Optical Fibre Sensors: Fundamentals for Development of Optimized Devices
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
John Wiley & Sons, Incorporated
2021
|
Schriftenreihe: | IEEE Press Series on Sensors Ser
|
Schlagworte: | |
Online-Zugang: | FHI01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (546 Seiten) |
ISBN: | 9781119534778 9781119534730 9781119534792 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442112 | ||
003 | DE-604 | ||
005 | 20230127 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781119534778 |9 978-1-119-53477-8 | ||
020 | |a 9781119534730 |9 9781119534730 | ||
020 | |a 9781119534792 |9 9781119534792 | ||
035 | |a (ZDB-30-PQE)EBC6374645 | ||
035 | |a (ZDB-30-PAD)EBC6374645 | ||
035 | |a (ZDB-89-EBL)EBL6374645 | ||
035 | |a (OCoLC)1206397010 | ||
035 | |a (DE-599)BVBBV047442112 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-573 | ||
082 | 0 | |a 621.3692 | |
100 | 1 | |a Del Villar, Ignacio |e Verfasser |4 aut | |
245 | 1 | 0 | |a Optical Fibre Sensors |b Fundamentals for Development of Optimized Devices |
264 | 1 | |a Hoboken, NJ |b John Wiley & Sons, Incorporated |c 2021 | |
264 | 4 | |c ©2021 | |
300 | |a 1 Online-Ressource (546 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a IEEE Press Series on Sensors Ser | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Acknowledgment -- About the Editors -- Chapter 1 Introduction -- References -- Chapter 2 Propagation of Light Through Optical Fibre -- 2.1 Geometric Optics -- 2.2 Wave Theory -- 2.2.1 Scalar Analysis -- 2.2.2 Vectorial Analysis -- 2.3 Fibre Losses and Dispersion -- 2.4 Propagation in Microstructured Optical Fibre -- 2.5 Propagation in Specialty Optical Fibres Focused on Sensing -- 2.6 Conclusion -- References -- Chapter 3 Optical Fibre Sensor Set-Up Elements -- 3.1 Introduction -- 3.2 Light Sources -- 3.2.1 Light-Emitting Diodes -- 3.2.1.1 Surface Light-Emitting Diode -- 3.2.1.2 Side Light-Emitting Diode -- 3.2.2 Laser Diode -- 3.2.2.1 Single-Mode Laser Diode Structure -- 3.2.2.2 Quantum Well Laser Diode -- 3.2.3 Superluminescent Diodes (SLD) -- 3.2.4 Amplified Spontaneous Emission Sources -- 3.2.5 Narrow Line Broadband Sweep Source -- 3.2.6 Broadband Sources -- 3.3 Optical Detectors -- 3.3.1 Basic Principles of Optical Detectors -- 3.3.1.1 PN Photodetector -- 3.3.1.2 PIN Photodetector -- 3.3.1.3 Avalanche Photodiode (APD) -- 3.3.2 Main Characteristics of Optical Detectors -- 3.3.2.1 Operating Wavelength Range and Cut-Off Wavelength -- 3.3.2.2 Quantum Efficiency and Responsiveness -- 3.3.2.3 Response Time -- 3.3.2.4 Materials and Structures of Semiconductor Photodiodes -- 3.3.3 Optical Spectrometers -- 3.4 Light Coupling Technology -- 3.4.1 Coupling of Fibre and Light Source -- 3.4.1.1 Coupling of Semiconductor Lasers and Optical Fibres -- 3.4.1.2 Coupling Loss of Semiconductor Light-Emitting Diodes and Optical Fibres -- 3.4.2 Multimode Fibre Coupled Through Lens -- 3.4.3 Direct Coupling of Fibre and Fibre -- 3.5 Fibre-Optic Device -- 3.5.1 Fibre Coupler -- 3.5.2 Optical Isolator -- 3.5.3 Optical Circulator -- 3.5.4 Fibre Attenuator -- 3.5.5 Fibre Polarizer | |
505 | 8 | |a 3.5.6 Optical Switch -- 3.6 Optical Modulation and Interrogation of Optical Fibre-Optic Sensors -- 3.6.1 Intensity-Modulated Optical Fibre Sensing Technology -- 3.6.1.1 Reflective Intensity Modulation Sensor -- 3.6.1.2 Transmissive Intensity Modulation Sensor -- 3.6.1.3 Light Mode (Microbend) Intensity Modulation Sensor -- 3.6.1.4 Refractive Index Intensity-Modulated Fibre-Optic Sensor -- 3.6.2 Wavelength Modulation Optical Fibre Sensing Technology -- 3.6.2.1 Direct Demodulation System -- 3.6.2.2 NarrowBand Laser Scanning System -- 3.6.2.3 Broadband Source Filter Scanning System -- 3.6.2.4 Linear Sideband Filtering Method -- 3.6.2.5 Interference Demodulation System -- 3.6.3 Phase Modulation Optical Fibre Sensing Technology -- References -- Chapter 4 Basic Detection Techniques -- 4.1 Introduction -- 4.2 Overview of Interrogation Methods -- 4.3 Intensity-Based Sensors -- 4.3.1 Macrobending -- 4.3.2 In-Line Fibre Coupling -- 4.3.3 Bifurcated Fibre Bundle -- 4.3.4 Smartphone Sensors -- 4.4 Polarization-Based Sensors -- 4.4.1 Pressure and Force Detection -- 4.4.2 Lossy Mode Resonance for Refractive Index Sensing -- 4.5 Fibre-Optic Interferometers -- 4.5.1 Fabry-Pérot Interferometer (FPI)-Based Fibre Sensors -- 4.5.1.1 Extrinsic FPI for Pressure Sensing -- 4.5.1.2 In-Line FPI for Temperature Sensing -- 4.5.2 Mach-Zehnder Interferometer (MZI)-Based Fibre Sensors -- 4.5.3 Single-Multi-Single Mode (SMS) Interferometer-Based Fibre Sensors -- 4.6 Grating-Based Sensors -- 4.6.1 Fibre Bragg Grating (FBG) -- 4.6.2 FBG Arrays -- 4.6.3 Tilted and Chirped FBG -- 4.6.4 Long-Period Grating (LPG) -- 4.6.5 FBG Fabrication -- 4.7 Conclusions -- References -- Chapter 5 Structural Health Monitoring Using Distributed Fibre-Optic Sensors -- 5.1 Introduction -- 5.2 Fundamentals of Distributed Fibre-Optic Sensors -- 5.2.1 Raman DTS -- 5.2.2 Brillouin DTSS. | |
505 | 8 | |a 5.3 DFOS in Civil and Geotechnical Engineering -- 5.3.1 Bridges -- 5.3.2 Tunnels -- 5.3.3 Geotechnical Structures -- 5.4 DFOS in Hydraulic Structures -- 5.5 DFOS in the Electric Grid -- 5.6 Conclusions -- References -- Chapter 6 Distributed Sensors in the Oil and Gas Industry -- 6.1 The Late Life Cycle of a Hydrocarbon Molecule -- 6.1.1 Upstream -- 6.1.1.1 Exploration -- 6.1.1.2 Well Construction -- 6.1.1.3 Formation and Reservoir Evaluation -- 6.1.1.4 Production -- 6.1.1.5 Production of Methane Hydrates -- 6.1.1.6 Well Abandonment -- 6.1.2 Midstream: Transportation -- 6.1.3 Downstream: Refinery and Distribution -- 6.2 Challenges in the Application of Optical Fibres to the Hydrocarbon -- 6.2.1 Conditions -- 6.2.2 Conveyance Methods -- 6.2.2.1 Temporary Installations (Intervention Services) -- 6.2.2.2 Permanent Fibre Installations -- 6.2.3 Fibre Reliability -- 6.2.4 Fibre Types -- 6.3 Applications and Take-Up -- 6.3.1 Steam-Assisted Recovery -- SAGD -- 6.3.2 Flow Allocation: Conventional Wells -- 6.3.3 Injector Monitoring -- 6.3.4 Thermal Tracer Techniques -- 6.3.5 Water Flow Between Wells -- 6.3.6 Gas-Lift Valves -- 6.3.7 Vertical Seismic Profiling (VSP) -- 6.3.8 Hydraulic Fracturing Monitoring (HFM) -- 6.3.9 Sand Production -- 6.4 Summary -- References -- Chapter 7 Biomechanical Sensors -- 7.1 Optical Fibre Sensors in Biomechanics: Introduction and Review -- 7.2 Optical Fibre Sensors: From Experimental Phantoms to In Vivo Applications -- 7.2.1 Experimental Phantoms and Models -- 7.2.1.1 Joints -- 7.2.1.2 Bones and Muscles -- 7.2.1.3 Teeth, Lower Jaw (Mandible), and Upper Jaw (Maxilla) -- 7.2.1.4 Prosthesis and Extracorporeal Devices -- 7.2.1.5 Sole and Insoles -- 7.2.1.6 Smart Fabrics -- 7.2.1.7 Blood Vessels -- 7.2.1.8 Respiratory Monitoring -- 7.2.2 In Vitro -- 7.2.3 Ex Vivo -- 7.2.3.1 Joints -- 7.2.3.2 Bones and Muscles | |
505 | 8 | |a 7.2.3.3 Teeth, Lower Jaw (Mandible), and Upper Jaw (Maxilla) -- 7.2.3.4 Blood Vessels -- 7.2.3.5 Mechanical Properties of Tissues -- 7.2.4 In Vivo -- 7.2.4.1 Joints -- 7.2.4.2 Bones and Muscles -- 7.2.4.3 Teeth, Lower Jaw (Mandible) and Upper Jaw (Maxilla) -- 7.2.4.4 Blood Vessels -- 7.2.4.5 Respiratory Monitoring -- 7.2.5 In Situ -- 7.2.5.1 Joints -- 7.2.5.2 Bones and Muscles -- 7.2.5.3 Prostheses and Extracorporeal Devices -- 7.2.5.4 Soles and Insoles -- 7.2.5.5 Cardiac Monitoring -- 7.2.5.6 Respiratory Monitoring -- 7.3 FBG Sensors Integrated into Mechanical Systems -- 7.3.1 FBG Sensors Glued with Polymer -- 7.3.2 Polymer-Integrated FBG Sensor -- 7.3.3 Smart Fibre Reinforced Polymer (SFRP) -- 7.4 Future Perspective -- Acknowledgment -- References -- Chapter 8 Optical Fibre Chemical Sensors -- 8.1 Introduction -- 8.2 Principles and Mechanisms of Fibre-Optic-Based Chemical Sensing -- 8.2.1 Principle of Chemical Sensor Response -- 8.2.2 Absorption-Based Sensors -- 8.2.3 Luminescence-Based Sensors -- 8.2.4 Surface Plasmon Resonance (SPR)-Based Sensors -- 8.3 Sensor Design and Applications -- 8.3.1 Optical Fibre pH Sensors -- 8.3.1.1 Principle of Fluorescence-Based pH Measurements -- 8.3.1.2 pH Sensor Design -- 8.3.1.3 Set-Up of a pH Sensor System -- 8.3.1.4 Evaluation of the pH Sensor Systems -- 8.3.1.5 Comments -- 8.3.2 Optical Fibre Mercury Sensor -- 8.3.2.1 Sensor Design and Mechanism -- 8.3.2.2 Evaluation of the Mercury Sensor System -- 8.3.2.3 Comments -- 8.3.3 Optical Fibre Cocaine Sensor -- 8.3.3.1 Sensing Methodology -- 8.3.3.2 Design and Fabrication of a Cocaine Sensor System -- 8.3.3.3 Evaluation of the Cocaine Sensor System -- 8.3.3.4 Comments -- 8.4 Conclusions and Future Outlook -- Acknowledgements -- References -- Chapter 9 Application of Nanotechnology to Optical Fibre Sensors: Recent Advancements and New Trends -- 9.1 Introduction | |
505 | 8 | |a 9.2 A View Back -- 9.3 Nanofabrication Techniques on the Fibre Tip for Biochemical Applications -- 9.3.1 Direct Approaches -- 9.3.2 Indirect Approaches -- 9.3.3 Self-Assembly -- 9.3.4 Smart Materials Integration -- 9.4 Nanofabrication Techniques on the Fibre Tip for Optomechanical Applications -- 9.5 Conclusions -- References -- Chapter 10 From Refractometry to Biosensing with Optical Fibres -- 10.1 Basic Sensing Concepts and Parameters for OFSs -- 10.1.1 Parameters of General Interest -- 10.1.1.1 Uncertainty -- 10.1.1.2 Accuracy and Precision -- 10.1.1.3 Sensor Drift and Fluctuations -- 10.1.1.4 Repeatability -- 10.1.1.5 Reproducibility -- 10.1.1.6 Response Time -- 10.1.2 Parameters Related to Volume RI Sensing -- 10.1.2.1 Refractive Index Sensitivity -- 10.1.2.2 Resolution -- 10.1.2.3 Figure of Merit (FOM) -- 10.1.3 Parameters Related to Surface RI Sensing -- 10.1.3.1 Sensorgram and Calibration Curve -- 10.1.3.2 Limit of Detection (LOD) and Limit of Quantification (LOQ) -- 10.1.3.3 Specificity (or Selectivity) -- 10.1.3.4 Regeneration (or Reusability) -- 10.2 Optical Fibre Refractometers -- 10.2.1 Optical Interferometers -- 10.2.2 Grating-Based Structures -- 10.2.3 Other Resonance-Based Structures -- 10.3 Optical Fibre Biosensors -- 10.3.1 Immuno-Based Biosensors -- 10.3.2 Oligonucleotide-Based Biosensors -- 10.3.3 Whole Cell/Microorganism-Based Biosensors -- 10.4 Fibre Optics Towards Advanced Diagnostics and Future Perspectives -- References -- Chapter 11 Humidity, Gas, and Volatile Organic Compound Sensors -- 11.1 Introduction -- 11.2 Optical Fibre Sensor Specific Features for Gas and VOC Detection -- 11.3 Sensing Materials -- 11.3.1 Organic Chemical Dyes -- 11.3.2 Metal-Organic Framework (MOF) Materials -- 11.3.3 Metallic Oxides -- 11.3.4 Graphene -- 11.4 Detection of Single Gases -- 11.5 Relative Humidity Measurement | |
505 | 8 | |a 11.6 Devices for VOC Sensing and Identification | |
650 | 0 | 7 | |a Lichtwellenleiter |0 (DE-588)4267405-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sensor |0 (DE-588)4038824-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lichtleitfaser |0 (DE-588)4167589-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Lichtwellenleiter |0 (DE-588)4267405-0 |D s |
689 | 0 | 1 | |a Lichtleitfaser |0 (DE-588)4167589-7 |D s |
689 | 0 | 2 | |a Sensor |0 (DE-588)4038824-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Matias, Ignacio Raul Matias Maestro |d 1966- |e Sonstige |0 (DE-588)1222943891 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Del Villar, Ignacio |t Optical Fibre Sensors |d Newark : John Wiley & Sons, Incorporated,c2020 |z 9781119534761 |
912 | |a ZDB-30-PQE |a ZDB-35-WEL | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032844264 | ||
966 | e | |u https://ieeexplore.ieee.org/servlet/opac?bknumber=9261257 |l FHI01 |p ZDB-35-WEL |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734737768449 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Del Villar, Ignacio |
author_GND | (DE-588)1222943891 |
author_facet | Del Villar, Ignacio |
author_role | aut |
author_sort | Del Villar, Ignacio |
author_variant | v i d vi vid |
building | Verbundindex |
bvnumber | BV047442112 |
collection | ZDB-30-PQE ZDB-35-WEL |
contents | Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Acknowledgment -- About the Editors -- Chapter 1 Introduction -- References -- Chapter 2 Propagation of Light Through Optical Fibre -- 2.1 Geometric Optics -- 2.2 Wave Theory -- 2.2.1 Scalar Analysis -- 2.2.2 Vectorial Analysis -- 2.3 Fibre Losses and Dispersion -- 2.4 Propagation in Microstructured Optical Fibre -- 2.5 Propagation in Specialty Optical Fibres Focused on Sensing -- 2.6 Conclusion -- References -- Chapter 3 Optical Fibre Sensor Set-Up Elements -- 3.1 Introduction -- 3.2 Light Sources -- 3.2.1 Light-Emitting Diodes -- 3.2.1.1 Surface Light-Emitting Diode -- 3.2.1.2 Side Light-Emitting Diode -- 3.2.2 Laser Diode -- 3.2.2.1 Single-Mode Laser Diode Structure -- 3.2.2.2 Quantum Well Laser Diode -- 3.2.3 Superluminescent Diodes (SLD) -- 3.2.4 Amplified Spontaneous Emission Sources -- 3.2.5 Narrow Line Broadband Sweep Source -- 3.2.6 Broadband Sources -- 3.3 Optical Detectors -- 3.3.1 Basic Principles of Optical Detectors -- 3.3.1.1 PN Photodetector -- 3.3.1.2 PIN Photodetector -- 3.3.1.3 Avalanche Photodiode (APD) -- 3.3.2 Main Characteristics of Optical Detectors -- 3.3.2.1 Operating Wavelength Range and Cut-Off Wavelength -- 3.3.2.2 Quantum Efficiency and Responsiveness -- 3.3.2.3 Response Time -- 3.3.2.4 Materials and Structures of Semiconductor Photodiodes -- 3.3.3 Optical Spectrometers -- 3.4 Light Coupling Technology -- 3.4.1 Coupling of Fibre and Light Source -- 3.4.1.1 Coupling of Semiconductor Lasers and Optical Fibres -- 3.4.1.2 Coupling Loss of Semiconductor Light-Emitting Diodes and Optical Fibres -- 3.4.2 Multimode Fibre Coupled Through Lens -- 3.4.3 Direct Coupling of Fibre and Fibre -- 3.5 Fibre-Optic Device -- 3.5.1 Fibre Coupler -- 3.5.2 Optical Isolator -- 3.5.3 Optical Circulator -- 3.5.4 Fibre Attenuator -- 3.5.5 Fibre Polarizer 3.5.6 Optical Switch -- 3.6 Optical Modulation and Interrogation of Optical Fibre-Optic Sensors -- 3.6.1 Intensity-Modulated Optical Fibre Sensing Technology -- 3.6.1.1 Reflective Intensity Modulation Sensor -- 3.6.1.2 Transmissive Intensity Modulation Sensor -- 3.6.1.3 Light Mode (Microbend) Intensity Modulation Sensor -- 3.6.1.4 Refractive Index Intensity-Modulated Fibre-Optic Sensor -- 3.6.2 Wavelength Modulation Optical Fibre Sensing Technology -- 3.6.2.1 Direct Demodulation System -- 3.6.2.2 NarrowBand Laser Scanning System -- 3.6.2.3 Broadband Source Filter Scanning System -- 3.6.2.4 Linear Sideband Filtering Method -- 3.6.2.5 Interference Demodulation System -- 3.6.3 Phase Modulation Optical Fibre Sensing Technology -- References -- Chapter 4 Basic Detection Techniques -- 4.1 Introduction -- 4.2 Overview of Interrogation Methods -- 4.3 Intensity-Based Sensors -- 4.3.1 Macrobending -- 4.3.2 In-Line Fibre Coupling -- 4.3.3 Bifurcated Fibre Bundle -- 4.3.4 Smartphone Sensors -- 4.4 Polarization-Based Sensors -- 4.4.1 Pressure and Force Detection -- 4.4.2 Lossy Mode Resonance for Refractive Index Sensing -- 4.5 Fibre-Optic Interferometers -- 4.5.1 Fabry-Pérot Interferometer (FPI)-Based Fibre Sensors -- 4.5.1.1 Extrinsic FPI for Pressure Sensing -- 4.5.1.2 In-Line FPI for Temperature Sensing -- 4.5.2 Mach-Zehnder Interferometer (MZI)-Based Fibre Sensors -- 4.5.3 Single-Multi-Single Mode (SMS) Interferometer-Based Fibre Sensors -- 4.6 Grating-Based Sensors -- 4.6.1 Fibre Bragg Grating (FBG) -- 4.6.2 FBG Arrays -- 4.6.3 Tilted and Chirped FBG -- 4.6.4 Long-Period Grating (LPG) -- 4.6.5 FBG Fabrication -- 4.7 Conclusions -- References -- Chapter 5 Structural Health Monitoring Using Distributed Fibre-Optic Sensors -- 5.1 Introduction -- 5.2 Fundamentals of Distributed Fibre-Optic Sensors -- 5.2.1 Raman DTS -- 5.2.2 Brillouin DTSS. 5.3 DFOS in Civil and Geotechnical Engineering -- 5.3.1 Bridges -- 5.3.2 Tunnels -- 5.3.3 Geotechnical Structures -- 5.4 DFOS in Hydraulic Structures -- 5.5 DFOS in the Electric Grid -- 5.6 Conclusions -- References -- Chapter 6 Distributed Sensors in the Oil and Gas Industry -- 6.1 The Late Life Cycle of a Hydrocarbon Molecule -- 6.1.1 Upstream -- 6.1.1.1 Exploration -- 6.1.1.2 Well Construction -- 6.1.1.3 Formation and Reservoir Evaluation -- 6.1.1.4 Production -- 6.1.1.5 Production of Methane Hydrates -- 6.1.1.6 Well Abandonment -- 6.1.2 Midstream: Transportation -- 6.1.3 Downstream: Refinery and Distribution -- 6.2 Challenges in the Application of Optical Fibres to the Hydrocarbon -- 6.2.1 Conditions -- 6.2.2 Conveyance Methods -- 6.2.2.1 Temporary Installations (Intervention Services) -- 6.2.2.2 Permanent Fibre Installations -- 6.2.3 Fibre Reliability -- 6.2.4 Fibre Types -- 6.3 Applications and Take-Up -- 6.3.1 Steam-Assisted Recovery -- SAGD -- 6.3.2 Flow Allocation: Conventional Wells -- 6.3.3 Injector Monitoring -- 6.3.4 Thermal Tracer Techniques -- 6.3.5 Water Flow Between Wells -- 6.3.6 Gas-Lift Valves -- 6.3.7 Vertical Seismic Profiling (VSP) -- 6.3.8 Hydraulic Fracturing Monitoring (HFM) -- 6.3.9 Sand Production -- 6.4 Summary -- References -- Chapter 7 Biomechanical Sensors -- 7.1 Optical Fibre Sensors in Biomechanics: Introduction and Review -- 7.2 Optical Fibre Sensors: From Experimental Phantoms to In Vivo Applications -- 7.2.1 Experimental Phantoms and Models -- 7.2.1.1 Joints -- 7.2.1.2 Bones and Muscles -- 7.2.1.3 Teeth, Lower Jaw (Mandible), and Upper Jaw (Maxilla) -- 7.2.1.4 Prosthesis and Extracorporeal Devices -- 7.2.1.5 Sole and Insoles -- 7.2.1.6 Smart Fabrics -- 7.2.1.7 Blood Vessels -- 7.2.1.8 Respiratory Monitoring -- 7.2.2 In Vitro -- 7.2.3 Ex Vivo -- 7.2.3.1 Joints -- 7.2.3.2 Bones and Muscles 7.2.3.3 Teeth, Lower Jaw (Mandible), and Upper Jaw (Maxilla) -- 7.2.3.4 Blood Vessels -- 7.2.3.5 Mechanical Properties of Tissues -- 7.2.4 In Vivo -- 7.2.4.1 Joints -- 7.2.4.2 Bones and Muscles -- 7.2.4.3 Teeth, Lower Jaw (Mandible) and Upper Jaw (Maxilla) -- 7.2.4.4 Blood Vessels -- 7.2.4.5 Respiratory Monitoring -- 7.2.5 In Situ -- 7.2.5.1 Joints -- 7.2.5.2 Bones and Muscles -- 7.2.5.3 Prostheses and Extracorporeal Devices -- 7.2.5.4 Soles and Insoles -- 7.2.5.5 Cardiac Monitoring -- 7.2.5.6 Respiratory Monitoring -- 7.3 FBG Sensors Integrated into Mechanical Systems -- 7.3.1 FBG Sensors Glued with Polymer -- 7.3.2 Polymer-Integrated FBG Sensor -- 7.3.3 Smart Fibre Reinforced Polymer (SFRP) -- 7.4 Future Perspective -- Acknowledgment -- References -- Chapter 8 Optical Fibre Chemical Sensors -- 8.1 Introduction -- 8.2 Principles and Mechanisms of Fibre-Optic-Based Chemical Sensing -- 8.2.1 Principle of Chemical Sensor Response -- 8.2.2 Absorption-Based Sensors -- 8.2.3 Luminescence-Based Sensors -- 8.2.4 Surface Plasmon Resonance (SPR)-Based Sensors -- 8.3 Sensor Design and Applications -- 8.3.1 Optical Fibre pH Sensors -- 8.3.1.1 Principle of Fluorescence-Based pH Measurements -- 8.3.1.2 pH Sensor Design -- 8.3.1.3 Set-Up of a pH Sensor System -- 8.3.1.4 Evaluation of the pH Sensor Systems -- 8.3.1.5 Comments -- 8.3.2 Optical Fibre Mercury Sensor -- 8.3.2.1 Sensor Design and Mechanism -- 8.3.2.2 Evaluation of the Mercury Sensor System -- 8.3.2.3 Comments -- 8.3.3 Optical Fibre Cocaine Sensor -- 8.3.3.1 Sensing Methodology -- 8.3.3.2 Design and Fabrication of a Cocaine Sensor System -- 8.3.3.3 Evaluation of the Cocaine Sensor System -- 8.3.3.4 Comments -- 8.4 Conclusions and Future Outlook -- Acknowledgements -- References -- Chapter 9 Application of Nanotechnology to Optical Fibre Sensors: Recent Advancements and New Trends -- 9.1 Introduction 9.2 A View Back -- 9.3 Nanofabrication Techniques on the Fibre Tip for Biochemical Applications -- 9.3.1 Direct Approaches -- 9.3.2 Indirect Approaches -- 9.3.3 Self-Assembly -- 9.3.4 Smart Materials Integration -- 9.4 Nanofabrication Techniques on the Fibre Tip for Optomechanical Applications -- 9.5 Conclusions -- References -- Chapter 10 From Refractometry to Biosensing with Optical Fibres -- 10.1 Basic Sensing Concepts and Parameters for OFSs -- 10.1.1 Parameters of General Interest -- 10.1.1.1 Uncertainty -- 10.1.1.2 Accuracy and Precision -- 10.1.1.3 Sensor Drift and Fluctuations -- 10.1.1.4 Repeatability -- 10.1.1.5 Reproducibility -- 10.1.1.6 Response Time -- 10.1.2 Parameters Related to Volume RI Sensing -- 10.1.2.1 Refractive Index Sensitivity -- 10.1.2.2 Resolution -- 10.1.2.3 Figure of Merit (FOM) -- 10.1.3 Parameters Related to Surface RI Sensing -- 10.1.3.1 Sensorgram and Calibration Curve -- 10.1.3.2 Limit of Detection (LOD) and Limit of Quantification (LOQ) -- 10.1.3.3 Specificity (or Selectivity) -- 10.1.3.4 Regeneration (or Reusability) -- 10.2 Optical Fibre Refractometers -- 10.2.1 Optical Interferometers -- 10.2.2 Grating-Based Structures -- 10.2.3 Other Resonance-Based Structures -- 10.3 Optical Fibre Biosensors -- 10.3.1 Immuno-Based Biosensors -- 10.3.2 Oligonucleotide-Based Biosensors -- 10.3.3 Whole Cell/Microorganism-Based Biosensors -- 10.4 Fibre Optics Towards Advanced Diagnostics and Future Perspectives -- References -- Chapter 11 Humidity, Gas, and Volatile Organic Compound Sensors -- 11.1 Introduction -- 11.2 Optical Fibre Sensor Specific Features for Gas and VOC Detection -- 11.3 Sensing Materials -- 11.3.1 Organic Chemical Dyes -- 11.3.2 Metal-Organic Framework (MOF) Materials -- 11.3.3 Metallic Oxides -- 11.3.4 Graphene -- 11.4 Detection of Single Gases -- 11.5 Relative Humidity Measurement 11.6 Devices for VOC Sensing and Identification |
ctrlnum | (ZDB-30-PQE)EBC6374645 (ZDB-30-PAD)EBC6374645 (ZDB-89-EBL)EBL6374645 (OCoLC)1206397010 (DE-599)BVBBV047442112 |
dewey-full | 621.3692 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3692 |
dewey-search | 621.3692 |
dewey-sort | 3621.3692 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11455nmm a2200577zc 4500</leader><controlfield tag="001">BV047442112</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230127 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119534778</subfield><subfield code="9">978-1-119-53477-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119534730</subfield><subfield code="9">9781119534730</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119534792</subfield><subfield code="9">9781119534792</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6374645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6374645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6374645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1206397010</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442112</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3692</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Del Villar, Ignacio</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optical Fibre Sensors</subfield><subfield code="b">Fundamentals for Development of Optimized Devices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">John Wiley & Sons, Incorporated</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (546 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">IEEE Press Series on Sensors Ser</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Acknowledgment -- About the Editors -- Chapter 1 Introduction -- References -- Chapter 2 Propagation of Light Through Optical Fibre -- 2.1 Geometric Optics -- 2.2 Wave Theory -- 2.2.1 Scalar Analysis -- 2.2.2 Vectorial Analysis -- 2.3 Fibre Losses and Dispersion -- 2.4 Propagation in Microstructured Optical Fibre -- 2.5 Propagation in Specialty Optical Fibres Focused on Sensing -- 2.6 Conclusion -- References -- Chapter 3 Optical Fibre Sensor Set-Up Elements -- 3.1 Introduction -- 3.2 Light Sources -- 3.2.1 Light-Emitting Diodes -- 3.2.1.1 Surface Light-Emitting Diode -- 3.2.1.2 Side Light-Emitting Diode -- 3.2.2 Laser Diode -- 3.2.2.1 Single-Mode Laser Diode Structure -- 3.2.2.2 Quantum Well Laser Diode -- 3.2.3 Superluminescent Diodes (SLD) -- 3.2.4 Amplified Spontaneous Emission Sources -- 3.2.5 Narrow Line Broadband Sweep Source -- 3.2.6 Broadband Sources -- 3.3 Optical Detectors -- 3.3.1 Basic Principles of Optical Detectors -- 3.3.1.1 PN Photodetector -- 3.3.1.2 PIN Photodetector -- 3.3.1.3 Avalanche Photodiode (APD) -- 3.3.2 Main Characteristics of Optical Detectors -- 3.3.2.1 Operating Wavelength Range and Cut-Off Wavelength -- 3.3.2.2 Quantum Efficiency and Responsiveness -- 3.3.2.3 Response Time -- 3.3.2.4 Materials and Structures of Semiconductor Photodiodes -- 3.3.3 Optical Spectrometers -- 3.4 Light Coupling Technology -- 3.4.1 Coupling of Fibre and Light Source -- 3.4.1.1 Coupling of Semiconductor Lasers and Optical Fibres -- 3.4.1.2 Coupling Loss of Semiconductor Light-Emitting Diodes and Optical Fibres -- 3.4.2 Multimode Fibre Coupled Through Lens -- 3.4.3 Direct Coupling of Fibre and Fibre -- 3.5 Fibre-Optic Device -- 3.5.1 Fibre Coupler -- 3.5.2 Optical Isolator -- 3.5.3 Optical Circulator -- 3.5.4 Fibre Attenuator -- 3.5.5 Fibre Polarizer</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.5.6 Optical Switch -- 3.6 Optical Modulation and Interrogation of Optical Fibre-Optic Sensors -- 3.6.1 Intensity-Modulated Optical Fibre Sensing Technology -- 3.6.1.1 Reflective Intensity Modulation Sensor -- 3.6.1.2 Transmissive Intensity Modulation Sensor -- 3.6.1.3 Light Mode (Microbend) Intensity Modulation Sensor -- 3.6.1.4 Refractive Index Intensity-Modulated Fibre-Optic Sensor -- 3.6.2 Wavelength Modulation Optical Fibre Sensing Technology -- 3.6.2.1 Direct Demodulation System -- 3.6.2.2 NarrowBand Laser Scanning System -- 3.6.2.3 Broadband Source Filter Scanning System -- 3.6.2.4 Linear Sideband Filtering Method -- 3.6.2.5 Interference Demodulation System -- 3.6.3 Phase Modulation Optical Fibre Sensing Technology -- References -- Chapter 4 Basic Detection Techniques -- 4.1 Introduction -- 4.2 Overview of Interrogation Methods -- 4.3 Intensity-Based Sensors -- 4.3.1 Macrobending -- 4.3.2 In-Line Fibre Coupling -- 4.3.3 Bifurcated Fibre Bundle -- 4.3.4 Smartphone Sensors -- 4.4 Polarization-Based Sensors -- 4.4.1 Pressure and Force Detection -- 4.4.2 Lossy Mode Resonance for Refractive Index Sensing -- 4.5 Fibre-Optic Interferometers -- 4.5.1 Fabry-Pérot Interferometer (FPI)-Based Fibre Sensors -- 4.5.1.1 Extrinsic FPI for Pressure Sensing -- 4.5.1.2 In-Line FPI for Temperature Sensing -- 4.5.2 Mach-Zehnder Interferometer (MZI)-Based Fibre Sensors -- 4.5.3 Single-Multi-Single Mode (SMS) Interferometer-Based Fibre Sensors -- 4.6 Grating-Based Sensors -- 4.6.1 Fibre Bragg Grating (FBG) -- 4.6.2 FBG Arrays -- 4.6.3 Tilted and Chirped FBG -- 4.6.4 Long-Period Grating (LPG) -- 4.6.5 FBG Fabrication -- 4.7 Conclusions -- References -- Chapter 5 Structural Health Monitoring Using Distributed Fibre-Optic Sensors -- 5.1 Introduction -- 5.2 Fundamentals of Distributed Fibre-Optic Sensors -- 5.2.1 Raman DTS -- 5.2.2 Brillouin DTSS.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3 DFOS in Civil and Geotechnical Engineering -- 5.3.1 Bridges -- 5.3.2 Tunnels -- 5.3.3 Geotechnical Structures -- 5.4 DFOS in Hydraulic Structures -- 5.5 DFOS in the Electric Grid -- 5.6 Conclusions -- References -- Chapter 6 Distributed Sensors in the Oil and Gas Industry -- 6.1 The Late Life Cycle of a Hydrocarbon Molecule -- 6.1.1 Upstream -- 6.1.1.1 Exploration -- 6.1.1.2 Well Construction -- 6.1.1.3 Formation and Reservoir Evaluation -- 6.1.1.4 Production -- 6.1.1.5 Production of Methane Hydrates -- 6.1.1.6 Well Abandonment -- 6.1.2 Midstream: Transportation -- 6.1.3 Downstream: Refinery and Distribution -- 6.2 Challenges in the Application of Optical Fibres to the Hydrocarbon -- 6.2.1 Conditions -- 6.2.2 Conveyance Methods -- 6.2.2.1 Temporary Installations (Intervention Services) -- 6.2.2.2 Permanent Fibre Installations -- 6.2.3 Fibre Reliability -- 6.2.4 Fibre Types -- 6.3 Applications and Take-Up -- 6.3.1 Steam-Assisted Recovery -- SAGD -- 6.3.2 Flow Allocation: Conventional Wells -- 6.3.3 Injector Monitoring -- 6.3.4 Thermal Tracer Techniques -- 6.3.5 Water Flow Between Wells -- 6.3.6 Gas-Lift Valves -- 6.3.7 Vertical Seismic Profiling (VSP) -- 6.3.8 Hydraulic Fracturing Monitoring (HFM) -- 6.3.9 Sand Production -- 6.4 Summary -- References -- Chapter 7 Biomechanical Sensors -- 7.1 Optical Fibre Sensors in Biomechanics: Introduction and Review -- 7.2 Optical Fibre Sensors: From Experimental Phantoms to In Vivo Applications -- 7.2.1 Experimental Phantoms and Models -- 7.2.1.1 Joints -- 7.2.1.2 Bones and Muscles -- 7.2.1.3 Teeth, Lower Jaw (Mandible), and Upper Jaw (Maxilla) -- 7.2.1.4 Prosthesis and Extracorporeal Devices -- 7.2.1.5 Sole and Insoles -- 7.2.1.6 Smart Fabrics -- 7.2.1.7 Blood Vessels -- 7.2.1.8 Respiratory Monitoring -- 7.2.2 In Vitro -- 7.2.3 Ex Vivo -- 7.2.3.1 Joints -- 7.2.3.2 Bones and Muscles</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.2.3.3 Teeth, Lower Jaw (Mandible), and Upper Jaw (Maxilla) -- 7.2.3.4 Blood Vessels -- 7.2.3.5 Mechanical Properties of Tissues -- 7.2.4 In Vivo -- 7.2.4.1 Joints -- 7.2.4.2 Bones and Muscles -- 7.2.4.3 Teeth, Lower Jaw (Mandible) and Upper Jaw (Maxilla) -- 7.2.4.4 Blood Vessels -- 7.2.4.5 Respiratory Monitoring -- 7.2.5 In Situ -- 7.2.5.1 Joints -- 7.2.5.2 Bones and Muscles -- 7.2.5.3 Prostheses and Extracorporeal Devices -- 7.2.5.4 Soles and Insoles -- 7.2.5.5 Cardiac Monitoring -- 7.2.5.6 Respiratory Monitoring -- 7.3 FBG Sensors Integrated into Mechanical Systems -- 7.3.1 FBG Sensors Glued with Polymer -- 7.3.2 Polymer-Integrated FBG Sensor -- 7.3.3 Smart Fibre Reinforced Polymer (SFRP) -- 7.4 Future Perspective -- Acknowledgment -- References -- Chapter 8 Optical Fibre Chemical Sensors -- 8.1 Introduction -- 8.2 Principles and Mechanisms of Fibre-Optic-Based Chemical Sensing -- 8.2.1 Principle of Chemical Sensor Response -- 8.2.2 Absorption-Based Sensors -- 8.2.3 Luminescence-Based Sensors -- 8.2.4 Surface Plasmon Resonance (SPR)-Based Sensors -- 8.3 Sensor Design and Applications -- 8.3.1 Optical Fibre pH Sensors -- 8.3.1.1 Principle of Fluorescence-Based pH Measurements -- 8.3.1.2 pH Sensor Design -- 8.3.1.3 Set-Up of a pH Sensor System -- 8.3.1.4 Evaluation of the pH Sensor Systems -- 8.3.1.5 Comments -- 8.3.2 Optical Fibre Mercury Sensor -- 8.3.2.1 Sensor Design and Mechanism -- 8.3.2.2 Evaluation of the Mercury Sensor System -- 8.3.2.3 Comments -- 8.3.3 Optical Fibre Cocaine Sensor -- 8.3.3.1 Sensing Methodology -- 8.3.3.2 Design and Fabrication of a Cocaine Sensor System -- 8.3.3.3 Evaluation of the Cocaine Sensor System -- 8.3.3.4 Comments -- 8.4 Conclusions and Future Outlook -- Acknowledgements -- References -- Chapter 9 Application of Nanotechnology to Optical Fibre Sensors: Recent Advancements and New Trends -- 9.1 Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.2 A View Back -- 9.3 Nanofabrication Techniques on the Fibre Tip for Biochemical Applications -- 9.3.1 Direct Approaches -- 9.3.2 Indirect Approaches -- 9.3.3 Self-Assembly -- 9.3.4 Smart Materials Integration -- 9.4 Nanofabrication Techniques on the Fibre Tip for Optomechanical Applications -- 9.5 Conclusions -- References -- Chapter 10 From Refractometry to Biosensing with Optical Fibres -- 10.1 Basic Sensing Concepts and Parameters for OFSs -- 10.1.1 Parameters of General Interest -- 10.1.1.1 Uncertainty -- 10.1.1.2 Accuracy and Precision -- 10.1.1.3 Sensor Drift and Fluctuations -- 10.1.1.4 Repeatability -- 10.1.1.5 Reproducibility -- 10.1.1.6 Response Time -- 10.1.2 Parameters Related to Volume RI Sensing -- 10.1.2.1 Refractive Index Sensitivity -- 10.1.2.2 Resolution -- 10.1.2.3 Figure of Merit (FOM) -- 10.1.3 Parameters Related to Surface RI Sensing -- 10.1.3.1 Sensorgram and Calibration Curve -- 10.1.3.2 Limit of Detection (LOD) and Limit of Quantification (LOQ) -- 10.1.3.3 Specificity (or Selectivity) -- 10.1.3.4 Regeneration (or Reusability) -- 10.2 Optical Fibre Refractometers -- 10.2.1 Optical Interferometers -- 10.2.2 Grating-Based Structures -- 10.2.3 Other Resonance-Based Structures -- 10.3 Optical Fibre Biosensors -- 10.3.1 Immuno-Based Biosensors -- 10.3.2 Oligonucleotide-Based Biosensors -- 10.3.3 Whole Cell/Microorganism-Based Biosensors -- 10.4 Fibre Optics Towards Advanced Diagnostics and Future Perspectives -- References -- Chapter 11 Humidity, Gas, and Volatile Organic Compound Sensors -- 11.1 Introduction -- 11.2 Optical Fibre Sensor Specific Features for Gas and VOC Detection -- 11.3 Sensing Materials -- 11.3.1 Organic Chemical Dyes -- 11.3.2 Metal-Organic Framework (MOF) Materials -- 11.3.3 Metallic Oxides -- 11.3.4 Graphene -- 11.4 Detection of Single Gases -- 11.5 Relative Humidity Measurement</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11.6 Devices for VOC Sensing and Identification</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lichtwellenleiter</subfield><subfield code="0">(DE-588)4267405-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sensor</subfield><subfield code="0">(DE-588)4038824-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lichtleitfaser</subfield><subfield code="0">(DE-588)4167589-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lichtwellenleiter</subfield><subfield code="0">(DE-588)4267405-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lichtleitfaser</subfield><subfield code="0">(DE-588)4167589-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Sensor</subfield><subfield code="0">(DE-588)4038824-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matias, Ignacio Raul Matias Maestro</subfield><subfield code="d">1966-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1222943891</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Del Villar, Ignacio</subfield><subfield code="t">Optical Fibre Sensors</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2020</subfield><subfield code="z">9781119534761</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-35-WEL</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844264</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/servlet/opac?bknumber=9261257</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-35-WEL</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV047442112 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:24Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9781119534778 9781119534730 9781119534792 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844264 |
oclc_num | 1206397010 |
open_access_boolean | |
owner | DE-573 |
owner_facet | DE-573 |
physical | 1 Online-Ressource (546 Seiten) |
psigel | ZDB-30-PQE ZDB-35-WEL |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | John Wiley & Sons, Incorporated |
record_format | marc |
series2 | IEEE Press Series on Sensors Ser |
spelling | Del Villar, Ignacio Verfasser aut Optical Fibre Sensors Fundamentals for Development of Optimized Devices Hoboken, NJ John Wiley & Sons, Incorporated 2021 ©2021 1 Online-Ressource (546 Seiten) txt rdacontent c rdamedia cr rdacarrier IEEE Press Series on Sensors Ser Description based on publisher supplied metadata and other sources Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Acknowledgment -- About the Editors -- Chapter 1 Introduction -- References -- Chapter 2 Propagation of Light Through Optical Fibre -- 2.1 Geometric Optics -- 2.2 Wave Theory -- 2.2.1 Scalar Analysis -- 2.2.2 Vectorial Analysis -- 2.3 Fibre Losses and Dispersion -- 2.4 Propagation in Microstructured Optical Fibre -- 2.5 Propagation in Specialty Optical Fibres Focused on Sensing -- 2.6 Conclusion -- References -- Chapter 3 Optical Fibre Sensor Set-Up Elements -- 3.1 Introduction -- 3.2 Light Sources -- 3.2.1 Light-Emitting Diodes -- 3.2.1.1 Surface Light-Emitting Diode -- 3.2.1.2 Side Light-Emitting Diode -- 3.2.2 Laser Diode -- 3.2.2.1 Single-Mode Laser Diode Structure -- 3.2.2.2 Quantum Well Laser Diode -- 3.2.3 Superluminescent Diodes (SLD) -- 3.2.4 Amplified Spontaneous Emission Sources -- 3.2.5 Narrow Line Broadband Sweep Source -- 3.2.6 Broadband Sources -- 3.3 Optical Detectors -- 3.3.1 Basic Principles of Optical Detectors -- 3.3.1.1 PN Photodetector -- 3.3.1.2 PIN Photodetector -- 3.3.1.3 Avalanche Photodiode (APD) -- 3.3.2 Main Characteristics of Optical Detectors -- 3.3.2.1 Operating Wavelength Range and Cut-Off Wavelength -- 3.3.2.2 Quantum Efficiency and Responsiveness -- 3.3.2.3 Response Time -- 3.3.2.4 Materials and Structures of Semiconductor Photodiodes -- 3.3.3 Optical Spectrometers -- 3.4 Light Coupling Technology -- 3.4.1 Coupling of Fibre and Light Source -- 3.4.1.1 Coupling of Semiconductor Lasers and Optical Fibres -- 3.4.1.2 Coupling Loss of Semiconductor Light-Emitting Diodes and Optical Fibres -- 3.4.2 Multimode Fibre Coupled Through Lens -- 3.4.3 Direct Coupling of Fibre and Fibre -- 3.5 Fibre-Optic Device -- 3.5.1 Fibre Coupler -- 3.5.2 Optical Isolator -- 3.5.3 Optical Circulator -- 3.5.4 Fibre Attenuator -- 3.5.5 Fibre Polarizer 3.5.6 Optical Switch -- 3.6 Optical Modulation and Interrogation of Optical Fibre-Optic Sensors -- 3.6.1 Intensity-Modulated Optical Fibre Sensing Technology -- 3.6.1.1 Reflective Intensity Modulation Sensor -- 3.6.1.2 Transmissive Intensity Modulation Sensor -- 3.6.1.3 Light Mode (Microbend) Intensity Modulation Sensor -- 3.6.1.4 Refractive Index Intensity-Modulated Fibre-Optic Sensor -- 3.6.2 Wavelength Modulation Optical Fibre Sensing Technology -- 3.6.2.1 Direct Demodulation System -- 3.6.2.2 NarrowBand Laser Scanning System -- 3.6.2.3 Broadband Source Filter Scanning System -- 3.6.2.4 Linear Sideband Filtering Method -- 3.6.2.5 Interference Demodulation System -- 3.6.3 Phase Modulation Optical Fibre Sensing Technology -- References -- Chapter 4 Basic Detection Techniques -- 4.1 Introduction -- 4.2 Overview of Interrogation Methods -- 4.3 Intensity-Based Sensors -- 4.3.1 Macrobending -- 4.3.2 In-Line Fibre Coupling -- 4.3.3 Bifurcated Fibre Bundle -- 4.3.4 Smartphone Sensors -- 4.4 Polarization-Based Sensors -- 4.4.1 Pressure and Force Detection -- 4.4.2 Lossy Mode Resonance for Refractive Index Sensing -- 4.5 Fibre-Optic Interferometers -- 4.5.1 Fabry-Pérot Interferometer (FPI)-Based Fibre Sensors -- 4.5.1.1 Extrinsic FPI for Pressure Sensing -- 4.5.1.2 In-Line FPI for Temperature Sensing -- 4.5.2 Mach-Zehnder Interferometer (MZI)-Based Fibre Sensors -- 4.5.3 Single-Multi-Single Mode (SMS) Interferometer-Based Fibre Sensors -- 4.6 Grating-Based Sensors -- 4.6.1 Fibre Bragg Grating (FBG) -- 4.6.2 FBG Arrays -- 4.6.3 Tilted and Chirped FBG -- 4.6.4 Long-Period Grating (LPG) -- 4.6.5 FBG Fabrication -- 4.7 Conclusions -- References -- Chapter 5 Structural Health Monitoring Using Distributed Fibre-Optic Sensors -- 5.1 Introduction -- 5.2 Fundamentals of Distributed Fibre-Optic Sensors -- 5.2.1 Raman DTS -- 5.2.2 Brillouin DTSS. 5.3 DFOS in Civil and Geotechnical Engineering -- 5.3.1 Bridges -- 5.3.2 Tunnels -- 5.3.3 Geotechnical Structures -- 5.4 DFOS in Hydraulic Structures -- 5.5 DFOS in the Electric Grid -- 5.6 Conclusions -- References -- Chapter 6 Distributed Sensors in the Oil and Gas Industry -- 6.1 The Late Life Cycle of a Hydrocarbon Molecule -- 6.1.1 Upstream -- 6.1.1.1 Exploration -- 6.1.1.2 Well Construction -- 6.1.1.3 Formation and Reservoir Evaluation -- 6.1.1.4 Production -- 6.1.1.5 Production of Methane Hydrates -- 6.1.1.6 Well Abandonment -- 6.1.2 Midstream: Transportation -- 6.1.3 Downstream: Refinery and Distribution -- 6.2 Challenges in the Application of Optical Fibres to the Hydrocarbon -- 6.2.1 Conditions -- 6.2.2 Conveyance Methods -- 6.2.2.1 Temporary Installations (Intervention Services) -- 6.2.2.2 Permanent Fibre Installations -- 6.2.3 Fibre Reliability -- 6.2.4 Fibre Types -- 6.3 Applications and Take-Up -- 6.3.1 Steam-Assisted Recovery -- SAGD -- 6.3.2 Flow Allocation: Conventional Wells -- 6.3.3 Injector Monitoring -- 6.3.4 Thermal Tracer Techniques -- 6.3.5 Water Flow Between Wells -- 6.3.6 Gas-Lift Valves -- 6.3.7 Vertical Seismic Profiling (VSP) -- 6.3.8 Hydraulic Fracturing Monitoring (HFM) -- 6.3.9 Sand Production -- 6.4 Summary -- References -- Chapter 7 Biomechanical Sensors -- 7.1 Optical Fibre Sensors in Biomechanics: Introduction and Review -- 7.2 Optical Fibre Sensors: From Experimental Phantoms to In Vivo Applications -- 7.2.1 Experimental Phantoms and Models -- 7.2.1.1 Joints -- 7.2.1.2 Bones and Muscles -- 7.2.1.3 Teeth, Lower Jaw (Mandible), and Upper Jaw (Maxilla) -- 7.2.1.4 Prosthesis and Extracorporeal Devices -- 7.2.1.5 Sole and Insoles -- 7.2.1.6 Smart Fabrics -- 7.2.1.7 Blood Vessels -- 7.2.1.8 Respiratory Monitoring -- 7.2.2 In Vitro -- 7.2.3 Ex Vivo -- 7.2.3.1 Joints -- 7.2.3.2 Bones and Muscles 7.2.3.3 Teeth, Lower Jaw (Mandible), and Upper Jaw (Maxilla) -- 7.2.3.4 Blood Vessels -- 7.2.3.5 Mechanical Properties of Tissues -- 7.2.4 In Vivo -- 7.2.4.1 Joints -- 7.2.4.2 Bones and Muscles -- 7.2.4.3 Teeth, Lower Jaw (Mandible) and Upper Jaw (Maxilla) -- 7.2.4.4 Blood Vessels -- 7.2.4.5 Respiratory Monitoring -- 7.2.5 In Situ -- 7.2.5.1 Joints -- 7.2.5.2 Bones and Muscles -- 7.2.5.3 Prostheses and Extracorporeal Devices -- 7.2.5.4 Soles and Insoles -- 7.2.5.5 Cardiac Monitoring -- 7.2.5.6 Respiratory Monitoring -- 7.3 FBG Sensors Integrated into Mechanical Systems -- 7.3.1 FBG Sensors Glued with Polymer -- 7.3.2 Polymer-Integrated FBG Sensor -- 7.3.3 Smart Fibre Reinforced Polymer (SFRP) -- 7.4 Future Perspective -- Acknowledgment -- References -- Chapter 8 Optical Fibre Chemical Sensors -- 8.1 Introduction -- 8.2 Principles and Mechanisms of Fibre-Optic-Based Chemical Sensing -- 8.2.1 Principle of Chemical Sensor Response -- 8.2.2 Absorption-Based Sensors -- 8.2.3 Luminescence-Based Sensors -- 8.2.4 Surface Plasmon Resonance (SPR)-Based Sensors -- 8.3 Sensor Design and Applications -- 8.3.1 Optical Fibre pH Sensors -- 8.3.1.1 Principle of Fluorescence-Based pH Measurements -- 8.3.1.2 pH Sensor Design -- 8.3.1.3 Set-Up of a pH Sensor System -- 8.3.1.4 Evaluation of the pH Sensor Systems -- 8.3.1.5 Comments -- 8.3.2 Optical Fibre Mercury Sensor -- 8.3.2.1 Sensor Design and Mechanism -- 8.3.2.2 Evaluation of the Mercury Sensor System -- 8.3.2.3 Comments -- 8.3.3 Optical Fibre Cocaine Sensor -- 8.3.3.1 Sensing Methodology -- 8.3.3.2 Design and Fabrication of a Cocaine Sensor System -- 8.3.3.3 Evaluation of the Cocaine Sensor System -- 8.3.3.4 Comments -- 8.4 Conclusions and Future Outlook -- Acknowledgements -- References -- Chapter 9 Application of Nanotechnology to Optical Fibre Sensors: Recent Advancements and New Trends -- 9.1 Introduction 9.2 A View Back -- 9.3 Nanofabrication Techniques on the Fibre Tip for Biochemical Applications -- 9.3.1 Direct Approaches -- 9.3.2 Indirect Approaches -- 9.3.3 Self-Assembly -- 9.3.4 Smart Materials Integration -- 9.4 Nanofabrication Techniques on the Fibre Tip for Optomechanical Applications -- 9.5 Conclusions -- References -- Chapter 10 From Refractometry to Biosensing with Optical Fibres -- 10.1 Basic Sensing Concepts and Parameters for OFSs -- 10.1.1 Parameters of General Interest -- 10.1.1.1 Uncertainty -- 10.1.1.2 Accuracy and Precision -- 10.1.1.3 Sensor Drift and Fluctuations -- 10.1.1.4 Repeatability -- 10.1.1.5 Reproducibility -- 10.1.1.6 Response Time -- 10.1.2 Parameters Related to Volume RI Sensing -- 10.1.2.1 Refractive Index Sensitivity -- 10.1.2.2 Resolution -- 10.1.2.3 Figure of Merit (FOM) -- 10.1.3 Parameters Related to Surface RI Sensing -- 10.1.3.1 Sensorgram and Calibration Curve -- 10.1.3.2 Limit of Detection (LOD) and Limit of Quantification (LOQ) -- 10.1.3.3 Specificity (or Selectivity) -- 10.1.3.4 Regeneration (or Reusability) -- 10.2 Optical Fibre Refractometers -- 10.2.1 Optical Interferometers -- 10.2.2 Grating-Based Structures -- 10.2.3 Other Resonance-Based Structures -- 10.3 Optical Fibre Biosensors -- 10.3.1 Immuno-Based Biosensors -- 10.3.2 Oligonucleotide-Based Biosensors -- 10.3.3 Whole Cell/Microorganism-Based Biosensors -- 10.4 Fibre Optics Towards Advanced Diagnostics and Future Perspectives -- References -- Chapter 11 Humidity, Gas, and Volatile Organic Compound Sensors -- 11.1 Introduction -- 11.2 Optical Fibre Sensor Specific Features for Gas and VOC Detection -- 11.3 Sensing Materials -- 11.3.1 Organic Chemical Dyes -- 11.3.2 Metal-Organic Framework (MOF) Materials -- 11.3.3 Metallic Oxides -- 11.3.4 Graphene -- 11.4 Detection of Single Gases -- 11.5 Relative Humidity Measurement 11.6 Devices for VOC Sensing and Identification Lichtwellenleiter (DE-588)4267405-0 gnd rswk-swf Sensor (DE-588)4038824-4 gnd rswk-swf Lichtleitfaser (DE-588)4167589-7 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Lichtwellenleiter (DE-588)4267405-0 s Lichtleitfaser (DE-588)4167589-7 s Sensor (DE-588)4038824-4 s DE-604 Matias, Ignacio Raul Matias Maestro 1966- Sonstige (DE-588)1222943891 oth Erscheint auch als Druck-Ausgabe Del Villar, Ignacio Optical Fibre Sensors Newark : John Wiley & Sons, Incorporated,c2020 9781119534761 |
spellingShingle | Del Villar, Ignacio Optical Fibre Sensors Fundamentals for Development of Optimized Devices Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Acknowledgment -- About the Editors -- Chapter 1 Introduction -- References -- Chapter 2 Propagation of Light Through Optical Fibre -- 2.1 Geometric Optics -- 2.2 Wave Theory -- 2.2.1 Scalar Analysis -- 2.2.2 Vectorial Analysis -- 2.3 Fibre Losses and Dispersion -- 2.4 Propagation in Microstructured Optical Fibre -- 2.5 Propagation in Specialty Optical Fibres Focused on Sensing -- 2.6 Conclusion -- References -- Chapter 3 Optical Fibre Sensor Set-Up Elements -- 3.1 Introduction -- 3.2 Light Sources -- 3.2.1 Light-Emitting Diodes -- 3.2.1.1 Surface Light-Emitting Diode -- 3.2.1.2 Side Light-Emitting Diode -- 3.2.2 Laser Diode -- 3.2.2.1 Single-Mode Laser Diode Structure -- 3.2.2.2 Quantum Well Laser Diode -- 3.2.3 Superluminescent Diodes (SLD) -- 3.2.4 Amplified Spontaneous Emission Sources -- 3.2.5 Narrow Line Broadband Sweep Source -- 3.2.6 Broadband Sources -- 3.3 Optical Detectors -- 3.3.1 Basic Principles of Optical Detectors -- 3.3.1.1 PN Photodetector -- 3.3.1.2 PIN Photodetector -- 3.3.1.3 Avalanche Photodiode (APD) -- 3.3.2 Main Characteristics of Optical Detectors -- 3.3.2.1 Operating Wavelength Range and Cut-Off Wavelength -- 3.3.2.2 Quantum Efficiency and Responsiveness -- 3.3.2.3 Response Time -- 3.3.2.4 Materials and Structures of Semiconductor Photodiodes -- 3.3.3 Optical Spectrometers -- 3.4 Light Coupling Technology -- 3.4.1 Coupling of Fibre and Light Source -- 3.4.1.1 Coupling of Semiconductor Lasers and Optical Fibres -- 3.4.1.2 Coupling Loss of Semiconductor Light-Emitting Diodes and Optical Fibres -- 3.4.2 Multimode Fibre Coupled Through Lens -- 3.4.3 Direct Coupling of Fibre and Fibre -- 3.5 Fibre-Optic Device -- 3.5.1 Fibre Coupler -- 3.5.2 Optical Isolator -- 3.5.3 Optical Circulator -- 3.5.4 Fibre Attenuator -- 3.5.5 Fibre Polarizer 3.5.6 Optical Switch -- 3.6 Optical Modulation and Interrogation of Optical Fibre-Optic Sensors -- 3.6.1 Intensity-Modulated Optical Fibre Sensing Technology -- 3.6.1.1 Reflective Intensity Modulation Sensor -- 3.6.1.2 Transmissive Intensity Modulation Sensor -- 3.6.1.3 Light Mode (Microbend) Intensity Modulation Sensor -- 3.6.1.4 Refractive Index Intensity-Modulated Fibre-Optic Sensor -- 3.6.2 Wavelength Modulation Optical Fibre Sensing Technology -- 3.6.2.1 Direct Demodulation System -- 3.6.2.2 NarrowBand Laser Scanning System -- 3.6.2.3 Broadband Source Filter Scanning System -- 3.6.2.4 Linear Sideband Filtering Method -- 3.6.2.5 Interference Demodulation System -- 3.6.3 Phase Modulation Optical Fibre Sensing Technology -- References -- Chapter 4 Basic Detection Techniques -- 4.1 Introduction -- 4.2 Overview of Interrogation Methods -- 4.3 Intensity-Based Sensors -- 4.3.1 Macrobending -- 4.3.2 In-Line Fibre Coupling -- 4.3.3 Bifurcated Fibre Bundle -- 4.3.4 Smartphone Sensors -- 4.4 Polarization-Based Sensors -- 4.4.1 Pressure and Force Detection -- 4.4.2 Lossy Mode Resonance for Refractive Index Sensing -- 4.5 Fibre-Optic Interferometers -- 4.5.1 Fabry-Pérot Interferometer (FPI)-Based Fibre Sensors -- 4.5.1.1 Extrinsic FPI for Pressure Sensing -- 4.5.1.2 In-Line FPI for Temperature Sensing -- 4.5.2 Mach-Zehnder Interferometer (MZI)-Based Fibre Sensors -- 4.5.3 Single-Multi-Single Mode (SMS) Interferometer-Based Fibre Sensors -- 4.6 Grating-Based Sensors -- 4.6.1 Fibre Bragg Grating (FBG) -- 4.6.2 FBG Arrays -- 4.6.3 Tilted and Chirped FBG -- 4.6.4 Long-Period Grating (LPG) -- 4.6.5 FBG Fabrication -- 4.7 Conclusions -- References -- Chapter 5 Structural Health Monitoring Using Distributed Fibre-Optic Sensors -- 5.1 Introduction -- 5.2 Fundamentals of Distributed Fibre-Optic Sensors -- 5.2.1 Raman DTS -- 5.2.2 Brillouin DTSS. 5.3 DFOS in Civil and Geotechnical Engineering -- 5.3.1 Bridges -- 5.3.2 Tunnels -- 5.3.3 Geotechnical Structures -- 5.4 DFOS in Hydraulic Structures -- 5.5 DFOS in the Electric Grid -- 5.6 Conclusions -- References -- Chapter 6 Distributed Sensors in the Oil and Gas Industry -- 6.1 The Late Life Cycle of a Hydrocarbon Molecule -- 6.1.1 Upstream -- 6.1.1.1 Exploration -- 6.1.1.2 Well Construction -- 6.1.1.3 Formation and Reservoir Evaluation -- 6.1.1.4 Production -- 6.1.1.5 Production of Methane Hydrates -- 6.1.1.6 Well Abandonment -- 6.1.2 Midstream: Transportation -- 6.1.3 Downstream: Refinery and Distribution -- 6.2 Challenges in the Application of Optical Fibres to the Hydrocarbon -- 6.2.1 Conditions -- 6.2.2 Conveyance Methods -- 6.2.2.1 Temporary Installations (Intervention Services) -- 6.2.2.2 Permanent Fibre Installations -- 6.2.3 Fibre Reliability -- 6.2.4 Fibre Types -- 6.3 Applications and Take-Up -- 6.3.1 Steam-Assisted Recovery -- SAGD -- 6.3.2 Flow Allocation: Conventional Wells -- 6.3.3 Injector Monitoring -- 6.3.4 Thermal Tracer Techniques -- 6.3.5 Water Flow Between Wells -- 6.3.6 Gas-Lift Valves -- 6.3.7 Vertical Seismic Profiling (VSP) -- 6.3.8 Hydraulic Fracturing Monitoring (HFM) -- 6.3.9 Sand Production -- 6.4 Summary -- References -- Chapter 7 Biomechanical Sensors -- 7.1 Optical Fibre Sensors in Biomechanics: Introduction and Review -- 7.2 Optical Fibre Sensors: From Experimental Phantoms to In Vivo Applications -- 7.2.1 Experimental Phantoms and Models -- 7.2.1.1 Joints -- 7.2.1.2 Bones and Muscles -- 7.2.1.3 Teeth, Lower Jaw (Mandible), and Upper Jaw (Maxilla) -- 7.2.1.4 Prosthesis and Extracorporeal Devices -- 7.2.1.5 Sole and Insoles -- 7.2.1.6 Smart Fabrics -- 7.2.1.7 Blood Vessels -- 7.2.1.8 Respiratory Monitoring -- 7.2.2 In Vitro -- 7.2.3 Ex Vivo -- 7.2.3.1 Joints -- 7.2.3.2 Bones and Muscles 7.2.3.3 Teeth, Lower Jaw (Mandible), and Upper Jaw (Maxilla) -- 7.2.3.4 Blood Vessels -- 7.2.3.5 Mechanical Properties of Tissues -- 7.2.4 In Vivo -- 7.2.4.1 Joints -- 7.2.4.2 Bones and Muscles -- 7.2.4.3 Teeth, Lower Jaw (Mandible) and Upper Jaw (Maxilla) -- 7.2.4.4 Blood Vessels -- 7.2.4.5 Respiratory Monitoring -- 7.2.5 In Situ -- 7.2.5.1 Joints -- 7.2.5.2 Bones and Muscles -- 7.2.5.3 Prostheses and Extracorporeal Devices -- 7.2.5.4 Soles and Insoles -- 7.2.5.5 Cardiac Monitoring -- 7.2.5.6 Respiratory Monitoring -- 7.3 FBG Sensors Integrated into Mechanical Systems -- 7.3.1 FBG Sensors Glued with Polymer -- 7.3.2 Polymer-Integrated FBG Sensor -- 7.3.3 Smart Fibre Reinforced Polymer (SFRP) -- 7.4 Future Perspective -- Acknowledgment -- References -- Chapter 8 Optical Fibre Chemical Sensors -- 8.1 Introduction -- 8.2 Principles and Mechanisms of Fibre-Optic-Based Chemical Sensing -- 8.2.1 Principle of Chemical Sensor Response -- 8.2.2 Absorption-Based Sensors -- 8.2.3 Luminescence-Based Sensors -- 8.2.4 Surface Plasmon Resonance (SPR)-Based Sensors -- 8.3 Sensor Design and Applications -- 8.3.1 Optical Fibre pH Sensors -- 8.3.1.1 Principle of Fluorescence-Based pH Measurements -- 8.3.1.2 pH Sensor Design -- 8.3.1.3 Set-Up of a pH Sensor System -- 8.3.1.4 Evaluation of the pH Sensor Systems -- 8.3.1.5 Comments -- 8.3.2 Optical Fibre Mercury Sensor -- 8.3.2.1 Sensor Design and Mechanism -- 8.3.2.2 Evaluation of the Mercury Sensor System -- 8.3.2.3 Comments -- 8.3.3 Optical Fibre Cocaine Sensor -- 8.3.3.1 Sensing Methodology -- 8.3.3.2 Design and Fabrication of a Cocaine Sensor System -- 8.3.3.3 Evaluation of the Cocaine Sensor System -- 8.3.3.4 Comments -- 8.4 Conclusions and Future Outlook -- Acknowledgements -- References -- Chapter 9 Application of Nanotechnology to Optical Fibre Sensors: Recent Advancements and New Trends -- 9.1 Introduction 9.2 A View Back -- 9.3 Nanofabrication Techniques on the Fibre Tip for Biochemical Applications -- 9.3.1 Direct Approaches -- 9.3.2 Indirect Approaches -- 9.3.3 Self-Assembly -- 9.3.4 Smart Materials Integration -- 9.4 Nanofabrication Techniques on the Fibre Tip for Optomechanical Applications -- 9.5 Conclusions -- References -- Chapter 10 From Refractometry to Biosensing with Optical Fibres -- 10.1 Basic Sensing Concepts and Parameters for OFSs -- 10.1.1 Parameters of General Interest -- 10.1.1.1 Uncertainty -- 10.1.1.2 Accuracy and Precision -- 10.1.1.3 Sensor Drift and Fluctuations -- 10.1.1.4 Repeatability -- 10.1.1.5 Reproducibility -- 10.1.1.6 Response Time -- 10.1.2 Parameters Related to Volume RI Sensing -- 10.1.2.1 Refractive Index Sensitivity -- 10.1.2.2 Resolution -- 10.1.2.3 Figure of Merit (FOM) -- 10.1.3 Parameters Related to Surface RI Sensing -- 10.1.3.1 Sensorgram and Calibration Curve -- 10.1.3.2 Limit of Detection (LOD) and Limit of Quantification (LOQ) -- 10.1.3.3 Specificity (or Selectivity) -- 10.1.3.4 Regeneration (or Reusability) -- 10.2 Optical Fibre Refractometers -- 10.2.1 Optical Interferometers -- 10.2.2 Grating-Based Structures -- 10.2.3 Other Resonance-Based Structures -- 10.3 Optical Fibre Biosensors -- 10.3.1 Immuno-Based Biosensors -- 10.3.2 Oligonucleotide-Based Biosensors -- 10.3.3 Whole Cell/Microorganism-Based Biosensors -- 10.4 Fibre Optics Towards Advanced Diagnostics and Future Perspectives -- References -- Chapter 11 Humidity, Gas, and Volatile Organic Compound Sensors -- 11.1 Introduction -- 11.2 Optical Fibre Sensor Specific Features for Gas and VOC Detection -- 11.3 Sensing Materials -- 11.3.1 Organic Chemical Dyes -- 11.3.2 Metal-Organic Framework (MOF) Materials -- 11.3.3 Metallic Oxides -- 11.3.4 Graphene -- 11.4 Detection of Single Gases -- 11.5 Relative Humidity Measurement 11.6 Devices for VOC Sensing and Identification Lichtwellenleiter (DE-588)4267405-0 gnd Sensor (DE-588)4038824-4 gnd Lichtleitfaser (DE-588)4167589-7 gnd |
subject_GND | (DE-588)4267405-0 (DE-588)4038824-4 (DE-588)4167589-7 (DE-588)4143413-4 |
title | Optical Fibre Sensors Fundamentals for Development of Optimized Devices |
title_auth | Optical Fibre Sensors Fundamentals for Development of Optimized Devices |
title_exact_search | Optical Fibre Sensors Fundamentals for Development of Optimized Devices |
title_exact_search_txtP | Optical Fibre Sensors Fundamentals for Development of Optimized Devices |
title_full | Optical Fibre Sensors Fundamentals for Development of Optimized Devices |
title_fullStr | Optical Fibre Sensors Fundamentals for Development of Optimized Devices |
title_full_unstemmed | Optical Fibre Sensors Fundamentals for Development of Optimized Devices |
title_short | Optical Fibre Sensors |
title_sort | optical fibre sensors fundamentals for development of optimized devices |
title_sub | Fundamentals for Development of Optimized Devices |
topic | Lichtwellenleiter (DE-588)4267405-0 gnd Sensor (DE-588)4038824-4 gnd Lichtleitfaser (DE-588)4167589-7 gnd |
topic_facet | Lichtwellenleiter Sensor Lichtleitfaser Aufsatzsammlung |
work_keys_str_mv | AT delvillarignacio opticalfibresensorsfundamentalsfordevelopmentofoptimizeddevices AT matiasignacioraulmatiasmaestro opticalfibresensorsfundamentalsfordevelopmentofoptimizeddevices |