Classification Milton : CRC Press LLC,c2020 9780367371609 https://doi.org/10.1201/9780429352928 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Das, Rik 1978- Content-based image classification efficient machine learning using robust feature extraction techniques Intro -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Author -- 1. Introduction to Content-Based Image Classification -- 1.1. Prelude -- 1.2. Metrics -- 1.2.1. Precision -- 1.2.2. True Positive (TP) Rate/Recall -- 1.2.3. Misclassification Rate (MR) -- 1.2.4. F1-Score -- 1.2.5. Accuracy -- 1.2.6. False Positive (FP) Rate -- 1.2.7. True Negative (TN) Rate -- 1.2.8. False Negative (FN) Rate -- 1.3. Classifiers -- 1.3.1. KNN Classifier -- 1.3.2. Random Forest Classifier -- 1.3.3. ANN Classifier -- 1.3.4. SVM Classifier -- 1.4. Datasets Used -- 1.4.1. Wang Dataset -- 1.4.2. Caltech Dataset -- 1.4.3. Corel Dataset -- 1.4.4. Oliva Torralba (OT-Scene) Dataset -- 1.5. Organization of the Book -- Chapter Summary -- References -- 2. A Review of Handcrafted Feature Extraction Techniques for Content-Based Image Classification -- 2.1. Prelude -- 2.2. Extraction of Features with Color Contents -- 2.3. Extraction of Features with Image Binarization -- 2.4. Extraction of Features with Image Transforms -- 2.5. Extraction of Features with Morphological Processing -- 2.6. Extraction of Features with Texture Content -- 2.7. Fusion of Features Extracted with Multiple Techniques -- 2.8. Techniques of Classification -- 2.9. Logic-Based Algorithms -- 2.9.1. Decision Trees -- 2.9.2. Learning a Set of Rules -- 2.9.3. Perceptron-Based Techniques -- 2.9.3.1 Single-Layer Perceptrons -- 2.9.3.2 Multilayer Perceptrons -- 2.9.4. Statistical Learning Algorithm -- 2.9.5. Support Vector Machine -- Chapter Summary -- References -- 3. Content-Based Feature Extraction: Color Averaging -- 3.1. Prelude -- 3.2. Block Truncation Coding -- 3.3. Feature Extraction Using Block Truncation Coding with Color Clumps -- 3.4. Code Example (MATLAB) -- 3.5. Coding Exercise 3.6. Feature Extraction Using Sorted Block Truncation Coding for Content-Based Image Classification -- 3.7. Code Example (MATLAB) -- 3.8. Coding Exercise -- 3.9. Comparison of Proposed Techniques -- 3.10. Comparison with Existing Techniques -- 3.11. Statistical Significance -- Chapter Summary -- References -- 4. Content-Based Feature Extraction: Image Binarization -- 4.1. Prelude -- 4.2. Feature Extraction Using Mean Threshold Selection -- 4.2.1. Feature Extraction with Multilevel Mean Threshold Selection -- 4.3. Code Example (MATLAB) -- 4.4. Coding Exercise -- 4.5. Feature Extraction from Significant Bit Planes Using Mean Threshold Selection -- 4.6. Code Example (MATLAB) -- 4.7. Coding Exercise -- 4.8. Feature Extraction from Even and Odd Image Varieties Using Mean Threshold Selection -- 4.9. Code Example (MATLAB) -- 4.10. Coding Exercise -- 4.11. Feature Extraction with Static and Dynamic Ternary Image Maps Using Mean Threshold Selection -- 4.12. Code Example (MATLAB) -- 4.13. Feature Extraction Using Local Threshold Selection -- 4.14. Code Example (MATLAB) -- 4.15. Coding Exercise -- 4.16. Comparing the Discussed Techniques for Performance Evaluation -- 4.17. Comparison with Existing Techniques -- 4.18. Statistical Significance -- Chapter Summary -- References -- 5. Content-Based Feature Extraction: Image Transforms -- 5.1. Prelude -- 5.2. Generating Partial Energy Coefficient from Transformed Images -- 5.3. Code Example (MATLAB) -- 5.4. Coding Exercise -- 5.5. Computational Complexity for the Image Transforms -- 5.6. Feature Extraction with Partial Energy Coefficient -- 5.6.1. Discrete Cosine Transform -- 5.6.2. Walsh Transform -- 5.6.3. Kekre Transform -- 5.6.4. Discrete Sine Transform -- 5.6.5. Discrete Hartley Transform -- 5.7. Evaluation of the Proposed Techniques -- 5.8. Comparison with Existing Techniques -- 5.9. Statistical Significance Chapter Summary -- References -- 6. Content-Based Feature Extraction: Morphological Operators -- 6.1. Prelude -- 6.2. Top-Hat Transform -- 6.3. Code Example (MATLAB) -- 6.4. Coding Exercise -- 6.5. Bottom-Hat Transform -- 6.6. Code Example (MATLAB) -- 6.7. Coding Exercise -- 6.8. Comparison of Proposed Techniques -- 6.9. Comparison with Existing Methods -- 6.10. Statistical Significance -- Chapter Summary -- References -- 7. Content-Based Feature Extraction: Texture Components -- 7.1. Prelude -- 7.2. Feature Extraction by Vector Quantization Codebook Representation Using Linde-Buzo-Grey (LBG) Algorithm -- 7.3. Code Example (MATLAB) -- 7.4. Coding Exercise -- 7.5. Feature Extraction by Gray Level Co-occurrence Matrix (GLCM) -- 7.6. Code Example (MATLAB) -- 7.7. Coding Exercise -- 7.8. Evaluation of Proposed Techniques -- 7.9. Comparison with Existing Methods -- 7.10. Statistical Significance -- Chapter Summary -- References -- 8. Fusion-Based Classification: A Comparison of Early Fusion and Late Fusion Architecture for Content-Based Features -- 8.1. Prelude -- 8.2. Image Preprocessing -- 8.3. Feature Extraction with Image Binarization -- 8.4. Feature Extraction Applying Discrete Cosine Transform (DCT) -- 8.5. Classification Framework -- 8.5.1. Method 1 -- 8.5.2. Method 2 -- 8.6. Classification Results -- Chapter Summary -- References -- 9. Future Directions: A Journey from Handcrafted Techniques to Representation Learning -- 9.1. Prelude -- 9.2. Representation Learning-Based Feature Extraction -- 9.3. Code Example (MATLAB) -- 9.4. Image Color Averaging Techniques -- 9.5. Binarization Techniques -- 9.6. Image Transforms -- 9.7. Morphological Operations -- 9.8. Texture Analysis -- 9.9. Multitechnique Feature Extraction for Decision Fusion-Based Classification -- 9.10. Comparison of Cross Domain Feature Extraction Techniques -- 9.11. Future Work References -- 10. WEKA: Beginners' Tutorial -- 10.1. Prelude -- 10.2. Getting Started with WEKA -- References -- Index Optical pattern recognition Klassifikation (DE-588)4030958-7 gnd Bildverarbeitung (DE-588)4006684-8 gnd Merkmalsextraktion (DE-588)4314440-8 gnd |
subject_GND | (DE-588)4030958-7 (DE-588)4006684-8 (DE-588)4314440-8 |
title | Content-based image classification efficient machine learning using robust feature extraction techniques |
title_auth | Content-based image classification efficient machine learning using robust feature extraction techniques |
title_exact_search | Content-based image classification efficient machine learning using robust feature extraction techniques |
title_exact_search_txtP | Content-based image classification efficient machine learning using robust feature extraction techniques |
title_full | Content-based image classification efficient machine learning using robust feature extraction techniques Rik Das |
title_fullStr | Content-based image classification efficient machine learning using robust feature extraction techniques Rik Das |
title_full_unstemmed | Content-based image classification efficient machine learning using robust feature extraction techniques Rik Das |
title_short | Content-based image classification |
title_sort | content based image classification efficient machine learning using robust feature extraction techniques |
title_sub | efficient machine learning using robust feature extraction techniques |
topic | Optical pattern recognition Klassifikation (DE-588)4030958-7 gnd Bildverarbeitung (DE-588)4006684-8 gnd Merkmalsextraktion (DE-588)4314440-8 gnd |
topic_facet | Optical pattern recognition Klassifikation Bildverarbeitung Merkmalsextraktion |
url | https://doi.org/10.1201/9780429352928 |
work_keys_str_mv | AT dasrik contentbasedimageclassificationefficientmachinelearningusingrobustfeatureextractiontechniques |