Fundamentals of aeroacoustics with applications to aeropropulsion systems:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom
Academic Press, an imprint of Elsevier
[2021]
|
Schriftenreihe: | Elsevier and Shanghai Jiao Tong University Press aerospace series
|
Schlagworte: | |
Online-Zugang: | DE-91 DE-706 Volltext |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (ix, 545 Seiten) Diagramme |
ISBN: | 9780124080744 9780124080690 |
DOI: | 10.1016/C2012-0-02671-3 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442090 | ||
003 | DE-604 | ||
005 | 20241119 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 xx |||| o|||| 00||| eng d | ||
020 | |a 9780124080744 |9 978-0-12-408074-4 | ||
020 | |a 9780124080690 |9 9780124080690 | ||
035 | |a (ZDB-30-PQE)EBC6371901 | ||
035 | |a (ZDB-30-PAD)EBC6371901 | ||
035 | |a (ZDB-89-EBL)EBL6371901 | ||
035 | |a (ZDB-33-EBS)9780124080690 | ||
035 | |a (OCoLC)1202448575 | ||
035 | |a (DE-599)BVBBV047442090 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-706 | ||
082 | 0 | |a 629.1323 | |
084 | |a UMW 266 |2 stub | ||
084 | |a VER 630 |2 stub | ||
100 | 1 | |a Sun, Xiaofeng |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fundamentals of aeroacoustics with applications to aeropropulsion systems |c Xiaofeng Sun, Xiaoyu Wang |
264 | 1 | |a London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom |b Academic Press, an imprint of Elsevier |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (ix, 545 Seiten) |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Elsevier and Shanghai Jiao Tong University Press aerospace series | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Front Cover -- Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems -- Copyright -- Contents -- Preface -- Chapter 1: Basic equations of aeroacoustics -- 1.1. Sound sources in moving media -- 1.1.1. Basic equations of sound propagation -- 1.1.2. Energy relations in moving media -- 1.1.3. Sound field of moving sound sources -- 1.1.4. Frequency features of moving sound source-Doppler effect -- 1.2. Generalized Green's formula -- 1.3. Lighthill equation -- 1.3.1. Derivation of basic equations -- 1.3.2. Effect of solid boundary on sound generation -- 1.4. Ffowcs Williams-Hawkings equation -- 1.5. Generalized Lighthill's equation -- References -- Chapter 2: Propeller noise: Prediction and control -- 2.1. Noise sources of propeller -- 2.1.1. An overview, the developing history of propeller noise prediction -- 2.1.1.1. Noise generation due to steady blade force and blade thickness effect -- 2.1.1.2. Noise generation due to unsteady blade force -- 2.1.2. Advanced propeller noise (Propfan noise) -- 2.2. Propeller noise prediction in frequency domain -- 2.2.1. The basic equations -- 2.2.2. Aerodynamic performance prediction -- 2.2.3. The near-field solution of propeller noise -- 2.2.4. The far-field solution of propeller noise -- 2.3. Propeller noise prediction in time domain -- 2.3.1. The basic equations -- 2.3.2. The solution of the free-space generalized wave equation -- 2.3.3. The fundamental integral formulas of the surface sources in time domain -- 2.3.3.1. Surface integral formula -- 2.3.3.2. Collapsing sphere formulation -- 2.3.3.3. Physical surface integral: The retarded time formulation -- 2.3.3.4. The relationship of the three integral formulas -- 2.3.4. The integral expressions of the sound field due to monopoles and dipoles -- 2.3.5. Introduction to numerical computation methods -- References | |
505 | 8 | |a Chapter 3: Noise prediction in aeroengine -- 3.1. Noise sources in aeroengine -- 3.2. Tone noise by rotor/stator interaction in fan/compressor -- 3.2.1. Introduction -- 3.2.2. Model of sound generation by unsteady aerodynamic load on blade -- 3.2.2.1. Governing equations for the problem -- 3.2.2.2. Solution for Green's function for a duct with arbitrary shape -- 3.2.2.3. Solution of Green's function in an annular duct -- 3.2.2.4. Solution for sound generation by unsteady loads -- 3.2.3. Prediction for tone noise by rotor/stator interaction -- 3.2.3.1. Sound pressure expression for stator/rotor interaction -- Frequency characteristic -- Propagation characteristic -- 3.2.3.2. Sound pressure expression for rotor/stator interaction -- 3.3. Shockwave noise in fan/compressor -- 3.3.1. Physical mechanism of shockwave noise in fan/compressor -- 3.3.2. Shockwave noise prediction method -- 3.3.2.1. Analytic model -- 3.3.2.2. Numerical model -- Governing equation -- Differential scheme -- Computational domains, grids, and boundary conditions -- 3.3.3. Power computation of shockwave noise -- 3.4. Combustion noise -- 3.5. Jet noise -- 3.5.1. Solution of Lighthill's equation -- 3.5.1.1. Stationary media -- 3.5.1.2. Effect of convective velocity -- 3.5.2. Prediction of jet noise -- 3.5.2.1. A simplified jet structure -- 3.5.2.2. Dimensionless analysis -- 3.5.2.3. Effect of the convective velocity -- 3.5.3. Effect of non-uniform flow-Lilleys equation -- References -- Chapter 4: Linearized unsteady aerodynamics for aeroacoustic applications -- 4.1. Introduction -- 4.2. Basic linearized unsteady aerodynamic equations -- 4.2.1. Velocity decomposing theorem for uniform flows -- 4.2.2. Disturbance velocity decomposition in non-uniform flow fields: Goldstein's equation -- 4.2.2.1. Basic equations -- 4.2.2.2. Goldstein's equation | |
505 | 8 | |a 4.2.2.3. Relation between the fluctuations at an arbitrary point and the incoming disturbances in far field -- 4.3. Unsteady loading for two-dimensional supersonic cascades with subsonic leading-edge locus -- 4.3.1. Physical and mathematical models -- 4.3.2. Discussion concerning the convergence of the kernel function -- 4.3.3. Reflection coefficients of Mach waves and the solution of the integral equation -- 4.3.4. Comparison of numerical solutions for unsteady blade loading -- 4.4. Lifting surface theory for unsteady analysis of fan/compressor cascade -- 4.4.1. A unified framework for acoustic field and unsteady flow -- 4.4.2. Integral equation for the solution of unsteady blade load -- 4.4.3. Upwash velocity for three different incoming conditions -- 4.4.3.1. The viscous wakes-rotor interaction -- 4.4.3.2. Linearized analysis for the interaction between potential flow and blade row -- 4.4.3.3. Linearized unsteady analysis for cascade flutter -- 4.4.4. Solution to the integral equation -- 4.4.4.1. The convergence of the vorticity wave -- 4.4.4.2. The singularity of pressure wave -- 4.4.4.3. Expansion method for solving the integral equation -- 4.4.5. Numerical validation of unsteady blade loading -- References -- Chapter 5: Vortex sound theory -- 5.1. Introduction to sound generation induced by vortex flow -- 5.2. Basic equations of vortex sound -- 5.2.1. Powell's equation -- 5.2.2. Howe's acoustic analogy -- 5.2.2.1. Sound propagation in the irrotational mean flow -- 5.2.2.2. Howe's equation -- 5.2.2.3. Solution of Howe's equation -- 5.2.2.4. Energy transfer between sound and vortex -- 5.2.3. The equivalence of Curle's equation and Howe's equation -- 5.3. Vortex sound model of trailing edge noise -- 5.4. Vortex sound model of liner impedance -- 5.5. Effect of grazing flow on vortex sound interaction of perforated plates | |
505 | 8 | |a 5.5.1. Effect of grazing flow on the acoustic impedance of perforated plates -- 5.5.2. Effect of plate thickness on impedance of perforated plates with bias flow -- 5.6. Nonlinear model of vortex sound interaction -- 5.6.1. The nonlinear model of vortex sound interaction occurring at a slit -- 5.6.2. Flow-excited acoustic resonance of a Helmholtz resonator -- References -- Chapter 6: Sound generation, propagation, and radiation in/from an aeroengine nacelle -- 6.1. Introduction -- 6.2. Basic theory of sound propagation in ducts -- 6.3. Computational approaches for duct acoustics -- 6.3.1. Sound propagation in an aeroengine nacelle -- 6.3.1.1. Mode-matching approach (MMA) -- 6.3.1.2. Boundary integral equation method (BIEM) -- 6.3.1.3. Finite element method (FEM) -- 6.3.2. Fundamental idea of the transfer element method -- 6.3.3. Construction of transfer element for a locally reacting lined duct -- 6.3.4. Construction of transfer element for a nonlocally reacting lined duct -- 6.3.5. Construction of transfer element for a varying cross-section duct -- 6.3.6. Calculation of the combined acoustic liner -- 6.3.6.1. The mechanism of the multiple cavity resonance -- 6.3.6.1.1. Plane wave -- Higher-order grazing modes -- Higher-order obliquely incident modes -- 6.3.6.2. Combination of the locally reacting liner and the nonlocally reacting liner -- 6.4. Fan noise source modeling -- 6.4.1. Tonal/broadband interaction noise prediction -- 6.4.1.1. Wake description -- 6.4.1.2. Incident turbulence description -- 6.4.2. The passive control effect of vane sweep and lean -- 6.4.2.1. Vanes sweep effect on the tonal interaction noise -- 6.4.2.2. Vanes lean effect on the tonal interaction noise -- 6.4.2.3. Control effect of swept-and-leaned vanes -- 6.4.3. Sound source prediction model for a finite region -- 6.5. Interaction effect | |
505 | 8 | |a 6.5.1. The interaction between rotor and Stator cascades -- 6.5.2. The interaction between source and liner -- 6.5.3. Far-field sound radiation of an Aeroengine nacelle -- References -- Chapter 7: Thermoacoustic instability -- 7.1. Basic concepts of thermoacoustics -- 7.2. One-dimensional calculation method -- 7.3. Three-dimensional linear combustion instability analysis method -- 7.3.1. Analytical approach -- 7.3.1.1. Formulation -- 7.3.1.2. Solution to variable cross-section cases -- 7.3.2. Numerical calculation method -- 7.3.2.1. Formulation -- 7.3.2.2. Discretization method -- 7.3.2.3. Treatment of heat source -- 7.3.3. Effect of vorticity waves on azimuthal instabilities in annular chambers -- 7.3.3.1. Description of disturbances -- 7.3.3.2. Results and discussion -- 7.4. Control of thermoacoustic instability in a Rijke tube -- 7.4.1. Perforated liner with bias flow -- 7.4.2. Drum-like silencer -- Appendix A. Coefficients of the matching conditions -- Appendix B. Coefficients of the matching conditions for variable cross-sections cases -- Appendix C. Coefficients in Eq. (7.149) -- Appendix D. Coefficients in Eq. (7.169) -- References -- Chapter 8: Impedance eduction for acoustic liners -- 8.1. Introduction -- 8.2. Straightforward method of acoustic impedance eduction -- 8.2.1. Model description -- 8.2.2. Sound field in the flow duct -- 8.2.3. Mode decomposition by using Prony's method -- 8.2.4. Impedance eduction -- 8.2.5. Model validation -- 8.3. Shear flow effect on the impedance eduction -- 8.3.1. Model description -- 8.3.2. Sound field in the flow duct -- 8.3.3. Mode decomposition -- 8.3.4. Impedance eduction -- 8.3.5. Impedance eduction example in the presence of shear flow -- 8.4. 3-D straightforward method of acoustic impedance eduction -- 8.4.1. Model description -- 8.4.2. Sound field in the flow duct | |
505 | 8 | |a 8.4.3. Spanwise mode decomposition | |
650 | 4 | |a Aerodynamic noise | |
700 | 1 | |a Wang, Xiaoyu |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |a Sun, Xiaofeng |t Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems |d San Diego : Elsevier Science & Technology,c2020 |n Druck-Ausgabe |z 978-0-12-408069-0 |
856 | 4 | 0 | |u https://doi.org/10.1016/C2012-0-02671-3 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-PQE | ||
912 | |a ZDB-33-EBS | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032844242 | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6371901 |l DE-91 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://doi.org/10.1016/C2012-0-02671-3 |l DE-706 |p ZDB-33-EBS |q UBY_PDA_EBS_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1816156107453759488 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Sun, Xiaofeng Wang, Xiaoyu |
author_facet | Sun, Xiaofeng Wang, Xiaoyu |
author_role | aut aut |
author_sort | Sun, Xiaofeng |
author_variant | x s xs x w xw |
building | Verbundindex |
bvnumber | BV047442090 |
classification_tum | UMW 266 VER 630 |
collection | ZDB-30-PQE ZDB-33-EBS |
contents | Front Cover -- Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems -- Copyright -- Contents -- Preface -- Chapter 1: Basic equations of aeroacoustics -- 1.1. Sound sources in moving media -- 1.1.1. Basic equations of sound propagation -- 1.1.2. Energy relations in moving media -- 1.1.3. Sound field of moving sound sources -- 1.1.4. Frequency features of moving sound source-Doppler effect -- 1.2. Generalized Green's formula -- 1.3. Lighthill equation -- 1.3.1. Derivation of basic equations -- 1.3.2. Effect of solid boundary on sound generation -- 1.4. Ffowcs Williams-Hawkings equation -- 1.5. Generalized Lighthill's equation -- References -- Chapter 2: Propeller noise: Prediction and control -- 2.1. Noise sources of propeller -- 2.1.1. An overview, the developing history of propeller noise prediction -- 2.1.1.1. Noise generation due to steady blade force and blade thickness effect -- 2.1.1.2. Noise generation due to unsteady blade force -- 2.1.2. Advanced propeller noise (Propfan noise) -- 2.2. Propeller noise prediction in frequency domain -- 2.2.1. The basic equations -- 2.2.2. Aerodynamic performance prediction -- 2.2.3. The near-field solution of propeller noise -- 2.2.4. The far-field solution of propeller noise -- 2.3. Propeller noise prediction in time domain -- 2.3.1. The basic equations -- 2.3.2. The solution of the free-space generalized wave equation -- 2.3.3. The fundamental integral formulas of the surface sources in time domain -- 2.3.3.1. Surface integral formula -- 2.3.3.2. Collapsing sphere formulation -- 2.3.3.3. Physical surface integral: The retarded time formulation -- 2.3.3.4. The relationship of the three integral formulas -- 2.3.4. The integral expressions of the sound field due to monopoles and dipoles -- 2.3.5. Introduction to numerical computation methods -- References Chapter 3: Noise prediction in aeroengine -- 3.1. Noise sources in aeroengine -- 3.2. Tone noise by rotor/stator interaction in fan/compressor -- 3.2.1. Introduction -- 3.2.2. Model of sound generation by unsteady aerodynamic load on blade -- 3.2.2.1. Governing equations for the problem -- 3.2.2.2. Solution for Green's function for a duct with arbitrary shape -- 3.2.2.3. Solution of Green's function in an annular duct -- 3.2.2.4. Solution for sound generation by unsteady loads -- 3.2.3. Prediction for tone noise by rotor/stator interaction -- 3.2.3.1. Sound pressure expression for stator/rotor interaction -- Frequency characteristic -- Propagation characteristic -- 3.2.3.2. Sound pressure expression for rotor/stator interaction -- 3.3. Shockwave noise in fan/compressor -- 3.3.1. Physical mechanism of shockwave noise in fan/compressor -- 3.3.2. Shockwave noise prediction method -- 3.3.2.1. Analytic model -- 3.3.2.2. Numerical model -- Governing equation -- Differential scheme -- Computational domains, grids, and boundary conditions -- 3.3.3. Power computation of shockwave noise -- 3.4. Combustion noise -- 3.5. Jet noise -- 3.5.1. Solution of Lighthill's equation -- 3.5.1.1. Stationary media -- 3.5.1.2. Effect of convective velocity -- 3.5.2. Prediction of jet noise -- 3.5.2.1. A simplified jet structure -- 3.5.2.2. Dimensionless analysis -- 3.5.2.3. Effect of the convective velocity -- 3.5.3. Effect of non-uniform flow-Lilleys equation -- References -- Chapter 4: Linearized unsteady aerodynamics for aeroacoustic applications -- 4.1. Introduction -- 4.2. Basic linearized unsteady aerodynamic equations -- 4.2.1. Velocity decomposing theorem for uniform flows -- 4.2.2. Disturbance velocity decomposition in non-uniform flow fields: Goldstein's equation -- 4.2.2.1. Basic equations -- 4.2.2.2. Goldstein's equation 4.2.2.3. Relation between the fluctuations at an arbitrary point and the incoming disturbances in far field -- 4.3. Unsteady loading for two-dimensional supersonic cascades with subsonic leading-edge locus -- 4.3.1. Physical and mathematical models -- 4.3.2. Discussion concerning the convergence of the kernel function -- 4.3.3. Reflection coefficients of Mach waves and the solution of the integral equation -- 4.3.4. Comparison of numerical solutions for unsteady blade loading -- 4.4. Lifting surface theory for unsteady analysis of fan/compressor cascade -- 4.4.1. A unified framework for acoustic field and unsteady flow -- 4.4.2. Integral equation for the solution of unsteady blade load -- 4.4.3. Upwash velocity for three different incoming conditions -- 4.4.3.1. The viscous wakes-rotor interaction -- 4.4.3.2. Linearized analysis for the interaction between potential flow and blade row -- 4.4.3.3. Linearized unsteady analysis for cascade flutter -- 4.4.4. Solution to the integral equation -- 4.4.4.1. The convergence of the vorticity wave -- 4.4.4.2. The singularity of pressure wave -- 4.4.4.3. Expansion method for solving the integral equation -- 4.4.5. Numerical validation of unsteady blade loading -- References -- Chapter 5: Vortex sound theory -- 5.1. Introduction to sound generation induced by vortex flow -- 5.2. Basic equations of vortex sound -- 5.2.1. Powell's equation -- 5.2.2. Howe's acoustic analogy -- 5.2.2.1. Sound propagation in the irrotational mean flow -- 5.2.2.2. Howe's equation -- 5.2.2.3. Solution of Howe's equation -- 5.2.2.4. Energy transfer between sound and vortex -- 5.2.3. The equivalence of Curle's equation and Howe's equation -- 5.3. Vortex sound model of trailing edge noise -- 5.4. Vortex sound model of liner impedance -- 5.5. Effect of grazing flow on vortex sound interaction of perforated plates 5.5.1. Effect of grazing flow on the acoustic impedance of perforated plates -- 5.5.2. Effect of plate thickness on impedance of perforated plates with bias flow -- 5.6. Nonlinear model of vortex sound interaction -- 5.6.1. The nonlinear model of vortex sound interaction occurring at a slit -- 5.6.2. Flow-excited acoustic resonance of a Helmholtz resonator -- References -- Chapter 6: Sound generation, propagation, and radiation in/from an aeroengine nacelle -- 6.1. Introduction -- 6.2. Basic theory of sound propagation in ducts -- 6.3. Computational approaches for duct acoustics -- 6.3.1. Sound propagation in an aeroengine nacelle -- 6.3.1.1. Mode-matching approach (MMA) -- 6.3.1.2. Boundary integral equation method (BIEM) -- 6.3.1.3. Finite element method (FEM) -- 6.3.2. Fundamental idea of the transfer element method -- 6.3.3. Construction of transfer element for a locally reacting lined duct -- 6.3.4. Construction of transfer element for a nonlocally reacting lined duct -- 6.3.5. Construction of transfer element for a varying cross-section duct -- 6.3.6. Calculation of the combined acoustic liner -- 6.3.6.1. The mechanism of the multiple cavity resonance -- 6.3.6.1.1. Plane wave -- Higher-order grazing modes -- Higher-order obliquely incident modes -- 6.3.6.2. Combination of the locally reacting liner and the nonlocally reacting liner -- 6.4. Fan noise source modeling -- 6.4.1. Tonal/broadband interaction noise prediction -- 6.4.1.1. Wake description -- 6.4.1.2. Incident turbulence description -- 6.4.2. The passive control effect of vane sweep and lean -- 6.4.2.1. Vanes sweep effect on the tonal interaction noise -- 6.4.2.2. Vanes lean effect on the tonal interaction noise -- 6.4.2.3. Control effect of swept-and-leaned vanes -- 6.4.3. Sound source prediction model for a finite region -- 6.5. Interaction effect 6.5.1. The interaction between rotor and Stator cascades -- 6.5.2. The interaction between source and liner -- 6.5.3. Far-field sound radiation of an Aeroengine nacelle -- References -- Chapter 7: Thermoacoustic instability -- 7.1. Basic concepts of thermoacoustics -- 7.2. One-dimensional calculation method -- 7.3. Three-dimensional linear combustion instability analysis method -- 7.3.1. Analytical approach -- 7.3.1.1. Formulation -- 7.3.1.2. Solution to variable cross-section cases -- 7.3.2. Numerical calculation method -- 7.3.2.1. Formulation -- 7.3.2.2. Discretization method -- 7.3.2.3. Treatment of heat source -- 7.3.3. Effect of vorticity waves on azimuthal instabilities in annular chambers -- 7.3.3.1. Description of disturbances -- 7.3.3.2. Results and discussion -- 7.4. Control of thermoacoustic instability in a Rijke tube -- 7.4.1. Perforated liner with bias flow -- 7.4.2. Drum-like silencer -- Appendix A. Coefficients of the matching conditions -- Appendix B. Coefficients of the matching conditions for variable cross-sections cases -- Appendix C. Coefficients in Eq. (7.149) -- Appendix D. Coefficients in Eq. (7.169) -- References -- Chapter 8: Impedance eduction for acoustic liners -- 8.1. Introduction -- 8.2. Straightforward method of acoustic impedance eduction -- 8.2.1. Model description -- 8.2.2. Sound field in the flow duct -- 8.2.3. Mode decomposition by using Prony's method -- 8.2.4. Impedance eduction -- 8.2.5. Model validation -- 8.3. Shear flow effect on the impedance eduction -- 8.3.1. Model description -- 8.3.2. Sound field in the flow duct -- 8.3.3. Mode decomposition -- 8.3.4. Impedance eduction -- 8.3.5. Impedance eduction example in the presence of shear flow -- 8.4. 3-D straightforward method of acoustic impedance eduction -- 8.4.1. Model description -- 8.4.2. Sound field in the flow duct 8.4.3. Spanwise mode decomposition |
ctrlnum | (ZDB-30-PQE)EBC6371901 (ZDB-30-PAD)EBC6371901 (ZDB-89-EBL)EBL6371901 (ZDB-33-EBS)9780124080690 (OCoLC)1202448575 (DE-599)BVBBV047442090 |
dewey-full | 629.1323 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.1323 |
dewey-search | 629.1323 |
dewey-sort | 3629.1323 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Umwelt Verkehrstechnik Verkehr / Transport |
discipline_str_mv | Umwelt Verkehrstechnik Verkehr / Transport |
doi_str_mv | 10.1016/C2012-0-02671-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV047442090</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241119</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 xx |||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780124080744</subfield><subfield code="9">978-0-12-408074-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780124080690</subfield><subfield code="9">9780124080690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6371901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6371901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6371901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)9780124080690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1202448575</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442090</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.1323</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UMW 266</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VER 630</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Xiaofeng</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals of aeroacoustics with applications to aeropropulsion systems</subfield><subfield code="c">Xiaofeng Sun, Xiaoyu Wang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom</subfield><subfield code="b">Academic Press, an imprint of Elsevier</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 545 Seiten)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Elsevier and Shanghai Jiao Tong University Press aerospace series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Front Cover -- Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems -- Copyright -- Contents -- Preface -- Chapter 1: Basic equations of aeroacoustics -- 1.1. Sound sources in moving media -- 1.1.1. Basic equations of sound propagation -- 1.1.2. Energy relations in moving media -- 1.1.3. Sound field of moving sound sources -- 1.1.4. Frequency features of moving sound source-Doppler effect -- 1.2. Generalized Green's formula -- 1.3. Lighthill equation -- 1.3.1. Derivation of basic equations -- 1.3.2. Effect of solid boundary on sound generation -- 1.4. Ffowcs Williams-Hawkings equation -- 1.5. Generalized Lighthill's equation -- References -- Chapter 2: Propeller noise: Prediction and control -- 2.1. Noise sources of propeller -- 2.1.1. An overview, the developing history of propeller noise prediction -- 2.1.1.1. Noise generation due to steady blade force and blade thickness effect -- 2.1.1.2. Noise generation due to unsteady blade force -- 2.1.2. Advanced propeller noise (Propfan noise) -- 2.2. Propeller noise prediction in frequency domain -- 2.2.1. The basic equations -- 2.2.2. Aerodynamic performance prediction -- 2.2.3. The near-field solution of propeller noise -- 2.2.4. The far-field solution of propeller noise -- 2.3. Propeller noise prediction in time domain -- 2.3.1. The basic equations -- 2.3.2. The solution of the free-space generalized wave equation -- 2.3.3. The fundamental integral formulas of the surface sources in time domain -- 2.3.3.1. Surface integral formula -- 2.3.3.2. Collapsing sphere formulation -- 2.3.3.3. Physical surface integral: The retarded time formulation -- 2.3.3.4. The relationship of the three integral formulas -- 2.3.4. The integral expressions of the sound field due to monopoles and dipoles -- 2.3.5. Introduction to numerical computation methods -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 3: Noise prediction in aeroengine -- 3.1. Noise sources in aeroengine -- 3.2. Tone noise by rotor/stator interaction in fan/compressor -- 3.2.1. Introduction -- 3.2.2. Model of sound generation by unsteady aerodynamic load on blade -- 3.2.2.1. Governing equations for the problem -- 3.2.2.2. Solution for Green's function for a duct with arbitrary shape -- 3.2.2.3. Solution of Green's function in an annular duct -- 3.2.2.4. Solution for sound generation by unsteady loads -- 3.2.3. Prediction for tone noise by rotor/stator interaction -- 3.2.3.1. Sound pressure expression for stator/rotor interaction -- Frequency characteristic -- Propagation characteristic -- 3.2.3.2. Sound pressure expression for rotor/stator interaction -- 3.3. Shockwave noise in fan/compressor -- 3.3.1. Physical mechanism of shockwave noise in fan/compressor -- 3.3.2. Shockwave noise prediction method -- 3.3.2.1. Analytic model -- 3.3.2.2. Numerical model -- Governing equation -- Differential scheme -- Computational domains, grids, and boundary conditions -- 3.3.3. Power computation of shockwave noise -- 3.4. Combustion noise -- 3.5. Jet noise -- 3.5.1. Solution of Lighthill's equation -- 3.5.1.1. Stationary media -- 3.5.1.2. Effect of convective velocity -- 3.5.2. Prediction of jet noise -- 3.5.2.1. A simplified jet structure -- 3.5.2.2. Dimensionless analysis -- 3.5.2.3. Effect of the convective velocity -- 3.5.3. Effect of non-uniform flow-Lilleys equation -- References -- Chapter 4: Linearized unsteady aerodynamics for aeroacoustic applications -- 4.1. Introduction -- 4.2. Basic linearized unsteady aerodynamic equations -- 4.2.1. Velocity decomposing theorem for uniform flows -- 4.2.2. Disturbance velocity decomposition in non-uniform flow fields: Goldstein's equation -- 4.2.2.1. Basic equations -- 4.2.2.2. Goldstein's equation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2.2.3. Relation between the fluctuations at an arbitrary point and the incoming disturbances in far field -- 4.3. Unsteady loading for two-dimensional supersonic cascades with subsonic leading-edge locus -- 4.3.1. Physical and mathematical models -- 4.3.2. Discussion concerning the convergence of the kernel function -- 4.3.3. Reflection coefficients of Mach waves and the solution of the integral equation -- 4.3.4. Comparison of numerical solutions for unsteady blade loading -- 4.4. Lifting surface theory for unsteady analysis of fan/compressor cascade -- 4.4.1. A unified framework for acoustic field and unsteady flow -- 4.4.2. Integral equation for the solution of unsteady blade load -- 4.4.3. Upwash velocity for three different incoming conditions -- 4.4.3.1. The viscous wakes-rotor interaction -- 4.4.3.2. Linearized analysis for the interaction between potential flow and blade row -- 4.4.3.3. Linearized unsteady analysis for cascade flutter -- 4.4.4. Solution to the integral equation -- 4.4.4.1. The convergence of the vorticity wave -- 4.4.4.2. The singularity of pressure wave -- 4.4.4.3. Expansion method for solving the integral equation -- 4.4.5. Numerical validation of unsteady blade loading -- References -- Chapter 5: Vortex sound theory -- 5.1. Introduction to sound generation induced by vortex flow -- 5.2. Basic equations of vortex sound -- 5.2.1. Powell's equation -- 5.2.2. Howe's acoustic analogy -- 5.2.2.1. Sound propagation in the irrotational mean flow -- 5.2.2.2. Howe's equation -- 5.2.2.3. Solution of Howe's equation -- 5.2.2.4. Energy transfer between sound and vortex -- 5.2.3. The equivalence of Curle's equation and Howe's equation -- 5.3. Vortex sound model of trailing edge noise -- 5.4. Vortex sound model of liner impedance -- 5.5. Effect of grazing flow on vortex sound interaction of perforated plates</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.5.1. Effect of grazing flow on the acoustic impedance of perforated plates -- 5.5.2. Effect of plate thickness on impedance of perforated plates with bias flow -- 5.6. Nonlinear model of vortex sound interaction -- 5.6.1. The nonlinear model of vortex sound interaction occurring at a slit -- 5.6.2. Flow-excited acoustic resonance of a Helmholtz resonator -- References -- Chapter 6: Sound generation, propagation, and radiation in/from an aeroengine nacelle -- 6.1. Introduction -- 6.2. Basic theory of sound propagation in ducts -- 6.3. Computational approaches for duct acoustics -- 6.3.1. Sound propagation in an aeroengine nacelle -- 6.3.1.1. Mode-matching approach (MMA) -- 6.3.1.2. Boundary integral equation method (BIEM) -- 6.3.1.3. Finite element method (FEM) -- 6.3.2. Fundamental idea of the transfer element method -- 6.3.3. Construction of transfer element for a locally reacting lined duct -- 6.3.4. Construction of transfer element for a nonlocally reacting lined duct -- 6.3.5. Construction of transfer element for a varying cross-section duct -- 6.3.6. Calculation of the combined acoustic liner -- 6.3.6.1. The mechanism of the multiple cavity resonance -- 6.3.6.1.1. Plane wave -- Higher-order grazing modes -- Higher-order obliquely incident modes -- 6.3.6.2. Combination of the locally reacting liner and the nonlocally reacting liner -- 6.4. Fan noise source modeling -- 6.4.1. Tonal/broadband interaction noise prediction -- 6.4.1.1. Wake description -- 6.4.1.2. Incident turbulence description -- 6.4.2. The passive control effect of vane sweep and lean -- 6.4.2.1. Vanes sweep effect on the tonal interaction noise -- 6.4.2.2. Vanes lean effect on the tonal interaction noise -- 6.4.2.3. Control effect of swept-and-leaned vanes -- 6.4.3. Sound source prediction model for a finite region -- 6.5. Interaction effect</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.5.1. The interaction between rotor and Stator cascades -- 6.5.2. The interaction between source and liner -- 6.5.3. Far-field sound radiation of an Aeroengine nacelle -- References -- Chapter 7: Thermoacoustic instability -- 7.1. Basic concepts of thermoacoustics -- 7.2. One-dimensional calculation method -- 7.3. Three-dimensional linear combustion instability analysis method -- 7.3.1. Analytical approach -- 7.3.1.1. Formulation -- 7.3.1.2. Solution to variable cross-section cases -- 7.3.2. Numerical calculation method -- 7.3.2.1. Formulation -- 7.3.2.2. Discretization method -- 7.3.2.3. Treatment of heat source -- 7.3.3. Effect of vorticity waves on azimuthal instabilities in annular chambers -- 7.3.3.1. Description of disturbances -- 7.3.3.2. Results and discussion -- 7.4. Control of thermoacoustic instability in a Rijke tube -- 7.4.1. Perforated liner with bias flow -- 7.4.2. Drum-like silencer -- Appendix A. Coefficients of the matching conditions -- Appendix B. Coefficients of the matching conditions for variable cross-sections cases -- Appendix C. Coefficients in Eq. (7.149) -- Appendix D. Coefficients in Eq. (7.169) -- References -- Chapter 8: Impedance eduction for acoustic liners -- 8.1. Introduction -- 8.2. Straightforward method of acoustic impedance eduction -- 8.2.1. Model description -- 8.2.2. Sound field in the flow duct -- 8.2.3. Mode decomposition by using Prony's method -- 8.2.4. Impedance eduction -- 8.2.5. Model validation -- 8.3. Shear flow effect on the impedance eduction -- 8.3.1. Model description -- 8.3.2. Sound field in the flow duct -- 8.3.3. Mode decomposition -- 8.3.4. Impedance eduction -- 8.3.5. Impedance eduction example in the presence of shear flow -- 8.4. 3-D straightforward method of acoustic impedance eduction -- 8.4.1. Model description -- 8.4.2. Sound field in the flow duct</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.4.3. Spanwise mode decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerodynamic noise</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xiaoyu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Sun, Xiaofeng</subfield><subfield code="t">Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems</subfield><subfield code="d">San Diego : Elsevier Science & Technology,c2020</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-12-408069-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/C2012-0-02671-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844242</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6371901</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1016/C2012-0-02671-3</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-33-EBS</subfield><subfield code="q">UBY_PDA_EBS_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047442090 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:24Z |
indexdate | 2024-11-19T13:03:54Z |
institution | BVB |
isbn | 9780124080744 9780124080690 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844242 |
oclc_num | 1202448575 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-706 |
owner_facet | DE-91 DE-BY-TUM DE-706 |
physical | 1 Online-Ressource (ix, 545 Seiten) Diagramme |
psigel | ZDB-30-PQE ZDB-33-EBS ZDB-30-PQE TUM_PDA_PQE_Kauf ZDB-33-EBS UBY_PDA_EBS_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Academic Press, an imprint of Elsevier |
record_format | marc |
series2 | Elsevier and Shanghai Jiao Tong University Press aerospace series |
spelling | Sun, Xiaofeng Verfasser aut Fundamentals of aeroacoustics with applications to aeropropulsion systems Xiaofeng Sun, Xiaoyu Wang London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom Academic Press, an imprint of Elsevier [2021] © 2021 1 Online-Ressource (ix, 545 Seiten) Diagramme txt rdacontent c rdamedia cr rdacarrier Elsevier and Shanghai Jiao Tong University Press aerospace series Description based on publisher supplied metadata and other sources Front Cover -- Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems -- Copyright -- Contents -- Preface -- Chapter 1: Basic equations of aeroacoustics -- 1.1. Sound sources in moving media -- 1.1.1. Basic equations of sound propagation -- 1.1.2. Energy relations in moving media -- 1.1.3. Sound field of moving sound sources -- 1.1.4. Frequency features of moving sound source-Doppler effect -- 1.2. Generalized Green's formula -- 1.3. Lighthill equation -- 1.3.1. Derivation of basic equations -- 1.3.2. Effect of solid boundary on sound generation -- 1.4. Ffowcs Williams-Hawkings equation -- 1.5. Generalized Lighthill's equation -- References -- Chapter 2: Propeller noise: Prediction and control -- 2.1. Noise sources of propeller -- 2.1.1. An overview, the developing history of propeller noise prediction -- 2.1.1.1. Noise generation due to steady blade force and blade thickness effect -- 2.1.1.2. Noise generation due to unsteady blade force -- 2.1.2. Advanced propeller noise (Propfan noise) -- 2.2. Propeller noise prediction in frequency domain -- 2.2.1. The basic equations -- 2.2.2. Aerodynamic performance prediction -- 2.2.3. The near-field solution of propeller noise -- 2.2.4. The far-field solution of propeller noise -- 2.3. Propeller noise prediction in time domain -- 2.3.1. The basic equations -- 2.3.2. The solution of the free-space generalized wave equation -- 2.3.3. The fundamental integral formulas of the surface sources in time domain -- 2.3.3.1. Surface integral formula -- 2.3.3.2. Collapsing sphere formulation -- 2.3.3.3. Physical surface integral: The retarded time formulation -- 2.3.3.4. The relationship of the three integral formulas -- 2.3.4. The integral expressions of the sound field due to monopoles and dipoles -- 2.3.5. Introduction to numerical computation methods -- References Chapter 3: Noise prediction in aeroengine -- 3.1. Noise sources in aeroengine -- 3.2. Tone noise by rotor/stator interaction in fan/compressor -- 3.2.1. Introduction -- 3.2.2. Model of sound generation by unsteady aerodynamic load on blade -- 3.2.2.1. Governing equations for the problem -- 3.2.2.2. Solution for Green's function for a duct with arbitrary shape -- 3.2.2.3. Solution of Green's function in an annular duct -- 3.2.2.4. Solution for sound generation by unsteady loads -- 3.2.3. Prediction for tone noise by rotor/stator interaction -- 3.2.3.1. Sound pressure expression for stator/rotor interaction -- Frequency characteristic -- Propagation characteristic -- 3.2.3.2. Sound pressure expression for rotor/stator interaction -- 3.3. Shockwave noise in fan/compressor -- 3.3.1. Physical mechanism of shockwave noise in fan/compressor -- 3.3.2. Shockwave noise prediction method -- 3.3.2.1. Analytic model -- 3.3.2.2. Numerical model -- Governing equation -- Differential scheme -- Computational domains, grids, and boundary conditions -- 3.3.3. Power computation of shockwave noise -- 3.4. Combustion noise -- 3.5. Jet noise -- 3.5.1. Solution of Lighthill's equation -- 3.5.1.1. Stationary media -- 3.5.1.2. Effect of convective velocity -- 3.5.2. Prediction of jet noise -- 3.5.2.1. A simplified jet structure -- 3.5.2.2. Dimensionless analysis -- 3.5.2.3. Effect of the convective velocity -- 3.5.3. Effect of non-uniform flow-Lilleys equation -- References -- Chapter 4: Linearized unsteady aerodynamics for aeroacoustic applications -- 4.1. Introduction -- 4.2. Basic linearized unsteady aerodynamic equations -- 4.2.1. Velocity decomposing theorem for uniform flows -- 4.2.2. Disturbance velocity decomposition in non-uniform flow fields: Goldstein's equation -- 4.2.2.1. Basic equations -- 4.2.2.2. Goldstein's equation 4.2.2.3. Relation between the fluctuations at an arbitrary point and the incoming disturbances in far field -- 4.3. Unsteady loading for two-dimensional supersonic cascades with subsonic leading-edge locus -- 4.3.1. Physical and mathematical models -- 4.3.2. Discussion concerning the convergence of the kernel function -- 4.3.3. Reflection coefficients of Mach waves and the solution of the integral equation -- 4.3.4. Comparison of numerical solutions for unsteady blade loading -- 4.4. Lifting surface theory for unsteady analysis of fan/compressor cascade -- 4.4.1. A unified framework for acoustic field and unsteady flow -- 4.4.2. Integral equation for the solution of unsteady blade load -- 4.4.3. Upwash velocity for three different incoming conditions -- 4.4.3.1. The viscous wakes-rotor interaction -- 4.4.3.2. Linearized analysis for the interaction between potential flow and blade row -- 4.4.3.3. Linearized unsteady analysis for cascade flutter -- 4.4.4. Solution to the integral equation -- 4.4.4.1. The convergence of the vorticity wave -- 4.4.4.2. The singularity of pressure wave -- 4.4.4.3. Expansion method for solving the integral equation -- 4.4.5. Numerical validation of unsteady blade loading -- References -- Chapter 5: Vortex sound theory -- 5.1. Introduction to sound generation induced by vortex flow -- 5.2. Basic equations of vortex sound -- 5.2.1. Powell's equation -- 5.2.2. Howe's acoustic analogy -- 5.2.2.1. Sound propagation in the irrotational mean flow -- 5.2.2.2. Howe's equation -- 5.2.2.3. Solution of Howe's equation -- 5.2.2.4. Energy transfer between sound and vortex -- 5.2.3. The equivalence of Curle's equation and Howe's equation -- 5.3. Vortex sound model of trailing edge noise -- 5.4. Vortex sound model of liner impedance -- 5.5. Effect of grazing flow on vortex sound interaction of perforated plates 5.5.1. Effect of grazing flow on the acoustic impedance of perforated plates -- 5.5.2. Effect of plate thickness on impedance of perforated plates with bias flow -- 5.6. Nonlinear model of vortex sound interaction -- 5.6.1. The nonlinear model of vortex sound interaction occurring at a slit -- 5.6.2. Flow-excited acoustic resonance of a Helmholtz resonator -- References -- Chapter 6: Sound generation, propagation, and radiation in/from an aeroengine nacelle -- 6.1. Introduction -- 6.2. Basic theory of sound propagation in ducts -- 6.3. Computational approaches for duct acoustics -- 6.3.1. Sound propagation in an aeroengine nacelle -- 6.3.1.1. Mode-matching approach (MMA) -- 6.3.1.2. Boundary integral equation method (BIEM) -- 6.3.1.3. Finite element method (FEM) -- 6.3.2. Fundamental idea of the transfer element method -- 6.3.3. Construction of transfer element for a locally reacting lined duct -- 6.3.4. Construction of transfer element for a nonlocally reacting lined duct -- 6.3.5. Construction of transfer element for a varying cross-section duct -- 6.3.6. Calculation of the combined acoustic liner -- 6.3.6.1. The mechanism of the multiple cavity resonance -- 6.3.6.1.1. Plane wave -- Higher-order grazing modes -- Higher-order obliquely incident modes -- 6.3.6.2. Combination of the locally reacting liner and the nonlocally reacting liner -- 6.4. Fan noise source modeling -- 6.4.1. Tonal/broadband interaction noise prediction -- 6.4.1.1. Wake description -- 6.4.1.2. Incident turbulence description -- 6.4.2. The passive control effect of vane sweep and lean -- 6.4.2.1. Vanes sweep effect on the tonal interaction noise -- 6.4.2.2. Vanes lean effect on the tonal interaction noise -- 6.4.2.3. Control effect of swept-and-leaned vanes -- 6.4.3. Sound source prediction model for a finite region -- 6.5. Interaction effect 6.5.1. The interaction between rotor and Stator cascades -- 6.5.2. The interaction between source and liner -- 6.5.3. Far-field sound radiation of an Aeroengine nacelle -- References -- Chapter 7: Thermoacoustic instability -- 7.1. Basic concepts of thermoacoustics -- 7.2. One-dimensional calculation method -- 7.3. Three-dimensional linear combustion instability analysis method -- 7.3.1. Analytical approach -- 7.3.1.1. Formulation -- 7.3.1.2. Solution to variable cross-section cases -- 7.3.2. Numerical calculation method -- 7.3.2.1. Formulation -- 7.3.2.2. Discretization method -- 7.3.2.3. Treatment of heat source -- 7.3.3. Effect of vorticity waves on azimuthal instabilities in annular chambers -- 7.3.3.1. Description of disturbances -- 7.3.3.2. Results and discussion -- 7.4. Control of thermoacoustic instability in a Rijke tube -- 7.4.1. Perforated liner with bias flow -- 7.4.2. Drum-like silencer -- Appendix A. Coefficients of the matching conditions -- Appendix B. Coefficients of the matching conditions for variable cross-sections cases -- Appendix C. Coefficients in Eq. (7.149) -- Appendix D. Coefficients in Eq. (7.169) -- References -- Chapter 8: Impedance eduction for acoustic liners -- 8.1. Introduction -- 8.2. Straightforward method of acoustic impedance eduction -- 8.2.1. Model description -- 8.2.2. Sound field in the flow duct -- 8.2.3. Mode decomposition by using Prony's method -- 8.2.4. Impedance eduction -- 8.2.5. Model validation -- 8.3. Shear flow effect on the impedance eduction -- 8.3.1. Model description -- 8.3.2. Sound field in the flow duct -- 8.3.3. Mode decomposition -- 8.3.4. Impedance eduction -- 8.3.5. Impedance eduction example in the presence of shear flow -- 8.4. 3-D straightforward method of acoustic impedance eduction -- 8.4.1. Model description -- 8.4.2. Sound field in the flow duct 8.4.3. Spanwise mode decomposition Aerodynamic noise Wang, Xiaoyu Verfasser aut Erscheint auch als Sun, Xiaofeng Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems San Diego : Elsevier Science & Technology,c2020 Druck-Ausgabe 978-0-12-408069-0 https://doi.org/10.1016/C2012-0-02671-3 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Sun, Xiaofeng Wang, Xiaoyu Fundamentals of aeroacoustics with applications to aeropropulsion systems Front Cover -- Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems -- Copyright -- Contents -- Preface -- Chapter 1: Basic equations of aeroacoustics -- 1.1. Sound sources in moving media -- 1.1.1. Basic equations of sound propagation -- 1.1.2. Energy relations in moving media -- 1.1.3. Sound field of moving sound sources -- 1.1.4. Frequency features of moving sound source-Doppler effect -- 1.2. Generalized Green's formula -- 1.3. Lighthill equation -- 1.3.1. Derivation of basic equations -- 1.3.2. Effect of solid boundary on sound generation -- 1.4. Ffowcs Williams-Hawkings equation -- 1.5. Generalized Lighthill's equation -- References -- Chapter 2: Propeller noise: Prediction and control -- 2.1. Noise sources of propeller -- 2.1.1. An overview, the developing history of propeller noise prediction -- 2.1.1.1. Noise generation due to steady blade force and blade thickness effect -- 2.1.1.2. Noise generation due to unsteady blade force -- 2.1.2. Advanced propeller noise (Propfan noise) -- 2.2. Propeller noise prediction in frequency domain -- 2.2.1. The basic equations -- 2.2.2. Aerodynamic performance prediction -- 2.2.3. The near-field solution of propeller noise -- 2.2.4. The far-field solution of propeller noise -- 2.3. Propeller noise prediction in time domain -- 2.3.1. The basic equations -- 2.3.2. The solution of the free-space generalized wave equation -- 2.3.3. The fundamental integral formulas of the surface sources in time domain -- 2.3.3.1. Surface integral formula -- 2.3.3.2. Collapsing sphere formulation -- 2.3.3.3. Physical surface integral: The retarded time formulation -- 2.3.3.4. The relationship of the three integral formulas -- 2.3.4. The integral expressions of the sound field due to monopoles and dipoles -- 2.3.5. Introduction to numerical computation methods -- References Chapter 3: Noise prediction in aeroengine -- 3.1. Noise sources in aeroengine -- 3.2. Tone noise by rotor/stator interaction in fan/compressor -- 3.2.1. Introduction -- 3.2.2. Model of sound generation by unsteady aerodynamic load on blade -- 3.2.2.1. Governing equations for the problem -- 3.2.2.2. Solution for Green's function for a duct with arbitrary shape -- 3.2.2.3. Solution of Green's function in an annular duct -- 3.2.2.4. Solution for sound generation by unsteady loads -- 3.2.3. Prediction for tone noise by rotor/stator interaction -- 3.2.3.1. Sound pressure expression for stator/rotor interaction -- Frequency characteristic -- Propagation characteristic -- 3.2.3.2. Sound pressure expression for rotor/stator interaction -- 3.3. Shockwave noise in fan/compressor -- 3.3.1. Physical mechanism of shockwave noise in fan/compressor -- 3.3.2. Shockwave noise prediction method -- 3.3.2.1. Analytic model -- 3.3.2.2. Numerical model -- Governing equation -- Differential scheme -- Computational domains, grids, and boundary conditions -- 3.3.3. Power computation of shockwave noise -- 3.4. Combustion noise -- 3.5. Jet noise -- 3.5.1. Solution of Lighthill's equation -- 3.5.1.1. Stationary media -- 3.5.1.2. Effect of convective velocity -- 3.5.2. Prediction of jet noise -- 3.5.2.1. A simplified jet structure -- 3.5.2.2. Dimensionless analysis -- 3.5.2.3. Effect of the convective velocity -- 3.5.3. Effect of non-uniform flow-Lilleys equation -- References -- Chapter 4: Linearized unsteady aerodynamics for aeroacoustic applications -- 4.1. Introduction -- 4.2. Basic linearized unsteady aerodynamic equations -- 4.2.1. Velocity decomposing theorem for uniform flows -- 4.2.2. Disturbance velocity decomposition in non-uniform flow fields: Goldstein's equation -- 4.2.2.1. Basic equations -- 4.2.2.2. Goldstein's equation 4.2.2.3. Relation between the fluctuations at an arbitrary point and the incoming disturbances in far field -- 4.3. Unsteady loading for two-dimensional supersonic cascades with subsonic leading-edge locus -- 4.3.1. Physical and mathematical models -- 4.3.2. Discussion concerning the convergence of the kernel function -- 4.3.3. Reflection coefficients of Mach waves and the solution of the integral equation -- 4.3.4. Comparison of numerical solutions for unsteady blade loading -- 4.4. Lifting surface theory for unsteady analysis of fan/compressor cascade -- 4.4.1. A unified framework for acoustic field and unsteady flow -- 4.4.2. Integral equation for the solution of unsteady blade load -- 4.4.3. Upwash velocity for three different incoming conditions -- 4.4.3.1. The viscous wakes-rotor interaction -- 4.4.3.2. Linearized analysis for the interaction between potential flow and blade row -- 4.4.3.3. Linearized unsteady analysis for cascade flutter -- 4.4.4. Solution to the integral equation -- 4.4.4.1. The convergence of the vorticity wave -- 4.4.4.2. The singularity of pressure wave -- 4.4.4.3. Expansion method for solving the integral equation -- 4.4.5. Numerical validation of unsteady blade loading -- References -- Chapter 5: Vortex sound theory -- 5.1. Introduction to sound generation induced by vortex flow -- 5.2. Basic equations of vortex sound -- 5.2.1. Powell's equation -- 5.2.2. Howe's acoustic analogy -- 5.2.2.1. Sound propagation in the irrotational mean flow -- 5.2.2.2. Howe's equation -- 5.2.2.3. Solution of Howe's equation -- 5.2.2.4. Energy transfer between sound and vortex -- 5.2.3. The equivalence of Curle's equation and Howe's equation -- 5.3. Vortex sound model of trailing edge noise -- 5.4. Vortex sound model of liner impedance -- 5.5. Effect of grazing flow on vortex sound interaction of perforated plates 5.5.1. Effect of grazing flow on the acoustic impedance of perforated plates -- 5.5.2. Effect of plate thickness on impedance of perforated plates with bias flow -- 5.6. Nonlinear model of vortex sound interaction -- 5.6.1. The nonlinear model of vortex sound interaction occurring at a slit -- 5.6.2. Flow-excited acoustic resonance of a Helmholtz resonator -- References -- Chapter 6: Sound generation, propagation, and radiation in/from an aeroengine nacelle -- 6.1. Introduction -- 6.2. Basic theory of sound propagation in ducts -- 6.3. Computational approaches for duct acoustics -- 6.3.1. Sound propagation in an aeroengine nacelle -- 6.3.1.1. Mode-matching approach (MMA) -- 6.3.1.2. Boundary integral equation method (BIEM) -- 6.3.1.3. Finite element method (FEM) -- 6.3.2. Fundamental idea of the transfer element method -- 6.3.3. Construction of transfer element for a locally reacting lined duct -- 6.3.4. Construction of transfer element for a nonlocally reacting lined duct -- 6.3.5. Construction of transfer element for a varying cross-section duct -- 6.3.6. Calculation of the combined acoustic liner -- 6.3.6.1. The mechanism of the multiple cavity resonance -- 6.3.6.1.1. Plane wave -- Higher-order grazing modes -- Higher-order obliquely incident modes -- 6.3.6.2. Combination of the locally reacting liner and the nonlocally reacting liner -- 6.4. Fan noise source modeling -- 6.4.1. Tonal/broadband interaction noise prediction -- 6.4.1.1. Wake description -- 6.4.1.2. Incident turbulence description -- 6.4.2. The passive control effect of vane sweep and lean -- 6.4.2.1. Vanes sweep effect on the tonal interaction noise -- 6.4.2.2. Vanes lean effect on the tonal interaction noise -- 6.4.2.3. Control effect of swept-and-leaned vanes -- 6.4.3. Sound source prediction model for a finite region -- 6.5. Interaction effect 6.5.1. The interaction between rotor and Stator cascades -- 6.5.2. The interaction between source and liner -- 6.5.3. Far-field sound radiation of an Aeroengine nacelle -- References -- Chapter 7: Thermoacoustic instability -- 7.1. Basic concepts of thermoacoustics -- 7.2. One-dimensional calculation method -- 7.3. Three-dimensional linear combustion instability analysis method -- 7.3.1. Analytical approach -- 7.3.1.1. Formulation -- 7.3.1.2. Solution to variable cross-section cases -- 7.3.2. Numerical calculation method -- 7.3.2.1. Formulation -- 7.3.2.2. Discretization method -- 7.3.2.3. Treatment of heat source -- 7.3.3. Effect of vorticity waves on azimuthal instabilities in annular chambers -- 7.3.3.1. Description of disturbances -- 7.3.3.2. Results and discussion -- 7.4. Control of thermoacoustic instability in a Rijke tube -- 7.4.1. Perforated liner with bias flow -- 7.4.2. Drum-like silencer -- Appendix A. Coefficients of the matching conditions -- Appendix B. Coefficients of the matching conditions for variable cross-sections cases -- Appendix C. Coefficients in Eq. (7.149) -- Appendix D. Coefficients in Eq. (7.169) -- References -- Chapter 8: Impedance eduction for acoustic liners -- 8.1. Introduction -- 8.2. Straightforward method of acoustic impedance eduction -- 8.2.1. Model description -- 8.2.2. Sound field in the flow duct -- 8.2.3. Mode decomposition by using Prony's method -- 8.2.4. Impedance eduction -- 8.2.5. Model validation -- 8.3. Shear flow effect on the impedance eduction -- 8.3.1. Model description -- 8.3.2. Sound field in the flow duct -- 8.3.3. Mode decomposition -- 8.3.4. Impedance eduction -- 8.3.5. Impedance eduction example in the presence of shear flow -- 8.4. 3-D straightforward method of acoustic impedance eduction -- 8.4.1. Model description -- 8.4.2. Sound field in the flow duct 8.4.3. Spanwise mode decomposition Aerodynamic noise |
title | Fundamentals of aeroacoustics with applications to aeropropulsion systems |
title_auth | Fundamentals of aeroacoustics with applications to aeropropulsion systems |
title_exact_search | Fundamentals of aeroacoustics with applications to aeropropulsion systems |
title_exact_search_txtP | Fundamentals of aeroacoustics with applications to aeropropulsion systems |
title_full | Fundamentals of aeroacoustics with applications to aeropropulsion systems Xiaofeng Sun, Xiaoyu Wang |
title_fullStr | Fundamentals of aeroacoustics with applications to aeropropulsion systems Xiaofeng Sun, Xiaoyu Wang |
title_full_unstemmed | Fundamentals of aeroacoustics with applications to aeropropulsion systems Xiaofeng Sun, Xiaoyu Wang |
title_short | Fundamentals of aeroacoustics with applications to aeropropulsion systems |
title_sort | fundamentals of aeroacoustics with applications to aeropropulsion systems |
topic | Aerodynamic noise |
topic_facet | Aerodynamic noise |
url | https://doi.org/10.1016/C2012-0-02671-3 |
work_keys_str_mv | AT sunxiaofeng fundamentalsofaeroacousticswithapplicationstoaeropropulsionsystems AT wangxiaoyu fundamentalsofaeroacousticswithapplicationstoaeropropulsionsystems |