Microalgae: cultivation, recovery of compounds and applications
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London, United Kingdom ; San Diego, CA, United States ; Cambdige, MA, United States ; Kidlington, Oxford, United Kingdom
Academic Press, an imprint of Elsevier
[2021]
|
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xi, 441 Seiten) Illustrationen |
ISBN: | 9780128232149 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442055 | ||
003 | DE-604 | ||
005 | 20240216 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 |||| o||u| ||||||eng d | ||
020 | |a 9780128232149 |9 978-0-12-823214-9 | ||
035 | |a (ZDB-30-PQE)EBC6367867 | ||
035 | |a (ZDB-30-PAD)EBC6367867 | ||
035 | |a (ZDB-89-EBL)EBL6367867 | ||
035 | |a (OCoLC)1202462060 | ||
035 | |a (DE-599)BVBBV047442055 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 579.8 | |
084 | |a BIO 250 |2 stub | ||
084 | |a BIO 507 |2 stub | ||
245 | 1 | 0 | |a Microalgae |b cultivation, recovery of compounds and applications |c edited by Charis M. Galanakis |
264 | 1 | |a London, United Kingdom ; San Diego, CA, United States ; Cambdige, MA, United States ; Kidlington, Oxford, United Kingdom |b Academic Press, an imprint of Elsevier |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (xi, 441 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Microalgae: Cultivation, Recovery of Compounds and Applications -- Copyright -- Contents -- Contributors -- Chapter 1: Cultivation techniques -- 1. Introduction -- 1.1. The history of microalgae cultivation system -- 2. Laboratory cultivation techniques -- 3. Pilot cultivation techniques -- 3.1. Photobioreactors -- 3.1.1. Tubular photobioreactors -- 3.1.2. Flat-plate photobioreactors -- 3.1.3. Different designs of photobioreactors -- 3.1.4. Comparison of photobioreactors -- 3.2. Open ponds -- 3.2.1. Raceway ponds -- 3.2.2. Circular pond -- 3.2.3. Different designs of open systems -- 3.2.4. Comparison of open systems -- 3.3. Hybrid system -- 4. Industrial cultivation techniques -- 5. Dark fermentation-Fermenters -- 5.1. Heterotrophic microalgae strains -- 5.2. Heterotrophic cultivation -- 5.3. Fermenters -- 5.4. Heterotrophic cultivation costs -- 6. Lowering cultivation costs -- 6.1. Cultivation in wastewater -- 6.2. Cultivation for high-value products -- 7. Conclusions -- Statement -- References -- Chapter 2: Photobioreactor design for microalgae culture -- 1. Introduction -- 2. System hydrodynamics -- 2.1. Superficial liquid velocity and superficial gas velocity -- 2.2. Gas holdup -- 2.3. Flow regime -- 2.4. Mixing -- 2.5. Mass transfer -- 3. Parameters of environmental conditions in photobioreactors -- 3.1. Light -- 3.2. Temperature -- 3.3. pH -- 4. Measuring the photobioreactors performance -- 5. Bottlenecks to achieve expansion of photobioreactors -- 5.1. Power consumption -- 5.2. Material quality and investment cost -- 5.3. Scale-up -- 6. Advances in the design of photobioreactors -- 7. Conclusions -- Declaration of competing interest -- References -- Chapter 3: Transport phenomena models affecting microalgae growth -- 1. Introduction -- 2. Most important factors for the growth of a microalgae -- 2.1. Type of reactor | |
505 | 8 | |a 2.1.1. Open photobioreactors -- 2.1.2. Closed photobioreactors -- 2.2. Temperature -- 2.3. pH -- 2.4. Available nutrients -- 2.5. Light intensity -- 3. Irradiation models -- 3.1. Beer-Lambert law -- 3.2. Two-flux approximation -- 3.3. Radiative transfer equation (RTE) -- 3.3.1. Phase function: Meaning and numerical approximation -- 4. Growth models in microalgae -- 4.1. Important equations of biomass growth -- 4.1.1. Aiba model -- 4.1.2. Steele model -- 5. Momentum transfer models -- 5.1. Three phase model -- 5.2. Models applied in photobioreactors -- 6. Effect of shear stress on the growth of microalgae -- 7. Gas exchange and temperature effect -- 8. Energy consumption of a cultivation system -- 9. Conclusion -- References -- Chapter 4: Edible bio-oil production from microalgae and application of nano-technology -- 1. Introduction -- 2. Suitable microalgae candidates for edible bio-oil and nanotechnology application for higher growth of microalgal species -- 3. Microalgae pretreatment -- 3.1. Cell disruption methods of microalgae -- 3.1.1. Bead beating -- 3.1.2. High-pressure homogenization -- 3.1.3. Pressing -- 3.1.4. Microwave method -- 3.1.5. Chemical method -- 3.1.6. Enzymatic disruption -- 3.1.7. Ultrasonication -- 3.2. Selection of cell disruption methods -- 4. Methods of lipid extraction for edible bio-oil production -- 4.1. Supercritical fluid extraction -- 4.2. Solvent extraction method -- 4.2.1. Soxhlet extraction -- 4.2.2. Bligh and Dyer's method -- 4.3. Solvent-free extraction -- 5. Conversion processes of bio-oil from microalgae -- 5.1. Hydrothermal liquefaction -- 5.2. Slow and fast pyrolysis -- 5.3. Hydrothermal decarboxylation, hydrogenation, and others -- 6. Bio-oil recovery, distillation, and purification -- 6.1. Supercritical fluid separation -- 6.2. Liquid-liquid extraction -- 6.3. Membrane extraction -- 6.4. Precipitation | |
505 | 8 | |a 7. Integrated approaches -- 8. Environmental and socioeconomic impacts -- 9. Conclusions -- References -- Chapter 5: Catalytic conversion of microalgae oil to green hydrocarbon -- 1. Introduction -- 1.1. Background -- 1.1.1. Advantages and disadvantages -- 1.2. Catalyst and catalysis -- 1.2.1. Types of catalysts -- 1.3. Catalytic deoxygenation -- 1.3.1. Introduction -- 1.3.2. Reaction pathway -- 2. Catalytic deoxygenation of microalgae oil, DO -- 2.1. Hydrodeoxygenation process -- 2.2. Decarboxylation and decarbonylation process -- 2.3. Deactivation of catalyst -- 3. Conclusion and future prospect -- Acknowledgment -- References -- Chapter 6: Biofuel production -- 1. General introduction -- 2. Main biofuels produced from microalgae -- 2.1. Biodiesel -- 2.1.1. Production methods -- 2.1.2. Relevant characteristics -- Biodiesel FAME profile -- Biodiesel properties -- 2.2. Bioethanol -- 2.2.1. Production methods -- Cell disruption -- Saccharification processes -- Fermentation -- 2.2.2. Relevant characteristics -- 2.3. Biohydrogen -- 2.3.1. Production methods -- 2.3.2. Relevant characteristics -- 3. Other biofuels -- 3.1. Bio-oil -- 3.2. Flue gas -- 3.3. Biomethane -- 3.4. Bioelectricity -- 3.5. Biochar -- 3.6. Biogas -- 4. Influence of cultivation conditions -- 4.1. Algae metabolism -- 4.2. Algal cultivation systems -- 5. Commercial application of these technologies -- 6. Perspectives -- References -- Chapter 7: Emerging technologies for the clean recovery of antioxidants from microalgae -- 1. Introduction -- 2. Extraction technologies for antioxidant compounds -- 2.1. Conventional solvent extraction methods -- 3. Nonconventional extraction of bioactive compounds -- 3.1. Electrotechnologies -- 3.1.1. Pulsed electric field (PEF)-assisted extraction -- 3.1.2. Moderate electric field (MEF)-assisted extraction | |
505 | 8 | |a 3.1.3. High voltage electric discharges (HVED)-assisted extraction -- 3.2. Pressurized liquid extraction (PLE) -- 3.3. Supercritical fluid extraction (SFE) -- 3.4. Microwave-assisted extraction -- 3.5. Ultrasound-assisted extraction (UAE) -- 3.6. Cell disruption by high-pressure homogenization (HPH) -- 4. Conclusions and future perspectives -- References -- Chapter 8: Food applications -- 1. Introduction -- 2. Composition of microalgae -- 3. Extraction of microalgal high-value compounds for food applications -- 3.1. Microalgal carbohydrates -- 3.2. Microalgal lipids -- 3.3. Microalgal proteins and peptides -- 3.4. Microalgal pigments and carotenoids -- 4. The current market of microalgae and microalgal products -- 5. Legislation concerning microalgae as food -- 6. Future market and challenges of the use of microalgae as food -- Acknowledgments -- References -- Chapter 9: Microalgae as feed ingredients for livestock production and aquaculture -- 1. Introduction -- 2. Microalgae in ruminants -- 2.1. Feed intake -- 2.2. Rumen fermentation -- 2.3. Milk production and composition -- 2.4. Meat production and composition -- 3. Microalgae in swine -- 3.1. Piglets -- 3.2. Growing and finishing pigs -- 3.3. Sows and boars -- 4. Microalgae in poultry -- 4.1. Meat production -- 4.2. Egg production -- 5. Microalgae in rabbit -- 6. Microalgae in diets for relevant species for aquaculture -- 6.1. Microdiets for larvae -- 6.2. Feeds for juvenile -- 7. Conclusion and perspectives -- Acknowledgments -- References -- Chapter 10: Cosmetics applications -- 1. Introduction -- 2. The necessity of products environmentally sustainable in cosmetics -- 3. Skin structure -- 4. Property of algae in skincare products -- 4.1. Microalgae -- 4.2. Macroalgae -- 4.2.1. Chlorophyta (green algae) -- 4.2.2. Phaeophyta (brown seaweed) -- 4.2.3. Rhodophyta (red seaweed) | |
505 | 8 | |a 4.3. Cyanobacteria -- 5. Natural dyes -- 6. Moisturizer agents -- 7. Antiaging agents -- 8. Anticellulite agents -- 9. Sunscreen/UV filter compounds -- 9.1. Carotenoids -- 9.2. Mycosporine-like amino acids -- 9.3. Scytonemin -- 10. Skin-whitening agents -- 11. Haircare products: The benefits of algae -- 12. Formulation adjuvants -- 12.1. Thickening agents -- 12.2. Surfactants -- 12.3. Preservatives -- 13. Conclusions and perspectives -- References -- Chapter 11: Microalgal applications toward agricultural sustainability: Recent trends and future prospects -- 1. Introduction -- 2. Biofertilizers -- 2.1. Enhancing soil fertility -- 2.2. Nitrogen uptake by microalgae -- 2.3. Maintenance of soil structure and quality by microalgae -- 2.4. Stabilization of soil aggregates -- 2.5. Nutrient recycling in soil -- 2.5.1. Biomineralization by organic acids -- 2.5.2. Biomineralization by siderophores -- 3. Plant biostimulants -- 3.1. Types of plant biostimulants -- 3.1.1. Microbial PBs -- 3.1.2. Humic substances -- 3.1.3. Protein hydrolysates -- 3.1.4. Algal extracts -- 3.2. Cell lysis and extraction methods -- 3.3. Mode of application -- 3.4. Composition and mode of action -- 3.5. Application of microalgal PBs for crop yield improvement -- 4. Biopesticides -- 4.1. Microalgae as a sustainable source of biopesticides -- 4.2. Microalgae against plant pathogenic bacteria, fungi, and nematodes -- 4.3. Smart agriculture using algal nanoparticles for pest control -- 5. Symbiotic interaction of microalgae with higher plants -- 5.1. Cyanobacteria symbiotic relationship with higher plants -- 5.2. Artificial symbiosis ''Nature identical symbiosis ́́for crop improvement -- 6. Microalgae in bioremediation and reclamation of degraded land -- 6.1. Use of Algae as soil conditioners -- 6.2. Microalgae as bioremediating agents | |
505 | 8 | |a 6.2.1. Reclamation of heavy metals contaminated sites | |
650 | 4 | |a Microalgae-Biotechnology | |
700 | 1 | |a Galanakis, Charis M. |0 (DE-588)1156205204 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a Galanakis, Charis M. |t Microalgae |d San Diego : Elsevier Science & Technology,c2020 |n Druck-Ausgabe |z 978-0-12-821218-9 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032844207 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6367867 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734684291072 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Galanakis, Charis M. |
author2_role | edt |
author2_variant | c m g cm cmg |
author_GND | (DE-588)1156205204 |
author_facet | Galanakis, Charis M. |
building | Verbundindex |
bvnumber | BV047442055 |
classification_tum | BIO 250 BIO 507 |
collection | ZDB-30-PQE |
contents | Intro -- Microalgae: Cultivation, Recovery of Compounds and Applications -- Copyright -- Contents -- Contributors -- Chapter 1: Cultivation techniques -- 1. Introduction -- 1.1. The history of microalgae cultivation system -- 2. Laboratory cultivation techniques -- 3. Pilot cultivation techniques -- 3.1. Photobioreactors -- 3.1.1. Tubular photobioreactors -- 3.1.2. Flat-plate photobioreactors -- 3.1.3. Different designs of photobioreactors -- 3.1.4. Comparison of photobioreactors -- 3.2. Open ponds -- 3.2.1. Raceway ponds -- 3.2.2. Circular pond -- 3.2.3. Different designs of open systems -- 3.2.4. Comparison of open systems -- 3.3. Hybrid system -- 4. Industrial cultivation techniques -- 5. Dark fermentation-Fermenters -- 5.1. Heterotrophic microalgae strains -- 5.2. Heterotrophic cultivation -- 5.3. Fermenters -- 5.4. Heterotrophic cultivation costs -- 6. Lowering cultivation costs -- 6.1. Cultivation in wastewater -- 6.2. Cultivation for high-value products -- 7. Conclusions -- Statement -- References -- Chapter 2: Photobioreactor design for microalgae culture -- 1. Introduction -- 2. System hydrodynamics -- 2.1. Superficial liquid velocity and superficial gas velocity -- 2.2. Gas holdup -- 2.3. Flow regime -- 2.4. Mixing -- 2.5. Mass transfer -- 3. Parameters of environmental conditions in photobioreactors -- 3.1. Light -- 3.2. Temperature -- 3.3. pH -- 4. Measuring the photobioreactors performance -- 5. Bottlenecks to achieve expansion of photobioreactors -- 5.1. Power consumption -- 5.2. Material quality and investment cost -- 5.3. Scale-up -- 6. Advances in the design of photobioreactors -- 7. Conclusions -- Declaration of competing interest -- References -- Chapter 3: Transport phenomena models affecting microalgae growth -- 1. Introduction -- 2. Most important factors for the growth of a microalgae -- 2.1. Type of reactor 2.1.1. Open photobioreactors -- 2.1.2. Closed photobioreactors -- 2.2. Temperature -- 2.3. pH -- 2.4. Available nutrients -- 2.5. Light intensity -- 3. Irradiation models -- 3.1. Beer-Lambert law -- 3.2. Two-flux approximation -- 3.3. Radiative transfer equation (RTE) -- 3.3.1. Phase function: Meaning and numerical approximation -- 4. Growth models in microalgae -- 4.1. Important equations of biomass growth -- 4.1.1. Aiba model -- 4.1.2. Steele model -- 5. Momentum transfer models -- 5.1. Three phase model -- 5.2. Models applied in photobioreactors -- 6. Effect of shear stress on the growth of microalgae -- 7. Gas exchange and temperature effect -- 8. Energy consumption of a cultivation system -- 9. Conclusion -- References -- Chapter 4: Edible bio-oil production from microalgae and application of nano-technology -- 1. Introduction -- 2. Suitable microalgae candidates for edible bio-oil and nanotechnology application for higher growth of microalgal species -- 3. Microalgae pretreatment -- 3.1. Cell disruption methods of microalgae -- 3.1.1. Bead beating -- 3.1.2. High-pressure homogenization -- 3.1.3. Pressing -- 3.1.4. Microwave method -- 3.1.5. Chemical method -- 3.1.6. Enzymatic disruption -- 3.1.7. Ultrasonication -- 3.2. Selection of cell disruption methods -- 4. Methods of lipid extraction for edible bio-oil production -- 4.1. Supercritical fluid extraction -- 4.2. Solvent extraction method -- 4.2.1. Soxhlet extraction -- 4.2.2. Bligh and Dyer's method -- 4.3. Solvent-free extraction -- 5. Conversion processes of bio-oil from microalgae -- 5.1. Hydrothermal liquefaction -- 5.2. Slow and fast pyrolysis -- 5.3. Hydrothermal decarboxylation, hydrogenation, and others -- 6. Bio-oil recovery, distillation, and purification -- 6.1. Supercritical fluid separation -- 6.2. Liquid-liquid extraction -- 6.3. Membrane extraction -- 6.4. Precipitation 7. Integrated approaches -- 8. Environmental and socioeconomic impacts -- 9. Conclusions -- References -- Chapter 5: Catalytic conversion of microalgae oil to green hydrocarbon -- 1. Introduction -- 1.1. Background -- 1.1.1. Advantages and disadvantages -- 1.2. Catalyst and catalysis -- 1.2.1. Types of catalysts -- 1.3. Catalytic deoxygenation -- 1.3.1. Introduction -- 1.3.2. Reaction pathway -- 2. Catalytic deoxygenation of microalgae oil, DO -- 2.1. Hydrodeoxygenation process -- 2.2. Decarboxylation and decarbonylation process -- 2.3. Deactivation of catalyst -- 3. Conclusion and future prospect -- Acknowledgment -- References -- Chapter 6: Biofuel production -- 1. General introduction -- 2. Main biofuels produced from microalgae -- 2.1. Biodiesel -- 2.1.1. Production methods -- 2.1.2. Relevant characteristics -- Biodiesel FAME profile -- Biodiesel properties -- 2.2. Bioethanol -- 2.2.1. Production methods -- Cell disruption -- Saccharification processes -- Fermentation -- 2.2.2. Relevant characteristics -- 2.3. Biohydrogen -- 2.3.1. Production methods -- 2.3.2. Relevant characteristics -- 3. Other biofuels -- 3.1. Bio-oil -- 3.2. Flue gas -- 3.3. Biomethane -- 3.4. Bioelectricity -- 3.5. Biochar -- 3.6. Biogas -- 4. Influence of cultivation conditions -- 4.1. Algae metabolism -- 4.2. Algal cultivation systems -- 5. Commercial application of these technologies -- 6. Perspectives -- References -- Chapter 7: Emerging technologies for the clean recovery of antioxidants from microalgae -- 1. Introduction -- 2. Extraction technologies for antioxidant compounds -- 2.1. Conventional solvent extraction methods -- 3. Nonconventional extraction of bioactive compounds -- 3.1. Electrotechnologies -- 3.1.1. Pulsed electric field (PEF)-assisted extraction -- 3.1.2. Moderate electric field (MEF)-assisted extraction 3.1.3. High voltage electric discharges (HVED)-assisted extraction -- 3.2. Pressurized liquid extraction (PLE) -- 3.3. Supercritical fluid extraction (SFE) -- 3.4. Microwave-assisted extraction -- 3.5. Ultrasound-assisted extraction (UAE) -- 3.6. Cell disruption by high-pressure homogenization (HPH) -- 4. Conclusions and future perspectives -- References -- Chapter 8: Food applications -- 1. Introduction -- 2. Composition of microalgae -- 3. Extraction of microalgal high-value compounds for food applications -- 3.1. Microalgal carbohydrates -- 3.2. Microalgal lipids -- 3.3. Microalgal proteins and peptides -- 3.4. Microalgal pigments and carotenoids -- 4. The current market of microalgae and microalgal products -- 5. Legislation concerning microalgae as food -- 6. Future market and challenges of the use of microalgae as food -- Acknowledgments -- References -- Chapter 9: Microalgae as feed ingredients for livestock production and aquaculture -- 1. Introduction -- 2. Microalgae in ruminants -- 2.1. Feed intake -- 2.2. Rumen fermentation -- 2.3. Milk production and composition -- 2.4. Meat production and composition -- 3. Microalgae in swine -- 3.1. Piglets -- 3.2. Growing and finishing pigs -- 3.3. Sows and boars -- 4. Microalgae in poultry -- 4.1. Meat production -- 4.2. Egg production -- 5. Microalgae in rabbit -- 6. Microalgae in diets for relevant species for aquaculture -- 6.1. Microdiets for larvae -- 6.2. Feeds for juvenile -- 7. Conclusion and perspectives -- Acknowledgments -- References -- Chapter 10: Cosmetics applications -- 1. Introduction -- 2. The necessity of products environmentally sustainable in cosmetics -- 3. Skin structure -- 4. Property of algae in skincare products -- 4.1. Microalgae -- 4.2. Macroalgae -- 4.2.1. Chlorophyta (green algae) -- 4.2.2. Phaeophyta (brown seaweed) -- 4.2.3. Rhodophyta (red seaweed) 4.3. Cyanobacteria -- 5. Natural dyes -- 6. Moisturizer agents -- 7. Antiaging agents -- 8. Anticellulite agents -- 9. Sunscreen/UV filter compounds -- 9.1. Carotenoids -- 9.2. Mycosporine-like amino acids -- 9.3. Scytonemin -- 10. Skin-whitening agents -- 11. Haircare products: The benefits of algae -- 12. Formulation adjuvants -- 12.1. Thickening agents -- 12.2. Surfactants -- 12.3. Preservatives -- 13. Conclusions and perspectives -- References -- Chapter 11: Microalgal applications toward agricultural sustainability: Recent trends and future prospects -- 1. Introduction -- 2. Biofertilizers -- 2.1. Enhancing soil fertility -- 2.2. Nitrogen uptake by microalgae -- 2.3. Maintenance of soil structure and quality by microalgae -- 2.4. Stabilization of soil aggregates -- 2.5. Nutrient recycling in soil -- 2.5.1. Biomineralization by organic acids -- 2.5.2. Biomineralization by siderophores -- 3. Plant biostimulants -- 3.1. Types of plant biostimulants -- 3.1.1. Microbial PBs -- 3.1.2. Humic substances -- 3.1.3. Protein hydrolysates -- 3.1.4. Algal extracts -- 3.2. Cell lysis and extraction methods -- 3.3. Mode of application -- 3.4. Composition and mode of action -- 3.5. Application of microalgal PBs for crop yield improvement -- 4. Biopesticides -- 4.1. Microalgae as a sustainable source of biopesticides -- 4.2. Microalgae against plant pathogenic bacteria, fungi, and nematodes -- 4.3. Smart agriculture using algal nanoparticles for pest control -- 5. Symbiotic interaction of microalgae with higher plants -- 5.1. Cyanobacteria symbiotic relationship with higher plants -- 5.2. Artificial symbiosis ''Nature identical symbiosis ́́for crop improvement -- 6. Microalgae in bioremediation and reclamation of degraded land -- 6.1. Use of Algae as soil conditioners -- 6.2. Microalgae as bioremediating agents 6.2.1. Reclamation of heavy metals contaminated sites |
ctrlnum | (ZDB-30-PQE)EBC6367867 (ZDB-30-PAD)EBC6367867 (ZDB-89-EBL)EBL6367867 (OCoLC)1202462060 (DE-599)BVBBV047442055 |
dewey-full | 579.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 579 - Microorganisms, fungi & algae |
dewey-raw | 579.8 |
dewey-search | 579.8 |
dewey-sort | 3579.8 |
dewey-tens | 570 - Biology |
discipline | Biologie |
discipline_str_mv | Biologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11042nmm a2200469zc 4500</leader><controlfield tag="001">BV047442055</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240216 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128232149</subfield><subfield code="9">978-0-12-823214-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6367867</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6367867</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6367867</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1202462060</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442055</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">579.8</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 250</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 507</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microalgae</subfield><subfield code="b">cultivation, recovery of compounds and applications</subfield><subfield code="c">edited by Charis M. Galanakis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London, United Kingdom ; San Diego, CA, United States ; Cambdige, MA, United States ; Kidlington, Oxford, United Kingdom</subfield><subfield code="b">Academic Press, an imprint of Elsevier</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 441 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Microalgae: Cultivation, Recovery of Compounds and Applications -- Copyright -- Contents -- Contributors -- Chapter 1: Cultivation techniques -- 1. Introduction -- 1.1. The history of microalgae cultivation system -- 2. Laboratory cultivation techniques -- 3. Pilot cultivation techniques -- 3.1. Photobioreactors -- 3.1.1. Tubular photobioreactors -- 3.1.2. Flat-plate photobioreactors -- 3.1.3. Different designs of photobioreactors -- 3.1.4. Comparison of photobioreactors -- 3.2. Open ponds -- 3.2.1. Raceway ponds -- 3.2.2. Circular pond -- 3.2.3. Different designs of open systems -- 3.2.4. Comparison of open systems -- 3.3. Hybrid system -- 4. Industrial cultivation techniques -- 5. Dark fermentation-Fermenters -- 5.1. Heterotrophic microalgae strains -- 5.2. Heterotrophic cultivation -- 5.3. Fermenters -- 5.4. Heterotrophic cultivation costs -- 6. Lowering cultivation costs -- 6.1. Cultivation in wastewater -- 6.2. Cultivation for high-value products -- 7. Conclusions -- Statement -- References -- Chapter 2: Photobioreactor design for microalgae culture -- 1. Introduction -- 2. System hydrodynamics -- 2.1. Superficial liquid velocity and superficial gas velocity -- 2.2. Gas holdup -- 2.3. Flow regime -- 2.4. Mixing -- 2.5. Mass transfer -- 3. Parameters of environmental conditions in photobioreactors -- 3.1. Light -- 3.2. Temperature -- 3.3. pH -- 4. Measuring the photobioreactors performance -- 5. Bottlenecks to achieve expansion of photobioreactors -- 5.1. Power consumption -- 5.2. Material quality and investment cost -- 5.3. Scale-up -- 6. Advances in the design of photobioreactors -- 7. Conclusions -- Declaration of competing interest -- References -- Chapter 3: Transport phenomena models affecting microalgae growth -- 1. Introduction -- 2. Most important factors for the growth of a microalgae -- 2.1. Type of reactor</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.1.1. Open photobioreactors -- 2.1.2. Closed photobioreactors -- 2.2. Temperature -- 2.3. pH -- 2.4. Available nutrients -- 2.5. Light intensity -- 3. Irradiation models -- 3.1. Beer-Lambert law -- 3.2. Two-flux approximation -- 3.3. Radiative transfer equation (RTE) -- 3.3.1. Phase function: Meaning and numerical approximation -- 4. Growth models in microalgae -- 4.1. Important equations of biomass growth -- 4.1.1. Aiba model -- 4.1.2. Steele model -- 5. Momentum transfer models -- 5.1. Three phase model -- 5.2. Models applied in photobioreactors -- 6. Effect of shear stress on the growth of microalgae -- 7. Gas exchange and temperature effect -- 8. Energy consumption of a cultivation system -- 9. Conclusion -- References -- Chapter 4: Edible bio-oil production from microalgae and application of nano-technology -- 1. Introduction -- 2. Suitable microalgae candidates for edible bio-oil and nanotechnology application for higher growth of microalgal species -- 3. Microalgae pretreatment -- 3.1. Cell disruption methods of microalgae -- 3.1.1. Bead beating -- 3.1.2. High-pressure homogenization -- 3.1.3. Pressing -- 3.1.4. Microwave method -- 3.1.5. Chemical method -- 3.1.6. Enzymatic disruption -- 3.1.7. Ultrasonication -- 3.2. Selection of cell disruption methods -- 4. Methods of lipid extraction for edible bio-oil production -- 4.1. Supercritical fluid extraction -- 4.2. Solvent extraction method -- 4.2.1. Soxhlet extraction -- 4.2.2. Bligh and Dyer's method -- 4.3. Solvent-free extraction -- 5. Conversion processes of bio-oil from microalgae -- 5.1. Hydrothermal liquefaction -- 5.2. Slow and fast pyrolysis -- 5.3. Hydrothermal decarboxylation, hydrogenation, and others -- 6. Bio-oil recovery, distillation, and purification -- 6.1. Supercritical fluid separation -- 6.2. Liquid-liquid extraction -- 6.3. Membrane extraction -- 6.4. Precipitation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7. Integrated approaches -- 8. Environmental and socioeconomic impacts -- 9. Conclusions -- References -- Chapter 5: Catalytic conversion of microalgae oil to green hydrocarbon -- 1. Introduction -- 1.1. Background -- 1.1.1. Advantages and disadvantages -- 1.2. Catalyst and catalysis -- 1.2.1. Types of catalysts -- 1.3. Catalytic deoxygenation -- 1.3.1. Introduction -- 1.3.2. Reaction pathway -- 2. Catalytic deoxygenation of microalgae oil, DO -- 2.1. Hydrodeoxygenation process -- 2.2. Decarboxylation and decarbonylation process -- 2.3. Deactivation of catalyst -- 3. Conclusion and future prospect -- Acknowledgment -- References -- Chapter 6: Biofuel production -- 1. General introduction -- 2. Main biofuels produced from microalgae -- 2.1. Biodiesel -- 2.1.1. Production methods -- 2.1.2. Relevant characteristics -- Biodiesel FAME profile -- Biodiesel properties -- 2.2. Bioethanol -- 2.2.1. Production methods -- Cell disruption -- Saccharification processes -- Fermentation -- 2.2.2. Relevant characteristics -- 2.3. Biohydrogen -- 2.3.1. Production methods -- 2.3.2. Relevant characteristics -- 3. Other biofuels -- 3.1. Bio-oil -- 3.2. Flue gas -- 3.3. Biomethane -- 3.4. Bioelectricity -- 3.5. Biochar -- 3.6. Biogas -- 4. Influence of cultivation conditions -- 4.1. Algae metabolism -- 4.2. Algal cultivation systems -- 5. Commercial application of these technologies -- 6. Perspectives -- References -- Chapter 7: Emerging technologies for the clean recovery of antioxidants from microalgae -- 1. Introduction -- 2. Extraction technologies for antioxidant compounds -- 2.1. Conventional solvent extraction methods -- 3. Nonconventional extraction of bioactive compounds -- 3.1. Electrotechnologies -- 3.1.1. Pulsed electric field (PEF)-assisted extraction -- 3.1.2. Moderate electric field (MEF)-assisted extraction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.1.3. High voltage electric discharges (HVED)-assisted extraction -- 3.2. Pressurized liquid extraction (PLE) -- 3.3. Supercritical fluid extraction (SFE) -- 3.4. Microwave-assisted extraction -- 3.5. Ultrasound-assisted extraction (UAE) -- 3.6. Cell disruption by high-pressure homogenization (HPH) -- 4. Conclusions and future perspectives -- References -- Chapter 8: Food applications -- 1. Introduction -- 2. Composition of microalgae -- 3. Extraction of microalgal high-value compounds for food applications -- 3.1. Microalgal carbohydrates -- 3.2. Microalgal lipids -- 3.3. Microalgal proteins and peptides -- 3.4. Microalgal pigments and carotenoids -- 4. The current market of microalgae and microalgal products -- 5. Legislation concerning microalgae as food -- 6. Future market and challenges of the use of microalgae as food -- Acknowledgments -- References -- Chapter 9: Microalgae as feed ingredients for livestock production and aquaculture -- 1. Introduction -- 2. Microalgae in ruminants -- 2.1. Feed intake -- 2.2. Rumen fermentation -- 2.3. Milk production and composition -- 2.4. Meat production and composition -- 3. Microalgae in swine -- 3.1. Piglets -- 3.2. Growing and finishing pigs -- 3.3. Sows and boars -- 4. Microalgae in poultry -- 4.1. Meat production -- 4.2. Egg production -- 5. Microalgae in rabbit -- 6. Microalgae in diets for relevant species for aquaculture -- 6.1. Microdiets for larvae -- 6.2. Feeds for juvenile -- 7. Conclusion and perspectives -- Acknowledgments -- References -- Chapter 10: Cosmetics applications -- 1. Introduction -- 2. The necessity of products environmentally sustainable in cosmetics -- 3. Skin structure -- 4. Property of algae in skincare products -- 4.1. Microalgae -- 4.2. Macroalgae -- 4.2.1. Chlorophyta (green algae) -- 4.2.2. Phaeophyta (brown seaweed) -- 4.2.3. Rhodophyta (red seaweed)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3. Cyanobacteria -- 5. Natural dyes -- 6. Moisturizer agents -- 7. Antiaging agents -- 8. Anticellulite agents -- 9. Sunscreen/UV filter compounds -- 9.1. Carotenoids -- 9.2. Mycosporine-like amino acids -- 9.3. Scytonemin -- 10. Skin-whitening agents -- 11. Haircare products: The benefits of algae -- 12. Formulation adjuvants -- 12.1. Thickening agents -- 12.2. Surfactants -- 12.3. Preservatives -- 13. Conclusions and perspectives -- References -- Chapter 11: Microalgal applications toward agricultural sustainability: Recent trends and future prospects -- 1. Introduction -- 2. Biofertilizers -- 2.1. Enhancing soil fertility -- 2.2. Nitrogen uptake by microalgae -- 2.3. Maintenance of soil structure and quality by microalgae -- 2.4. Stabilization of soil aggregates -- 2.5. Nutrient recycling in soil -- 2.5.1. Biomineralization by organic acids -- 2.5.2. Biomineralization by siderophores -- 3. Plant biostimulants -- 3.1. Types of plant biostimulants -- 3.1.1. Microbial PBs -- 3.1.2. Humic substances -- 3.1.3. Protein hydrolysates -- 3.1.4. Algal extracts -- 3.2. Cell lysis and extraction methods -- 3.3. Mode of application -- 3.4. Composition and mode of action -- 3.5. Application of microalgal PBs for crop yield improvement -- 4. Biopesticides -- 4.1. Microalgae as a sustainable source of biopesticides -- 4.2. Microalgae against plant pathogenic bacteria, fungi, and nematodes -- 4.3. Smart agriculture using algal nanoparticles for pest control -- 5. Symbiotic interaction of microalgae with higher plants -- 5.1. Cyanobacteria symbiotic relationship with higher plants -- 5.2. Artificial symbiosis ''Nature identical symbiosis ́́for crop improvement -- 6. Microalgae in bioremediation and reclamation of degraded land -- 6.1. Use of Algae as soil conditioners -- 6.2. Microalgae as bioremediating agents</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2.1. Reclamation of heavy metals contaminated sites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microalgae-Biotechnology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Galanakis, Charis M.</subfield><subfield code="0">(DE-588)1156205204</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Galanakis, Charis M.</subfield><subfield code="t">Microalgae</subfield><subfield code="d">San Diego : Elsevier Science & Technology,c2020</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-12-821218-9</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844207</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6367867</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047442055 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:24Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9780128232149 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844207 |
oclc_num | 1202462060 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xi, 441 Seiten) Illustrationen |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Academic Press, an imprint of Elsevier |
record_format | marc |
spelling | Microalgae cultivation, recovery of compounds and applications edited by Charis M. Galanakis London, United Kingdom ; San Diego, CA, United States ; Cambdige, MA, United States ; Kidlington, Oxford, United Kingdom Academic Press, an imprint of Elsevier [2021] © 2021 1 Online-Ressource (xi, 441 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Intro -- Microalgae: Cultivation, Recovery of Compounds and Applications -- Copyright -- Contents -- Contributors -- Chapter 1: Cultivation techniques -- 1. Introduction -- 1.1. The history of microalgae cultivation system -- 2. Laboratory cultivation techniques -- 3. Pilot cultivation techniques -- 3.1. Photobioreactors -- 3.1.1. Tubular photobioreactors -- 3.1.2. Flat-plate photobioreactors -- 3.1.3. Different designs of photobioreactors -- 3.1.4. Comparison of photobioreactors -- 3.2. Open ponds -- 3.2.1. Raceway ponds -- 3.2.2. Circular pond -- 3.2.3. Different designs of open systems -- 3.2.4. Comparison of open systems -- 3.3. Hybrid system -- 4. Industrial cultivation techniques -- 5. Dark fermentation-Fermenters -- 5.1. Heterotrophic microalgae strains -- 5.2. Heterotrophic cultivation -- 5.3. Fermenters -- 5.4. Heterotrophic cultivation costs -- 6. Lowering cultivation costs -- 6.1. Cultivation in wastewater -- 6.2. Cultivation for high-value products -- 7. Conclusions -- Statement -- References -- Chapter 2: Photobioreactor design for microalgae culture -- 1. Introduction -- 2. System hydrodynamics -- 2.1. Superficial liquid velocity and superficial gas velocity -- 2.2. Gas holdup -- 2.3. Flow regime -- 2.4. Mixing -- 2.5. Mass transfer -- 3. Parameters of environmental conditions in photobioreactors -- 3.1. Light -- 3.2. Temperature -- 3.3. pH -- 4. Measuring the photobioreactors performance -- 5. Bottlenecks to achieve expansion of photobioreactors -- 5.1. Power consumption -- 5.2. Material quality and investment cost -- 5.3. Scale-up -- 6. Advances in the design of photobioreactors -- 7. Conclusions -- Declaration of competing interest -- References -- Chapter 3: Transport phenomena models affecting microalgae growth -- 1. Introduction -- 2. Most important factors for the growth of a microalgae -- 2.1. Type of reactor 2.1.1. Open photobioreactors -- 2.1.2. Closed photobioreactors -- 2.2. Temperature -- 2.3. pH -- 2.4. Available nutrients -- 2.5. Light intensity -- 3. Irradiation models -- 3.1. Beer-Lambert law -- 3.2. Two-flux approximation -- 3.3. Radiative transfer equation (RTE) -- 3.3.1. Phase function: Meaning and numerical approximation -- 4. Growth models in microalgae -- 4.1. Important equations of biomass growth -- 4.1.1. Aiba model -- 4.1.2. Steele model -- 5. Momentum transfer models -- 5.1. Three phase model -- 5.2. Models applied in photobioreactors -- 6. Effect of shear stress on the growth of microalgae -- 7. Gas exchange and temperature effect -- 8. Energy consumption of a cultivation system -- 9. Conclusion -- References -- Chapter 4: Edible bio-oil production from microalgae and application of nano-technology -- 1. Introduction -- 2. Suitable microalgae candidates for edible bio-oil and nanotechnology application for higher growth of microalgal species -- 3. Microalgae pretreatment -- 3.1. Cell disruption methods of microalgae -- 3.1.1. Bead beating -- 3.1.2. High-pressure homogenization -- 3.1.3. Pressing -- 3.1.4. Microwave method -- 3.1.5. Chemical method -- 3.1.6. Enzymatic disruption -- 3.1.7. Ultrasonication -- 3.2. Selection of cell disruption methods -- 4. Methods of lipid extraction for edible bio-oil production -- 4.1. Supercritical fluid extraction -- 4.2. Solvent extraction method -- 4.2.1. Soxhlet extraction -- 4.2.2. Bligh and Dyer's method -- 4.3. Solvent-free extraction -- 5. Conversion processes of bio-oil from microalgae -- 5.1. Hydrothermal liquefaction -- 5.2. Slow and fast pyrolysis -- 5.3. Hydrothermal decarboxylation, hydrogenation, and others -- 6. Bio-oil recovery, distillation, and purification -- 6.1. Supercritical fluid separation -- 6.2. Liquid-liquid extraction -- 6.3. Membrane extraction -- 6.4. Precipitation 7. Integrated approaches -- 8. Environmental and socioeconomic impacts -- 9. Conclusions -- References -- Chapter 5: Catalytic conversion of microalgae oil to green hydrocarbon -- 1. Introduction -- 1.1. Background -- 1.1.1. Advantages and disadvantages -- 1.2. Catalyst and catalysis -- 1.2.1. Types of catalysts -- 1.3. Catalytic deoxygenation -- 1.3.1. Introduction -- 1.3.2. Reaction pathway -- 2. Catalytic deoxygenation of microalgae oil, DO -- 2.1. Hydrodeoxygenation process -- 2.2. Decarboxylation and decarbonylation process -- 2.3. Deactivation of catalyst -- 3. Conclusion and future prospect -- Acknowledgment -- References -- Chapter 6: Biofuel production -- 1. General introduction -- 2. Main biofuels produced from microalgae -- 2.1. Biodiesel -- 2.1.1. Production methods -- 2.1.2. Relevant characteristics -- Biodiesel FAME profile -- Biodiesel properties -- 2.2. Bioethanol -- 2.2.1. Production methods -- Cell disruption -- Saccharification processes -- Fermentation -- 2.2.2. Relevant characteristics -- 2.3. Biohydrogen -- 2.3.1. Production methods -- 2.3.2. Relevant characteristics -- 3. Other biofuels -- 3.1. Bio-oil -- 3.2. Flue gas -- 3.3. Biomethane -- 3.4. Bioelectricity -- 3.5. Biochar -- 3.6. Biogas -- 4. Influence of cultivation conditions -- 4.1. Algae metabolism -- 4.2. Algal cultivation systems -- 5. Commercial application of these technologies -- 6. Perspectives -- References -- Chapter 7: Emerging technologies for the clean recovery of antioxidants from microalgae -- 1. Introduction -- 2. Extraction technologies for antioxidant compounds -- 2.1. Conventional solvent extraction methods -- 3. Nonconventional extraction of bioactive compounds -- 3.1. Electrotechnologies -- 3.1.1. Pulsed electric field (PEF)-assisted extraction -- 3.1.2. Moderate electric field (MEF)-assisted extraction 3.1.3. High voltage electric discharges (HVED)-assisted extraction -- 3.2. Pressurized liquid extraction (PLE) -- 3.3. Supercritical fluid extraction (SFE) -- 3.4. Microwave-assisted extraction -- 3.5. Ultrasound-assisted extraction (UAE) -- 3.6. Cell disruption by high-pressure homogenization (HPH) -- 4. Conclusions and future perspectives -- References -- Chapter 8: Food applications -- 1. Introduction -- 2. Composition of microalgae -- 3. Extraction of microalgal high-value compounds for food applications -- 3.1. Microalgal carbohydrates -- 3.2. Microalgal lipids -- 3.3. Microalgal proteins and peptides -- 3.4. Microalgal pigments and carotenoids -- 4. The current market of microalgae and microalgal products -- 5. Legislation concerning microalgae as food -- 6. Future market and challenges of the use of microalgae as food -- Acknowledgments -- References -- Chapter 9: Microalgae as feed ingredients for livestock production and aquaculture -- 1. Introduction -- 2. Microalgae in ruminants -- 2.1. Feed intake -- 2.2. Rumen fermentation -- 2.3. Milk production and composition -- 2.4. Meat production and composition -- 3. Microalgae in swine -- 3.1. Piglets -- 3.2. Growing and finishing pigs -- 3.3. Sows and boars -- 4. Microalgae in poultry -- 4.1. Meat production -- 4.2. Egg production -- 5. Microalgae in rabbit -- 6. Microalgae in diets for relevant species for aquaculture -- 6.1. Microdiets for larvae -- 6.2. Feeds for juvenile -- 7. Conclusion and perspectives -- Acknowledgments -- References -- Chapter 10: Cosmetics applications -- 1. Introduction -- 2. The necessity of products environmentally sustainable in cosmetics -- 3. Skin structure -- 4. Property of algae in skincare products -- 4.1. Microalgae -- 4.2. Macroalgae -- 4.2.1. Chlorophyta (green algae) -- 4.2.2. Phaeophyta (brown seaweed) -- 4.2.3. Rhodophyta (red seaweed) 4.3. Cyanobacteria -- 5. Natural dyes -- 6. Moisturizer agents -- 7. Antiaging agents -- 8. Anticellulite agents -- 9. Sunscreen/UV filter compounds -- 9.1. Carotenoids -- 9.2. Mycosporine-like amino acids -- 9.3. Scytonemin -- 10. Skin-whitening agents -- 11. Haircare products: The benefits of algae -- 12. Formulation adjuvants -- 12.1. Thickening agents -- 12.2. Surfactants -- 12.3. Preservatives -- 13. Conclusions and perspectives -- References -- Chapter 11: Microalgal applications toward agricultural sustainability: Recent trends and future prospects -- 1. Introduction -- 2. Biofertilizers -- 2.1. Enhancing soil fertility -- 2.2. Nitrogen uptake by microalgae -- 2.3. Maintenance of soil structure and quality by microalgae -- 2.4. Stabilization of soil aggregates -- 2.5. Nutrient recycling in soil -- 2.5.1. Biomineralization by organic acids -- 2.5.2. Biomineralization by siderophores -- 3. Plant biostimulants -- 3.1. Types of plant biostimulants -- 3.1.1. Microbial PBs -- 3.1.2. Humic substances -- 3.1.3. Protein hydrolysates -- 3.1.4. Algal extracts -- 3.2. Cell lysis and extraction methods -- 3.3. Mode of application -- 3.4. Composition and mode of action -- 3.5. Application of microalgal PBs for crop yield improvement -- 4. Biopesticides -- 4.1. Microalgae as a sustainable source of biopesticides -- 4.2. Microalgae against plant pathogenic bacteria, fungi, and nematodes -- 4.3. Smart agriculture using algal nanoparticles for pest control -- 5. Symbiotic interaction of microalgae with higher plants -- 5.1. Cyanobacteria symbiotic relationship with higher plants -- 5.2. Artificial symbiosis ''Nature identical symbiosis ́́for crop improvement -- 6. Microalgae in bioremediation and reclamation of degraded land -- 6.1. Use of Algae as soil conditioners -- 6.2. Microalgae as bioremediating agents 6.2.1. Reclamation of heavy metals contaminated sites Microalgae-Biotechnology Galanakis, Charis M. (DE-588)1156205204 edt Erscheint auch als Galanakis, Charis M. Microalgae San Diego : Elsevier Science & Technology,c2020 Druck-Ausgabe 978-0-12-821218-9 |
spellingShingle | Microalgae cultivation, recovery of compounds and applications Intro -- Microalgae: Cultivation, Recovery of Compounds and Applications -- Copyright -- Contents -- Contributors -- Chapter 1: Cultivation techniques -- 1. Introduction -- 1.1. The history of microalgae cultivation system -- 2. Laboratory cultivation techniques -- 3. Pilot cultivation techniques -- 3.1. Photobioreactors -- 3.1.1. Tubular photobioreactors -- 3.1.2. Flat-plate photobioreactors -- 3.1.3. Different designs of photobioreactors -- 3.1.4. Comparison of photobioreactors -- 3.2. Open ponds -- 3.2.1. Raceway ponds -- 3.2.2. Circular pond -- 3.2.3. Different designs of open systems -- 3.2.4. Comparison of open systems -- 3.3. Hybrid system -- 4. Industrial cultivation techniques -- 5. Dark fermentation-Fermenters -- 5.1. Heterotrophic microalgae strains -- 5.2. Heterotrophic cultivation -- 5.3. Fermenters -- 5.4. Heterotrophic cultivation costs -- 6. Lowering cultivation costs -- 6.1. Cultivation in wastewater -- 6.2. Cultivation for high-value products -- 7. Conclusions -- Statement -- References -- Chapter 2: Photobioreactor design for microalgae culture -- 1. Introduction -- 2. System hydrodynamics -- 2.1. Superficial liquid velocity and superficial gas velocity -- 2.2. Gas holdup -- 2.3. Flow regime -- 2.4. Mixing -- 2.5. Mass transfer -- 3. Parameters of environmental conditions in photobioreactors -- 3.1. Light -- 3.2. Temperature -- 3.3. pH -- 4. Measuring the photobioreactors performance -- 5. Bottlenecks to achieve expansion of photobioreactors -- 5.1. Power consumption -- 5.2. Material quality and investment cost -- 5.3. Scale-up -- 6. Advances in the design of photobioreactors -- 7. Conclusions -- Declaration of competing interest -- References -- Chapter 3: Transport phenomena models affecting microalgae growth -- 1. Introduction -- 2. Most important factors for the growth of a microalgae -- 2.1. Type of reactor 2.1.1. Open photobioreactors -- 2.1.2. Closed photobioreactors -- 2.2. Temperature -- 2.3. pH -- 2.4. Available nutrients -- 2.5. Light intensity -- 3. Irradiation models -- 3.1. Beer-Lambert law -- 3.2. Two-flux approximation -- 3.3. Radiative transfer equation (RTE) -- 3.3.1. Phase function: Meaning and numerical approximation -- 4. Growth models in microalgae -- 4.1. Important equations of biomass growth -- 4.1.1. Aiba model -- 4.1.2. Steele model -- 5. Momentum transfer models -- 5.1. Three phase model -- 5.2. Models applied in photobioreactors -- 6. Effect of shear stress on the growth of microalgae -- 7. Gas exchange and temperature effect -- 8. Energy consumption of a cultivation system -- 9. Conclusion -- References -- Chapter 4: Edible bio-oil production from microalgae and application of nano-technology -- 1. Introduction -- 2. Suitable microalgae candidates for edible bio-oil and nanotechnology application for higher growth of microalgal species -- 3. Microalgae pretreatment -- 3.1. Cell disruption methods of microalgae -- 3.1.1. Bead beating -- 3.1.2. High-pressure homogenization -- 3.1.3. Pressing -- 3.1.4. Microwave method -- 3.1.5. Chemical method -- 3.1.6. Enzymatic disruption -- 3.1.7. Ultrasonication -- 3.2. Selection of cell disruption methods -- 4. Methods of lipid extraction for edible bio-oil production -- 4.1. Supercritical fluid extraction -- 4.2. Solvent extraction method -- 4.2.1. Soxhlet extraction -- 4.2.2. Bligh and Dyer's method -- 4.3. Solvent-free extraction -- 5. Conversion processes of bio-oil from microalgae -- 5.1. Hydrothermal liquefaction -- 5.2. Slow and fast pyrolysis -- 5.3. Hydrothermal decarboxylation, hydrogenation, and others -- 6. Bio-oil recovery, distillation, and purification -- 6.1. Supercritical fluid separation -- 6.2. Liquid-liquid extraction -- 6.3. Membrane extraction -- 6.4. Precipitation 7. Integrated approaches -- 8. Environmental and socioeconomic impacts -- 9. Conclusions -- References -- Chapter 5: Catalytic conversion of microalgae oil to green hydrocarbon -- 1. Introduction -- 1.1. Background -- 1.1.1. Advantages and disadvantages -- 1.2. Catalyst and catalysis -- 1.2.1. Types of catalysts -- 1.3. Catalytic deoxygenation -- 1.3.1. Introduction -- 1.3.2. Reaction pathway -- 2. Catalytic deoxygenation of microalgae oil, DO -- 2.1. Hydrodeoxygenation process -- 2.2. Decarboxylation and decarbonylation process -- 2.3. Deactivation of catalyst -- 3. Conclusion and future prospect -- Acknowledgment -- References -- Chapter 6: Biofuel production -- 1. General introduction -- 2. Main biofuels produced from microalgae -- 2.1. Biodiesel -- 2.1.1. Production methods -- 2.1.2. Relevant characteristics -- Biodiesel FAME profile -- Biodiesel properties -- 2.2. Bioethanol -- 2.2.1. Production methods -- Cell disruption -- Saccharification processes -- Fermentation -- 2.2.2. Relevant characteristics -- 2.3. Biohydrogen -- 2.3.1. Production methods -- 2.3.2. Relevant characteristics -- 3. Other biofuels -- 3.1. Bio-oil -- 3.2. Flue gas -- 3.3. Biomethane -- 3.4. Bioelectricity -- 3.5. Biochar -- 3.6. Biogas -- 4. Influence of cultivation conditions -- 4.1. Algae metabolism -- 4.2. Algal cultivation systems -- 5. Commercial application of these technologies -- 6. Perspectives -- References -- Chapter 7: Emerging technologies for the clean recovery of antioxidants from microalgae -- 1. Introduction -- 2. Extraction technologies for antioxidant compounds -- 2.1. Conventional solvent extraction methods -- 3. Nonconventional extraction of bioactive compounds -- 3.1. Electrotechnologies -- 3.1.1. Pulsed electric field (PEF)-assisted extraction -- 3.1.2. Moderate electric field (MEF)-assisted extraction 3.1.3. High voltage electric discharges (HVED)-assisted extraction -- 3.2. Pressurized liquid extraction (PLE) -- 3.3. Supercritical fluid extraction (SFE) -- 3.4. Microwave-assisted extraction -- 3.5. Ultrasound-assisted extraction (UAE) -- 3.6. Cell disruption by high-pressure homogenization (HPH) -- 4. Conclusions and future perspectives -- References -- Chapter 8: Food applications -- 1. Introduction -- 2. Composition of microalgae -- 3. Extraction of microalgal high-value compounds for food applications -- 3.1. Microalgal carbohydrates -- 3.2. Microalgal lipids -- 3.3. Microalgal proteins and peptides -- 3.4. Microalgal pigments and carotenoids -- 4. The current market of microalgae and microalgal products -- 5. Legislation concerning microalgae as food -- 6. Future market and challenges of the use of microalgae as food -- Acknowledgments -- References -- Chapter 9: Microalgae as feed ingredients for livestock production and aquaculture -- 1. Introduction -- 2. Microalgae in ruminants -- 2.1. Feed intake -- 2.2. Rumen fermentation -- 2.3. Milk production and composition -- 2.4. Meat production and composition -- 3. Microalgae in swine -- 3.1. Piglets -- 3.2. Growing and finishing pigs -- 3.3. Sows and boars -- 4. Microalgae in poultry -- 4.1. Meat production -- 4.2. Egg production -- 5. Microalgae in rabbit -- 6. Microalgae in diets for relevant species for aquaculture -- 6.1. Microdiets for larvae -- 6.2. Feeds for juvenile -- 7. Conclusion and perspectives -- Acknowledgments -- References -- Chapter 10: Cosmetics applications -- 1. Introduction -- 2. The necessity of products environmentally sustainable in cosmetics -- 3. Skin structure -- 4. Property of algae in skincare products -- 4.1. Microalgae -- 4.2. Macroalgae -- 4.2.1. Chlorophyta (green algae) -- 4.2.2. Phaeophyta (brown seaweed) -- 4.2.3. Rhodophyta (red seaweed) 4.3. Cyanobacteria -- 5. Natural dyes -- 6. Moisturizer agents -- 7. Antiaging agents -- 8. Anticellulite agents -- 9. Sunscreen/UV filter compounds -- 9.1. Carotenoids -- 9.2. Mycosporine-like amino acids -- 9.3. Scytonemin -- 10. Skin-whitening agents -- 11. Haircare products: The benefits of algae -- 12. Formulation adjuvants -- 12.1. Thickening agents -- 12.2. Surfactants -- 12.3. Preservatives -- 13. Conclusions and perspectives -- References -- Chapter 11: Microalgal applications toward agricultural sustainability: Recent trends and future prospects -- 1. Introduction -- 2. Biofertilizers -- 2.1. Enhancing soil fertility -- 2.2. Nitrogen uptake by microalgae -- 2.3. Maintenance of soil structure and quality by microalgae -- 2.4. Stabilization of soil aggregates -- 2.5. Nutrient recycling in soil -- 2.5.1. Biomineralization by organic acids -- 2.5.2. Biomineralization by siderophores -- 3. Plant biostimulants -- 3.1. Types of plant biostimulants -- 3.1.1. Microbial PBs -- 3.1.2. Humic substances -- 3.1.3. Protein hydrolysates -- 3.1.4. Algal extracts -- 3.2. Cell lysis and extraction methods -- 3.3. Mode of application -- 3.4. Composition and mode of action -- 3.5. Application of microalgal PBs for crop yield improvement -- 4. Biopesticides -- 4.1. Microalgae as a sustainable source of biopesticides -- 4.2. Microalgae against plant pathogenic bacteria, fungi, and nematodes -- 4.3. Smart agriculture using algal nanoparticles for pest control -- 5. Symbiotic interaction of microalgae with higher plants -- 5.1. Cyanobacteria symbiotic relationship with higher plants -- 5.2. Artificial symbiosis ''Nature identical symbiosis ́́for crop improvement -- 6. Microalgae in bioremediation and reclamation of degraded land -- 6.1. Use of Algae as soil conditioners -- 6.2. Microalgae as bioremediating agents 6.2.1. Reclamation of heavy metals contaminated sites Microalgae-Biotechnology |
title | Microalgae cultivation, recovery of compounds and applications |
title_auth | Microalgae cultivation, recovery of compounds and applications |
title_exact_search | Microalgae cultivation, recovery of compounds and applications |
title_exact_search_txtP | Microalgae cultivation, recovery of compounds and applications |
title_full | Microalgae cultivation, recovery of compounds and applications edited by Charis M. Galanakis |
title_fullStr | Microalgae cultivation, recovery of compounds and applications edited by Charis M. Galanakis |
title_full_unstemmed | Microalgae cultivation, recovery of compounds and applications edited by Charis M. Galanakis |
title_short | Microalgae |
title_sort | microalgae cultivation recovery of compounds and applications |
title_sub | cultivation, recovery of compounds and applications |
topic | Microalgae-Biotechnology |
topic_facet | Microalgae-Biotechnology |
work_keys_str_mv | AT galanakischarism microalgaecultivationrecoveryofcompoundsandapplications |