Hydraulic engineering of dams:
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York ; Leiden
CRC Press, Taylor & Francis Group
[2021]
|
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xix, 1060 Seiten) Illustrationen, Diagramme |
ISBN: | 9781135038038 9780203771433 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442051 | ||
003 | DE-604 | ||
005 | 20230721 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781135038038 |9 978-1-135-03803-8 | ||
020 | |a 9780203771433 |9 978-0-203-77143-3 | ||
035 | |a (ZDB-30-PQE)EBC6367402 | ||
035 | |a (ZDB-30-PAD)EBC6367402 | ||
035 | |a (ZDB-89-EBL)EBL6367402 | ||
035 | |a (OCoLC)1204133985 | ||
035 | |a (DE-599)BVBBV047442051 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 627 | |
084 | |a ZI 6740 |0 (DE-625)156545: |2 rvk | ||
084 | |a BAU 596 |2 stub | ||
100 | 1 | |a Hager, Willi H. |d 1951- |e Verfasser |0 (DE-588)121396657 |4 aut | |
245 | 1 | 0 | |a Hydraulic engineering of dams |c Willi H. Hager, Anton J. Schleiss, Robert M. Boes, Michael Pfister |
264 | 1 | |a Boca Raton ; London ; New York ; Leiden |b CRC Press, Taylor & Francis Group |c [2021] | |
264 | 4 | |c ©2021 | |
300 | |a 1 Online-Ressource (xix, 1060 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Title -- Copyright -- Dedication -- Contents -- Preface -- Authors' CVs -- 1 Introduction -- 1.1 Definition and purposes of dams -- 1.2 Worldwide importance of dams and reservoirs -- 1.3 Historical overview and challenges of dam engineering -- 1.4 Dams as critical water infrastructures -- 1.5 Safe operation of dams and reservoirs through advanced dam safety concepts: example of Switzerland -- 1.6 Appurtenant structures of dams -- 1.6.1 Overview -- 1.6.2 Spillways including overflow and dissipation structures -- 1.6.3 Bottom outlets -- 1.6.4 Intakes -- 1.6.5 River diversion -- 1.7 Hydraulic engineering of dams: structure of the book -- References -- 2 Frontal crest overflow -- 2.1 Introduction -- 2.1.1 Overflow structures -- 2.1.2 Overflow types -- 2.1.3 Significance of overflow structure -- 2.2 Frontal overflow -- 2.2.1 Crest shapes and standard crest -- 2.2.2 Free surface profile and discharge characteristics -- 2.2.3 Bottom pressure characteristics -- 2.2.4 Velocity distribution -- 2.2.5 Cavitation design -- 2.2.6 Crest piers -- 2.2.7 Overflow crest gates -- 2.3 Additional weir effects -- 2.3.1 Influence of weir face slopes -- 2.3.2 Embankment weir -- 2.4 Scale effects -- 2.4.1 Real fluid effects in weir flow -- 2.4.2 Boundary layer development -- 2.4.3 Discharge coefficient -- 2.4.4 Round-crested weir flow analogy -- Notation -- References -- Bibliography -- 3 Spatial crest overflow -- 3.1 Introduction -- 3.2 Side channel -- 3.2.1 Typology -- 3.2.2 Hydraulic design -- 3.2.3 Spatial flow features -- 3.2.4 Examples of physical model studies -- 3.3 Morning glory overfall -- 3.3.1 Hydraulic concept -- 3.3.2 Crest shape -- 3.3.3 Discharge and pressure characteristics -- 3.3.4 Vertical shaft structure -- 3.3.5 Shaft air supply -- 3.3.6 Case study -- 3.4 Labyrinth weir -- 3.4.1 Historical evolution -- 3.4.2 Design criteria | |
505 | 8 | |a 3.5 Piano key weir -- 3.5.1 Historical evolution -- 3.5.2 PKW types and notation -- 3.5.3 Rating curve -- 3.5.4 Further design aspects -- 3.5.5 Downstream toe scour on riverbed -- 3.5.6 Upstream riverbed -- 3.6 Siphon -- 3.6.1 Description -- 3.6.2 Black-water siphon -- 3.6.3 White-water siphon -- Notation -- References -- Bibliography -- 4 Spillway chute -- 4.1 Introduction -- 4.2 Smooth chute -- 4.2.1 Hydraulic design -- 4.2.2 Surface air entrainment -- 4.2.3 Development of aerated chute flow -- 4.2.4 Spacing of chute aerators -- 4.2.5 Air transport phenomena -- 4.3 Uniform-aerated chute flow -- 4.3.1 Experimental approach -- 4.4 Chute aerator -- 4.4.1 Motivation and historical development -- 4.4.2 Cavitation potential -- 4.4.3 Cavitation protection -- 4.4.4 Aerator geometry and air supply system -- 4.4.5 Air transport downstream of aerator -- 4.4.6 Jet length and air entrainment coefficient -- 4.4.7 Downstream air concentration development -- 4.4.8 Effect of pre-aerated approach flow -- 4.4.9 Steep deflectors and cavity sub-pressure -- 4.4.10 Design procedure -- 4.5 Shock waves -- 4.5.1 Introduction -- 4.5.2 Chute expansion -- 4.5.3 Chute bend -- 4.5.4 Chute contraction -- 4.6 Roll waves -- 4.6.1 Definition and early advances -- 4.6.2 Advances from Montuori -- 4.7 Stepped chute -- 4.7.1 Introduction -- 4.7.2 Main application -- 4.7.3 General considerations -- 4.7.4 Hydraulic design -- Notation -- References -- Bibliography -- 5 Dissipation structures -- 5.1 Introduction -- 5.2 Hydraulic jump -- 5.2.1 Classical hydraulic jump -- 5.2.2 Hydraulic approach -- 5.2.3 Undular hydraulic jump -- 5.3 Stilling basins -- 5.3.1 General -- 5.3.2 Baffle-sill basin -- 5.3.3 Baffle-block basin -- 5.3.4 Abruptly expanding stilling basin -- 5.3.5 Slotted-bucket stilling basin -- 5.3.6 Basin characteristics -- 5.4 Drop structures -- 5.4.1 Basic flow features | |
505 | 8 | |a 5.4.2 Drop impact structures -- 5.4.3 Scour characteristics at unlined drop structures -- 5.5 Free fall outlets -- 5.5.1 Introduction -- 5.5.2 Jet trajectory -- 5.5.3 Jet impact -- Notation -- References -- Bibliography -- 6 Ski jump and plunge pool -- 6.1 Introduction -- 6.2 Ski jump -- 6.2.1 Description of structure and takeoff -- 6.2.2 Jet trajectory and disintegration -- 6.2.3 Bucket pressure, energy dissipation and choking features -- 6.2.4 Ski jump with triangular bucket -- 6.2.5 Air entrainment in ski-jump jets -- 6.2.6 Generalized jet air concentration features -- 6.3 Flip bucket -- 6.3.1 Types of bucket geometries -- 6.3.2 Horizontal triangular-shaped flip bucket -- 6.4 Granular scour -- 6.4.1 Granular scour and assessment methods -- 6.4.2 Effect of jet air content -- 6.4.3 Hydraulics of plane plunge pool scour -- 6.4.4 Hydraulics of spatial plunge pool scour -- 6.4.5 3D Flow features in plunge pool -- 6.4.6 Temporal evolution of spatial plunge pool scour -- 6.5 Rock scour -- 6.5.1 Introduction and challenges -- 6.5.2 Comprehensive scour method -- 6.5.3 CSM with active jet air entrainment -- 6.5.4 Difficulties in estimating scour depth -- 6.5.5 Measures for scour control -- 6.5.6 Case study: Kariba Dam scour hole -- Notation -- References -- Bibliography -- 7 River diversion structures -- 7.1 Introduction -- 7.2 Diversion tunnel -- 7.2.1 Introduction -- 7.2.2 Inlet flow -- 7.2.3 Tunnel flow -- 7.2.4 Choking flow -- 7.2.5 Outlet structure -- 7.2.6 Erosion protection at tunnel outlet -- 7.2.7 Surface protection of cofferdams -- 7.3 River diversion -- 7.3.1 Effect of constriction -- 7.3.2 Transitional flow -- 7.3.3 Subcritical flow -- 7.4 Culvert -- 7.4.1 Introduction -- 7.4.2 Hydraulic design -- 7.5 Pier and abutment scour -- 7.5.1 Introduction -- 7.5.2 Experimental setup -- 7.5.3 Scour depth equation -- 7.5.4 Limitations and further results | |
505 | 8 | |a 7.5.5 Effect of flood wave -- 7.5.6 Protection against scour using riprap -- Notation -- References -- Bibliography -- 8 Intakes and outlets -- 8.1 Introduction -- 8.2 High submergence intakes -- 8.2.1 Design principles -- 8.2.2 Orifice flow -- 8.2.3 Inlet geometry -- 8.3 Low submergence intakes -- 8.3.1 Vortex flow -- 8.3.2 Vertical intake vortex -- 8.3.3 Limit or critical intake submergence -- 8.3.4 Air entrainment -- 8.3.5 Design recommendations -- 8.4 Practical aspects -- 8.4.1 Floating debris and trash-rack vibrations -- 8.4.2 Emergency gate closure -- 8.5 Gate flow -- 8.5.1 Introduction -- 8.5.2 Vertical planar gate flow -- 8.5.3 Hinged sloping flap gate -- 8.5.4 Hydraulics of standard vertical gate -- 8.6 Low-level outlet -- 8.6.1 Design principles -- 8.6.2 Gate types -- 8.6.3 Gate vibrations -- 8.6.4 Hydraulics of high-head gates -- 8.6.5 Cavitation and cavitation damage -- 8.6.6 Passive and active air entrainment -- 8.6.7 Interaction of water flow and air entrainment -- 8.6.8 Recent experimentation on air demand -- Notation -- References -- Bibliography -- 9 Reservoir sedimentation -- 9.1 Involved processes and sustainable reservoir use -- 9.2 Sedimentation rate and sediment distribution -- 9.3 Evolution of knowledge and management competence -- 9.4 Measures against reservoir sedimentation -- 9.4.1 Overview -- 9.4.2 Measures in catchment area -- 9.4.3 Measures in reservoir -- 9.4.4 Measures at dam -- 9.5 Sediment bypass tunnel -- 9.5.1 General -- 9.5.2 Suitable bypassing discharge and target sediment granulometry -- 9.5.3 Hydraulic design -- 9.5.4 Hydro-abrasion processes -- 9.5.5 Bed load particle motion dynamics -- 9.5.6 Mechanistic abrasion model -- 9.5.7 Lining material -- 9.5.8 Design of tunnel invert lining -- 9.5.9 Tunnel operation, maintenance, and rehabilitation -- 9.5.10 Instrumentation and monitoring techniques | |
505 | 8 | |a 9.5.11 Ecological impacts of SBT operation -- 9.6 Turbidity currents -- 9.6.1 Definition -- 9.6.2 Plunge point and equilibrium flow -- 9.6.3 Flow over obstacle -- 9.6.4 Flow across screen -- 9.6.5 Control by opposing jets -- 9.6.6 Intrusion -- 9.7 Sedimentation control -- 9.7.1 Turbulent suspension -- 9.7.2 Recommendations on turbidity current venting -- 9.7.3 Sediment flushing -- 9.7.4 Selection of reservoir geometry and locations of inlets and outlets -- 9.8 Secondary hydraulic effects -- 9.8.1 Upstream river -- 9.8.2 Downstream river -- 9.8.3 Replenishment or disposal of sediments -- Notation -- References -- Bibliography -- 10 Impulse waves in reservoirs -- 10.1 Introduction -- 10.2 Fundamental approaches -- 10.2.1 Wave theories and impulse waves -- 10.2.2 Wave generation by moving wedge -- 10.2.3 Wave generation by falling mass -- 10.2.4 Wave run-up and overtopping features -- 10.3 2D impulse wave generation and propagation -- 10.3.1 Review of research activities -- 10.3.2 Experimentation -- 10.3.3 Experimental results -- 10.4 Impulse wave types -- 10.4.1 Motivation and experimentation -- 10.4.2 Experimental results and discussion -- 10.4.3 Shortcut on nonlinear wave theories -- 10.5 Transformation of solitary wave to overland flow -- 10.5.1 Motivation and experimentation -- 10.5.2 Plane wave run-up -- 10.5.3 Plane overland flow -- 10.6 Underwater deposition feature -- 10.6.1 Motivation and data basis -- 10.6.2 Test results -- 10.7 Rigid dam overtopping -- 10.7.1 Motivation and experimentation -- 10.7.2 Overtopping processes -- 10.7.3 Experimental results -- 10.8 Erodable dam overtopping -- 10.8.1 Motivation and literature review -- 10.8.2 Experimental program -- 10.8.3 Experimental results -- 10.8.4 Discussion of results -- 10.9 Spatial impulse waves -- 10.9.1 Motivation -- 10.9.2 Experimental setup -- 10.9.3 Process description | |
505 | 8 | |a 10.9.4 Experimental results | |
650 | 4 | |a Hydraulic engineering | |
650 | 0 | 7 | |a Staudamm |0 (DE-588)4057020-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Staudamm |0 (DE-588)4057020-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Schleiss, Anton J. |d 1953- |e Verfasser |0 (DE-588)1080132678 |4 aut | |
700 | 1 | |a Boes, Robert M. |d 1969- |e Verfasser |0 (DE-588)122379152 |4 aut | |
700 | 1 | |a Pfister, Michael |d 1976- |e Verfasser |0 (DE-588)1101850566 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |a Hager, Willi H. |t Hydraulic Engineering of Dams |d Milton : Taylor & Francis Group,c2020 |n Druck-Ausgabe, Hardcover |z 978-0-415-62153-3 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032844203 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6367402 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734720991232 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Hager, Willi H. 1951- Schleiss, Anton J. 1953- Boes, Robert M. 1969- Pfister, Michael 1976- |
author_GND | (DE-588)121396657 (DE-588)1080132678 (DE-588)122379152 (DE-588)1101850566 |
author_facet | Hager, Willi H. 1951- Schleiss, Anton J. 1953- Boes, Robert M. 1969- Pfister, Michael 1976- |
author_role | aut aut aut aut |
author_sort | Hager, Willi H. 1951- |
author_variant | w h h wh whh a j s aj ajs r m b rm rmb m p mp |
building | Verbundindex |
bvnumber | BV047442051 |
classification_rvk | ZI 6740 |
classification_tum | BAU 596 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Title -- Copyright -- Dedication -- Contents -- Preface -- Authors' CVs -- 1 Introduction -- 1.1 Definition and purposes of dams -- 1.2 Worldwide importance of dams and reservoirs -- 1.3 Historical overview and challenges of dam engineering -- 1.4 Dams as critical water infrastructures -- 1.5 Safe operation of dams and reservoirs through advanced dam safety concepts: example of Switzerland -- 1.6 Appurtenant structures of dams -- 1.6.1 Overview -- 1.6.2 Spillways including overflow and dissipation structures -- 1.6.3 Bottom outlets -- 1.6.4 Intakes -- 1.6.5 River diversion -- 1.7 Hydraulic engineering of dams: structure of the book -- References -- 2 Frontal crest overflow -- 2.1 Introduction -- 2.1.1 Overflow structures -- 2.1.2 Overflow types -- 2.1.3 Significance of overflow structure -- 2.2 Frontal overflow -- 2.2.1 Crest shapes and standard crest -- 2.2.2 Free surface profile and discharge characteristics -- 2.2.3 Bottom pressure characteristics -- 2.2.4 Velocity distribution -- 2.2.5 Cavitation design -- 2.2.6 Crest piers -- 2.2.7 Overflow crest gates -- 2.3 Additional weir effects -- 2.3.1 Influence of weir face slopes -- 2.3.2 Embankment weir -- 2.4 Scale effects -- 2.4.1 Real fluid effects in weir flow -- 2.4.2 Boundary layer development -- 2.4.3 Discharge coefficient -- 2.4.4 Round-crested weir flow analogy -- Notation -- References -- Bibliography -- 3 Spatial crest overflow -- 3.1 Introduction -- 3.2 Side channel -- 3.2.1 Typology -- 3.2.2 Hydraulic design -- 3.2.3 Spatial flow features -- 3.2.4 Examples of physical model studies -- 3.3 Morning glory overfall -- 3.3.1 Hydraulic concept -- 3.3.2 Crest shape -- 3.3.3 Discharge and pressure characteristics -- 3.3.4 Vertical shaft structure -- 3.3.5 Shaft air supply -- 3.3.6 Case study -- 3.4 Labyrinth weir -- 3.4.1 Historical evolution -- 3.4.2 Design criteria 3.5 Piano key weir -- 3.5.1 Historical evolution -- 3.5.2 PKW types and notation -- 3.5.3 Rating curve -- 3.5.4 Further design aspects -- 3.5.5 Downstream toe scour on riverbed -- 3.5.6 Upstream riverbed -- 3.6 Siphon -- 3.6.1 Description -- 3.6.2 Black-water siphon -- 3.6.3 White-water siphon -- Notation -- References -- Bibliography -- 4 Spillway chute -- 4.1 Introduction -- 4.2 Smooth chute -- 4.2.1 Hydraulic design -- 4.2.2 Surface air entrainment -- 4.2.3 Development of aerated chute flow -- 4.2.4 Spacing of chute aerators -- 4.2.5 Air transport phenomena -- 4.3 Uniform-aerated chute flow -- 4.3.1 Experimental approach -- 4.4 Chute aerator -- 4.4.1 Motivation and historical development -- 4.4.2 Cavitation potential -- 4.4.3 Cavitation protection -- 4.4.4 Aerator geometry and air supply system -- 4.4.5 Air transport downstream of aerator -- 4.4.6 Jet length and air entrainment coefficient -- 4.4.7 Downstream air concentration development -- 4.4.8 Effect of pre-aerated approach flow -- 4.4.9 Steep deflectors and cavity sub-pressure -- 4.4.10 Design procedure -- 4.5 Shock waves -- 4.5.1 Introduction -- 4.5.2 Chute expansion -- 4.5.3 Chute bend -- 4.5.4 Chute contraction -- 4.6 Roll waves -- 4.6.1 Definition and early advances -- 4.6.2 Advances from Montuori -- 4.7 Stepped chute -- 4.7.1 Introduction -- 4.7.2 Main application -- 4.7.3 General considerations -- 4.7.4 Hydraulic design -- Notation -- References -- Bibliography -- 5 Dissipation structures -- 5.1 Introduction -- 5.2 Hydraulic jump -- 5.2.1 Classical hydraulic jump -- 5.2.2 Hydraulic approach -- 5.2.3 Undular hydraulic jump -- 5.3 Stilling basins -- 5.3.1 General -- 5.3.2 Baffle-sill basin -- 5.3.3 Baffle-block basin -- 5.3.4 Abruptly expanding stilling basin -- 5.3.5 Slotted-bucket stilling basin -- 5.3.6 Basin characteristics -- 5.4 Drop structures -- 5.4.1 Basic flow features 5.4.2 Drop impact structures -- 5.4.3 Scour characteristics at unlined drop structures -- 5.5 Free fall outlets -- 5.5.1 Introduction -- 5.5.2 Jet trajectory -- 5.5.3 Jet impact -- Notation -- References -- Bibliography -- 6 Ski jump and plunge pool -- 6.1 Introduction -- 6.2 Ski jump -- 6.2.1 Description of structure and takeoff -- 6.2.2 Jet trajectory and disintegration -- 6.2.3 Bucket pressure, energy dissipation and choking features -- 6.2.4 Ski jump with triangular bucket -- 6.2.5 Air entrainment in ski-jump jets -- 6.2.6 Generalized jet air concentration features -- 6.3 Flip bucket -- 6.3.1 Types of bucket geometries -- 6.3.2 Horizontal triangular-shaped flip bucket -- 6.4 Granular scour -- 6.4.1 Granular scour and assessment methods -- 6.4.2 Effect of jet air content -- 6.4.3 Hydraulics of plane plunge pool scour -- 6.4.4 Hydraulics of spatial plunge pool scour -- 6.4.5 3D Flow features in plunge pool -- 6.4.6 Temporal evolution of spatial plunge pool scour -- 6.5 Rock scour -- 6.5.1 Introduction and challenges -- 6.5.2 Comprehensive scour method -- 6.5.3 CSM with active jet air entrainment -- 6.5.4 Difficulties in estimating scour depth -- 6.5.5 Measures for scour control -- 6.5.6 Case study: Kariba Dam scour hole -- Notation -- References -- Bibliography -- 7 River diversion structures -- 7.1 Introduction -- 7.2 Diversion tunnel -- 7.2.1 Introduction -- 7.2.2 Inlet flow -- 7.2.3 Tunnel flow -- 7.2.4 Choking flow -- 7.2.5 Outlet structure -- 7.2.6 Erosion protection at tunnel outlet -- 7.2.7 Surface protection of cofferdams -- 7.3 River diversion -- 7.3.1 Effect of constriction -- 7.3.2 Transitional flow -- 7.3.3 Subcritical flow -- 7.4 Culvert -- 7.4.1 Introduction -- 7.4.2 Hydraulic design -- 7.5 Pier and abutment scour -- 7.5.1 Introduction -- 7.5.2 Experimental setup -- 7.5.3 Scour depth equation -- 7.5.4 Limitations and further results 7.5.5 Effect of flood wave -- 7.5.6 Protection against scour using riprap -- Notation -- References -- Bibliography -- 8 Intakes and outlets -- 8.1 Introduction -- 8.2 High submergence intakes -- 8.2.1 Design principles -- 8.2.2 Orifice flow -- 8.2.3 Inlet geometry -- 8.3 Low submergence intakes -- 8.3.1 Vortex flow -- 8.3.2 Vertical intake vortex -- 8.3.3 Limit or critical intake submergence -- 8.3.4 Air entrainment -- 8.3.5 Design recommendations -- 8.4 Practical aspects -- 8.4.1 Floating debris and trash-rack vibrations -- 8.4.2 Emergency gate closure -- 8.5 Gate flow -- 8.5.1 Introduction -- 8.5.2 Vertical planar gate flow -- 8.5.3 Hinged sloping flap gate -- 8.5.4 Hydraulics of standard vertical gate -- 8.6 Low-level outlet -- 8.6.1 Design principles -- 8.6.2 Gate types -- 8.6.3 Gate vibrations -- 8.6.4 Hydraulics of high-head gates -- 8.6.5 Cavitation and cavitation damage -- 8.6.6 Passive and active air entrainment -- 8.6.7 Interaction of water flow and air entrainment -- 8.6.8 Recent experimentation on air demand -- Notation -- References -- Bibliography -- 9 Reservoir sedimentation -- 9.1 Involved processes and sustainable reservoir use -- 9.2 Sedimentation rate and sediment distribution -- 9.3 Evolution of knowledge and management competence -- 9.4 Measures against reservoir sedimentation -- 9.4.1 Overview -- 9.4.2 Measures in catchment area -- 9.4.3 Measures in reservoir -- 9.4.4 Measures at dam -- 9.5 Sediment bypass tunnel -- 9.5.1 General -- 9.5.2 Suitable bypassing discharge and target sediment granulometry -- 9.5.3 Hydraulic design -- 9.5.4 Hydro-abrasion processes -- 9.5.5 Bed load particle motion dynamics -- 9.5.6 Mechanistic abrasion model -- 9.5.7 Lining material -- 9.5.8 Design of tunnel invert lining -- 9.5.9 Tunnel operation, maintenance, and rehabilitation -- 9.5.10 Instrumentation and monitoring techniques 9.5.11 Ecological impacts of SBT operation -- 9.6 Turbidity currents -- 9.6.1 Definition -- 9.6.2 Plunge point and equilibrium flow -- 9.6.3 Flow over obstacle -- 9.6.4 Flow across screen -- 9.6.5 Control by opposing jets -- 9.6.6 Intrusion -- 9.7 Sedimentation control -- 9.7.1 Turbulent suspension -- 9.7.2 Recommendations on turbidity current venting -- 9.7.3 Sediment flushing -- 9.7.4 Selection of reservoir geometry and locations of inlets and outlets -- 9.8 Secondary hydraulic effects -- 9.8.1 Upstream river -- 9.8.2 Downstream river -- 9.8.3 Replenishment or disposal of sediments -- Notation -- References -- Bibliography -- 10 Impulse waves in reservoirs -- 10.1 Introduction -- 10.2 Fundamental approaches -- 10.2.1 Wave theories and impulse waves -- 10.2.2 Wave generation by moving wedge -- 10.2.3 Wave generation by falling mass -- 10.2.4 Wave run-up and overtopping features -- 10.3 2D impulse wave generation and propagation -- 10.3.1 Review of research activities -- 10.3.2 Experimentation -- 10.3.3 Experimental results -- 10.4 Impulse wave types -- 10.4.1 Motivation and experimentation -- 10.4.2 Experimental results and discussion -- 10.4.3 Shortcut on nonlinear wave theories -- 10.5 Transformation of solitary wave to overland flow -- 10.5.1 Motivation and experimentation -- 10.5.2 Plane wave run-up -- 10.5.3 Plane overland flow -- 10.6 Underwater deposition feature -- 10.6.1 Motivation and data basis -- 10.6.2 Test results -- 10.7 Rigid dam overtopping -- 10.7.1 Motivation and experimentation -- 10.7.2 Overtopping processes -- 10.7.3 Experimental results -- 10.8 Erodable dam overtopping -- 10.8.1 Motivation and literature review -- 10.8.2 Experimental program -- 10.8.3 Experimental results -- 10.8.4 Discussion of results -- 10.9 Spatial impulse waves -- 10.9.1 Motivation -- 10.9.2 Experimental setup -- 10.9.3 Process description 10.9.4 Experimental results |
ctrlnum | (ZDB-30-PQE)EBC6367402 (ZDB-30-PAD)EBC6367402 (ZDB-89-EBL)EBL6367402 (OCoLC)1204133985 (DE-599)BVBBV047442051 |
dewey-full | 627 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 627 - Hydraulic engineering |
dewey-raw | 627 |
dewey-search | 627 |
dewey-sort | 3627 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Bauingenieurwesen |
discipline_str_mv | Bauingenieurwesen |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11479nmm a2200553zc 4500</leader><controlfield tag="001">BV047442051</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230721 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781135038038</subfield><subfield code="9">978-1-135-03803-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780203771433</subfield><subfield code="9">978-0-203-77143-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6367402</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6367402</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6367402</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1204133985</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442051</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">627</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZI 6740</subfield><subfield code="0">(DE-625)156545:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BAU 596</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hager, Willi H.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121396657</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hydraulic engineering of dams</subfield><subfield code="c">Willi H. Hager, Anton J. Schleiss, Robert M. Boes, Michael Pfister</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York ; Leiden</subfield><subfield code="b">CRC Press, Taylor & Francis Group</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 1060 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title -- Copyright -- Dedication -- Contents -- Preface -- Authors' CVs -- 1 Introduction -- 1.1 Definition and purposes of dams -- 1.2 Worldwide importance of dams and reservoirs -- 1.3 Historical overview and challenges of dam engineering -- 1.4 Dams as critical water infrastructures -- 1.5 Safe operation of dams and reservoirs through advanced dam safety concepts: example of Switzerland -- 1.6 Appurtenant structures of dams -- 1.6.1 Overview -- 1.6.2 Spillways including overflow and dissipation structures -- 1.6.3 Bottom outlets -- 1.6.4 Intakes -- 1.6.5 River diversion -- 1.7 Hydraulic engineering of dams: structure of the book -- References -- 2 Frontal crest overflow -- 2.1 Introduction -- 2.1.1 Overflow structures -- 2.1.2 Overflow types -- 2.1.3 Significance of overflow structure -- 2.2 Frontal overflow -- 2.2.1 Crest shapes and standard crest -- 2.2.2 Free surface profile and discharge characteristics -- 2.2.3 Bottom pressure characteristics -- 2.2.4 Velocity distribution -- 2.2.5 Cavitation design -- 2.2.6 Crest piers -- 2.2.7 Overflow crest gates -- 2.3 Additional weir effects -- 2.3.1 Influence of weir face slopes -- 2.3.2 Embankment weir -- 2.4 Scale effects -- 2.4.1 Real fluid effects in weir flow -- 2.4.2 Boundary layer development -- 2.4.3 Discharge coefficient -- 2.4.4 Round-crested weir flow analogy -- Notation -- References -- Bibliography -- 3 Spatial crest overflow -- 3.1 Introduction -- 3.2 Side channel -- 3.2.1 Typology -- 3.2.2 Hydraulic design -- 3.2.3 Spatial flow features -- 3.2.4 Examples of physical model studies -- 3.3 Morning glory overfall -- 3.3.1 Hydraulic concept -- 3.3.2 Crest shape -- 3.3.3 Discharge and pressure characteristics -- 3.3.4 Vertical shaft structure -- 3.3.5 Shaft air supply -- 3.3.6 Case study -- 3.4 Labyrinth weir -- 3.4.1 Historical evolution -- 3.4.2 Design criteria</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.5 Piano key weir -- 3.5.1 Historical evolution -- 3.5.2 PKW types and notation -- 3.5.3 Rating curve -- 3.5.4 Further design aspects -- 3.5.5 Downstream toe scour on riverbed -- 3.5.6 Upstream riverbed -- 3.6 Siphon -- 3.6.1 Description -- 3.6.2 Black-water siphon -- 3.6.3 White-water siphon -- Notation -- References -- Bibliography -- 4 Spillway chute -- 4.1 Introduction -- 4.2 Smooth chute -- 4.2.1 Hydraulic design -- 4.2.2 Surface air entrainment -- 4.2.3 Development of aerated chute flow -- 4.2.4 Spacing of chute aerators -- 4.2.5 Air transport phenomena -- 4.3 Uniform-aerated chute flow -- 4.3.1 Experimental approach -- 4.4 Chute aerator -- 4.4.1 Motivation and historical development -- 4.4.2 Cavitation potential -- 4.4.3 Cavitation protection -- 4.4.4 Aerator geometry and air supply system -- 4.4.5 Air transport downstream of aerator -- 4.4.6 Jet length and air entrainment coefficient -- 4.4.7 Downstream air concentration development -- 4.4.8 Effect of pre-aerated approach flow -- 4.4.9 Steep deflectors and cavity sub-pressure -- 4.4.10 Design procedure -- 4.5 Shock waves -- 4.5.1 Introduction -- 4.5.2 Chute expansion -- 4.5.3 Chute bend -- 4.5.4 Chute contraction -- 4.6 Roll waves -- 4.6.1 Definition and early advances -- 4.6.2 Advances from Montuori -- 4.7 Stepped chute -- 4.7.1 Introduction -- 4.7.2 Main application -- 4.7.3 General considerations -- 4.7.4 Hydraulic design -- Notation -- References -- Bibliography -- 5 Dissipation structures -- 5.1 Introduction -- 5.2 Hydraulic jump -- 5.2.1 Classical hydraulic jump -- 5.2.2 Hydraulic approach -- 5.2.3 Undular hydraulic jump -- 5.3 Stilling basins -- 5.3.1 General -- 5.3.2 Baffle-sill basin -- 5.3.3 Baffle-block basin -- 5.3.4 Abruptly expanding stilling basin -- 5.3.5 Slotted-bucket stilling basin -- 5.3.6 Basin characteristics -- 5.4 Drop structures -- 5.4.1 Basic flow features</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4.2 Drop impact structures -- 5.4.3 Scour characteristics at unlined drop structures -- 5.5 Free fall outlets -- 5.5.1 Introduction -- 5.5.2 Jet trajectory -- 5.5.3 Jet impact -- Notation -- References -- Bibliography -- 6 Ski jump and plunge pool -- 6.1 Introduction -- 6.2 Ski jump -- 6.2.1 Description of structure and takeoff -- 6.2.2 Jet trajectory and disintegration -- 6.2.3 Bucket pressure, energy dissipation and choking features -- 6.2.4 Ski jump with triangular bucket -- 6.2.5 Air entrainment in ski-jump jets -- 6.2.6 Generalized jet air concentration features -- 6.3 Flip bucket -- 6.3.1 Types of bucket geometries -- 6.3.2 Horizontal triangular-shaped flip bucket -- 6.4 Granular scour -- 6.4.1 Granular scour and assessment methods -- 6.4.2 Effect of jet air content -- 6.4.3 Hydraulics of plane plunge pool scour -- 6.4.4 Hydraulics of spatial plunge pool scour -- 6.4.5 3D Flow features in plunge pool -- 6.4.6 Temporal evolution of spatial plunge pool scour -- 6.5 Rock scour -- 6.5.1 Introduction and challenges -- 6.5.2 Comprehensive scour method -- 6.5.3 CSM with active jet air entrainment -- 6.5.4 Difficulties in estimating scour depth -- 6.5.5 Measures for scour control -- 6.5.6 Case study: Kariba Dam scour hole -- Notation -- References -- Bibliography -- 7 River diversion structures -- 7.1 Introduction -- 7.2 Diversion tunnel -- 7.2.1 Introduction -- 7.2.2 Inlet flow -- 7.2.3 Tunnel flow -- 7.2.4 Choking flow -- 7.2.5 Outlet structure -- 7.2.6 Erosion protection at tunnel outlet -- 7.2.7 Surface protection of cofferdams -- 7.3 River diversion -- 7.3.1 Effect of constriction -- 7.3.2 Transitional flow -- 7.3.3 Subcritical flow -- 7.4 Culvert -- 7.4.1 Introduction -- 7.4.2 Hydraulic design -- 7.5 Pier and abutment scour -- 7.5.1 Introduction -- 7.5.2 Experimental setup -- 7.5.3 Scour depth equation -- 7.5.4 Limitations and further results</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.5.5 Effect of flood wave -- 7.5.6 Protection against scour using riprap -- Notation -- References -- Bibliography -- 8 Intakes and outlets -- 8.1 Introduction -- 8.2 High submergence intakes -- 8.2.1 Design principles -- 8.2.2 Orifice flow -- 8.2.3 Inlet geometry -- 8.3 Low submergence intakes -- 8.3.1 Vortex flow -- 8.3.2 Vertical intake vortex -- 8.3.3 Limit or critical intake submergence -- 8.3.4 Air entrainment -- 8.3.5 Design recommendations -- 8.4 Practical aspects -- 8.4.1 Floating debris and trash-rack vibrations -- 8.4.2 Emergency gate closure -- 8.5 Gate flow -- 8.5.1 Introduction -- 8.5.2 Vertical planar gate flow -- 8.5.3 Hinged sloping flap gate -- 8.5.4 Hydraulics of standard vertical gate -- 8.6 Low-level outlet -- 8.6.1 Design principles -- 8.6.2 Gate types -- 8.6.3 Gate vibrations -- 8.6.4 Hydraulics of high-head gates -- 8.6.5 Cavitation and cavitation damage -- 8.6.6 Passive and active air entrainment -- 8.6.7 Interaction of water flow and air entrainment -- 8.6.8 Recent experimentation on air demand -- Notation -- References -- Bibliography -- 9 Reservoir sedimentation -- 9.1 Involved processes and sustainable reservoir use -- 9.2 Sedimentation rate and sediment distribution -- 9.3 Evolution of knowledge and management competence -- 9.4 Measures against reservoir sedimentation -- 9.4.1 Overview -- 9.4.2 Measures in catchment area -- 9.4.3 Measures in reservoir -- 9.4.4 Measures at dam -- 9.5 Sediment bypass tunnel -- 9.5.1 General -- 9.5.2 Suitable bypassing discharge and target sediment granulometry -- 9.5.3 Hydraulic design -- 9.5.4 Hydro-abrasion processes -- 9.5.5 Bed load particle motion dynamics -- 9.5.6 Mechanistic abrasion model -- 9.5.7 Lining material -- 9.5.8 Design of tunnel invert lining -- 9.5.9 Tunnel operation, maintenance, and rehabilitation -- 9.5.10 Instrumentation and monitoring techniques</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.5.11 Ecological impacts of SBT operation -- 9.6 Turbidity currents -- 9.6.1 Definition -- 9.6.2 Plunge point and equilibrium flow -- 9.6.3 Flow over obstacle -- 9.6.4 Flow across screen -- 9.6.5 Control by opposing jets -- 9.6.6 Intrusion -- 9.7 Sedimentation control -- 9.7.1 Turbulent suspension -- 9.7.2 Recommendations on turbidity current venting -- 9.7.3 Sediment flushing -- 9.7.4 Selection of reservoir geometry and locations of inlets and outlets -- 9.8 Secondary hydraulic effects -- 9.8.1 Upstream river -- 9.8.2 Downstream river -- 9.8.3 Replenishment or disposal of sediments -- Notation -- References -- Bibliography -- 10 Impulse waves in reservoirs -- 10.1 Introduction -- 10.2 Fundamental approaches -- 10.2.1 Wave theories and impulse waves -- 10.2.2 Wave generation by moving wedge -- 10.2.3 Wave generation by falling mass -- 10.2.4 Wave run-up and overtopping features -- 10.3 2D impulse wave generation and propagation -- 10.3.1 Review of research activities -- 10.3.2 Experimentation -- 10.3.3 Experimental results -- 10.4 Impulse wave types -- 10.4.1 Motivation and experimentation -- 10.4.2 Experimental results and discussion -- 10.4.3 Shortcut on nonlinear wave theories -- 10.5 Transformation of solitary wave to overland flow -- 10.5.1 Motivation and experimentation -- 10.5.2 Plane wave run-up -- 10.5.3 Plane overland flow -- 10.6 Underwater deposition feature -- 10.6.1 Motivation and data basis -- 10.6.2 Test results -- 10.7 Rigid dam overtopping -- 10.7.1 Motivation and experimentation -- 10.7.2 Overtopping processes -- 10.7.3 Experimental results -- 10.8 Erodable dam overtopping -- 10.8.1 Motivation and literature review -- 10.8.2 Experimental program -- 10.8.3 Experimental results -- 10.8.4 Discussion of results -- 10.9 Spatial impulse waves -- 10.9.1 Motivation -- 10.9.2 Experimental setup -- 10.9.3 Process description</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.9.4 Experimental results</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Staudamm</subfield><subfield code="0">(DE-588)4057020-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Staudamm</subfield><subfield code="0">(DE-588)4057020-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schleiss, Anton J.</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1080132678</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boes, Robert M.</subfield><subfield code="d">1969-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122379152</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pfister, Michael</subfield><subfield code="d">1976-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1101850566</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Hager, Willi H.</subfield><subfield code="t">Hydraulic Engineering of Dams</subfield><subfield code="d">Milton : Taylor & Francis Group,c2020</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-415-62153-3</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844203</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6367402</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047442051 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:24Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9781135038038 9780203771433 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844203 |
oclc_num | 1204133985 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xix, 1060 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | CRC Press, Taylor & Francis Group |
record_format | marc |
spelling | Hager, Willi H. 1951- Verfasser (DE-588)121396657 aut Hydraulic engineering of dams Willi H. Hager, Anton J. Schleiss, Robert M. Boes, Michael Pfister Boca Raton ; London ; New York ; Leiden CRC Press, Taylor & Francis Group [2021] ©2021 1 Online-Ressource (xix, 1060 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Half Title -- Title -- Copyright -- Dedication -- Contents -- Preface -- Authors' CVs -- 1 Introduction -- 1.1 Definition and purposes of dams -- 1.2 Worldwide importance of dams and reservoirs -- 1.3 Historical overview and challenges of dam engineering -- 1.4 Dams as critical water infrastructures -- 1.5 Safe operation of dams and reservoirs through advanced dam safety concepts: example of Switzerland -- 1.6 Appurtenant structures of dams -- 1.6.1 Overview -- 1.6.2 Spillways including overflow and dissipation structures -- 1.6.3 Bottom outlets -- 1.6.4 Intakes -- 1.6.5 River diversion -- 1.7 Hydraulic engineering of dams: structure of the book -- References -- 2 Frontal crest overflow -- 2.1 Introduction -- 2.1.1 Overflow structures -- 2.1.2 Overflow types -- 2.1.3 Significance of overflow structure -- 2.2 Frontal overflow -- 2.2.1 Crest shapes and standard crest -- 2.2.2 Free surface profile and discharge characteristics -- 2.2.3 Bottom pressure characteristics -- 2.2.4 Velocity distribution -- 2.2.5 Cavitation design -- 2.2.6 Crest piers -- 2.2.7 Overflow crest gates -- 2.3 Additional weir effects -- 2.3.1 Influence of weir face slopes -- 2.3.2 Embankment weir -- 2.4 Scale effects -- 2.4.1 Real fluid effects in weir flow -- 2.4.2 Boundary layer development -- 2.4.3 Discharge coefficient -- 2.4.4 Round-crested weir flow analogy -- Notation -- References -- Bibliography -- 3 Spatial crest overflow -- 3.1 Introduction -- 3.2 Side channel -- 3.2.1 Typology -- 3.2.2 Hydraulic design -- 3.2.3 Spatial flow features -- 3.2.4 Examples of physical model studies -- 3.3 Morning glory overfall -- 3.3.1 Hydraulic concept -- 3.3.2 Crest shape -- 3.3.3 Discharge and pressure characteristics -- 3.3.4 Vertical shaft structure -- 3.3.5 Shaft air supply -- 3.3.6 Case study -- 3.4 Labyrinth weir -- 3.4.1 Historical evolution -- 3.4.2 Design criteria 3.5 Piano key weir -- 3.5.1 Historical evolution -- 3.5.2 PKW types and notation -- 3.5.3 Rating curve -- 3.5.4 Further design aspects -- 3.5.5 Downstream toe scour on riverbed -- 3.5.6 Upstream riverbed -- 3.6 Siphon -- 3.6.1 Description -- 3.6.2 Black-water siphon -- 3.6.3 White-water siphon -- Notation -- References -- Bibliography -- 4 Spillway chute -- 4.1 Introduction -- 4.2 Smooth chute -- 4.2.1 Hydraulic design -- 4.2.2 Surface air entrainment -- 4.2.3 Development of aerated chute flow -- 4.2.4 Spacing of chute aerators -- 4.2.5 Air transport phenomena -- 4.3 Uniform-aerated chute flow -- 4.3.1 Experimental approach -- 4.4 Chute aerator -- 4.4.1 Motivation and historical development -- 4.4.2 Cavitation potential -- 4.4.3 Cavitation protection -- 4.4.4 Aerator geometry and air supply system -- 4.4.5 Air transport downstream of aerator -- 4.4.6 Jet length and air entrainment coefficient -- 4.4.7 Downstream air concentration development -- 4.4.8 Effect of pre-aerated approach flow -- 4.4.9 Steep deflectors and cavity sub-pressure -- 4.4.10 Design procedure -- 4.5 Shock waves -- 4.5.1 Introduction -- 4.5.2 Chute expansion -- 4.5.3 Chute bend -- 4.5.4 Chute contraction -- 4.6 Roll waves -- 4.6.1 Definition and early advances -- 4.6.2 Advances from Montuori -- 4.7 Stepped chute -- 4.7.1 Introduction -- 4.7.2 Main application -- 4.7.3 General considerations -- 4.7.4 Hydraulic design -- Notation -- References -- Bibliography -- 5 Dissipation structures -- 5.1 Introduction -- 5.2 Hydraulic jump -- 5.2.1 Classical hydraulic jump -- 5.2.2 Hydraulic approach -- 5.2.3 Undular hydraulic jump -- 5.3 Stilling basins -- 5.3.1 General -- 5.3.2 Baffle-sill basin -- 5.3.3 Baffle-block basin -- 5.3.4 Abruptly expanding stilling basin -- 5.3.5 Slotted-bucket stilling basin -- 5.3.6 Basin characteristics -- 5.4 Drop structures -- 5.4.1 Basic flow features 5.4.2 Drop impact structures -- 5.4.3 Scour characteristics at unlined drop structures -- 5.5 Free fall outlets -- 5.5.1 Introduction -- 5.5.2 Jet trajectory -- 5.5.3 Jet impact -- Notation -- References -- Bibliography -- 6 Ski jump and plunge pool -- 6.1 Introduction -- 6.2 Ski jump -- 6.2.1 Description of structure and takeoff -- 6.2.2 Jet trajectory and disintegration -- 6.2.3 Bucket pressure, energy dissipation and choking features -- 6.2.4 Ski jump with triangular bucket -- 6.2.5 Air entrainment in ski-jump jets -- 6.2.6 Generalized jet air concentration features -- 6.3 Flip bucket -- 6.3.1 Types of bucket geometries -- 6.3.2 Horizontal triangular-shaped flip bucket -- 6.4 Granular scour -- 6.4.1 Granular scour and assessment methods -- 6.4.2 Effect of jet air content -- 6.4.3 Hydraulics of plane plunge pool scour -- 6.4.4 Hydraulics of spatial plunge pool scour -- 6.4.5 3D Flow features in plunge pool -- 6.4.6 Temporal evolution of spatial plunge pool scour -- 6.5 Rock scour -- 6.5.1 Introduction and challenges -- 6.5.2 Comprehensive scour method -- 6.5.3 CSM with active jet air entrainment -- 6.5.4 Difficulties in estimating scour depth -- 6.5.5 Measures for scour control -- 6.5.6 Case study: Kariba Dam scour hole -- Notation -- References -- Bibliography -- 7 River diversion structures -- 7.1 Introduction -- 7.2 Diversion tunnel -- 7.2.1 Introduction -- 7.2.2 Inlet flow -- 7.2.3 Tunnel flow -- 7.2.4 Choking flow -- 7.2.5 Outlet structure -- 7.2.6 Erosion protection at tunnel outlet -- 7.2.7 Surface protection of cofferdams -- 7.3 River diversion -- 7.3.1 Effect of constriction -- 7.3.2 Transitional flow -- 7.3.3 Subcritical flow -- 7.4 Culvert -- 7.4.1 Introduction -- 7.4.2 Hydraulic design -- 7.5 Pier and abutment scour -- 7.5.1 Introduction -- 7.5.2 Experimental setup -- 7.5.3 Scour depth equation -- 7.5.4 Limitations and further results 7.5.5 Effect of flood wave -- 7.5.6 Protection against scour using riprap -- Notation -- References -- Bibliography -- 8 Intakes and outlets -- 8.1 Introduction -- 8.2 High submergence intakes -- 8.2.1 Design principles -- 8.2.2 Orifice flow -- 8.2.3 Inlet geometry -- 8.3 Low submergence intakes -- 8.3.1 Vortex flow -- 8.3.2 Vertical intake vortex -- 8.3.3 Limit or critical intake submergence -- 8.3.4 Air entrainment -- 8.3.5 Design recommendations -- 8.4 Practical aspects -- 8.4.1 Floating debris and trash-rack vibrations -- 8.4.2 Emergency gate closure -- 8.5 Gate flow -- 8.5.1 Introduction -- 8.5.2 Vertical planar gate flow -- 8.5.3 Hinged sloping flap gate -- 8.5.4 Hydraulics of standard vertical gate -- 8.6 Low-level outlet -- 8.6.1 Design principles -- 8.6.2 Gate types -- 8.6.3 Gate vibrations -- 8.6.4 Hydraulics of high-head gates -- 8.6.5 Cavitation and cavitation damage -- 8.6.6 Passive and active air entrainment -- 8.6.7 Interaction of water flow and air entrainment -- 8.6.8 Recent experimentation on air demand -- Notation -- References -- Bibliography -- 9 Reservoir sedimentation -- 9.1 Involved processes and sustainable reservoir use -- 9.2 Sedimentation rate and sediment distribution -- 9.3 Evolution of knowledge and management competence -- 9.4 Measures against reservoir sedimentation -- 9.4.1 Overview -- 9.4.2 Measures in catchment area -- 9.4.3 Measures in reservoir -- 9.4.4 Measures at dam -- 9.5 Sediment bypass tunnel -- 9.5.1 General -- 9.5.2 Suitable bypassing discharge and target sediment granulometry -- 9.5.3 Hydraulic design -- 9.5.4 Hydro-abrasion processes -- 9.5.5 Bed load particle motion dynamics -- 9.5.6 Mechanistic abrasion model -- 9.5.7 Lining material -- 9.5.8 Design of tunnel invert lining -- 9.5.9 Tunnel operation, maintenance, and rehabilitation -- 9.5.10 Instrumentation and monitoring techniques 9.5.11 Ecological impacts of SBT operation -- 9.6 Turbidity currents -- 9.6.1 Definition -- 9.6.2 Plunge point and equilibrium flow -- 9.6.3 Flow over obstacle -- 9.6.4 Flow across screen -- 9.6.5 Control by opposing jets -- 9.6.6 Intrusion -- 9.7 Sedimentation control -- 9.7.1 Turbulent suspension -- 9.7.2 Recommendations on turbidity current venting -- 9.7.3 Sediment flushing -- 9.7.4 Selection of reservoir geometry and locations of inlets and outlets -- 9.8 Secondary hydraulic effects -- 9.8.1 Upstream river -- 9.8.2 Downstream river -- 9.8.3 Replenishment or disposal of sediments -- Notation -- References -- Bibliography -- 10 Impulse waves in reservoirs -- 10.1 Introduction -- 10.2 Fundamental approaches -- 10.2.1 Wave theories and impulse waves -- 10.2.2 Wave generation by moving wedge -- 10.2.3 Wave generation by falling mass -- 10.2.4 Wave run-up and overtopping features -- 10.3 2D impulse wave generation and propagation -- 10.3.1 Review of research activities -- 10.3.2 Experimentation -- 10.3.3 Experimental results -- 10.4 Impulse wave types -- 10.4.1 Motivation and experimentation -- 10.4.2 Experimental results and discussion -- 10.4.3 Shortcut on nonlinear wave theories -- 10.5 Transformation of solitary wave to overland flow -- 10.5.1 Motivation and experimentation -- 10.5.2 Plane wave run-up -- 10.5.3 Plane overland flow -- 10.6 Underwater deposition feature -- 10.6.1 Motivation and data basis -- 10.6.2 Test results -- 10.7 Rigid dam overtopping -- 10.7.1 Motivation and experimentation -- 10.7.2 Overtopping processes -- 10.7.3 Experimental results -- 10.8 Erodable dam overtopping -- 10.8.1 Motivation and literature review -- 10.8.2 Experimental program -- 10.8.3 Experimental results -- 10.8.4 Discussion of results -- 10.9 Spatial impulse waves -- 10.9.1 Motivation -- 10.9.2 Experimental setup -- 10.9.3 Process description 10.9.4 Experimental results Hydraulic engineering Staudamm (DE-588)4057020-4 gnd rswk-swf Staudamm (DE-588)4057020-4 s DE-604 Schleiss, Anton J. 1953- Verfasser (DE-588)1080132678 aut Boes, Robert M. 1969- Verfasser (DE-588)122379152 aut Pfister, Michael 1976- Verfasser (DE-588)1101850566 aut Erscheint auch als Hager, Willi H. Hydraulic Engineering of Dams Milton : Taylor & Francis Group,c2020 Druck-Ausgabe, Hardcover 978-0-415-62153-3 |
spellingShingle | Hager, Willi H. 1951- Schleiss, Anton J. 1953- Boes, Robert M. 1969- Pfister, Michael 1976- Hydraulic engineering of dams Cover -- Half Title -- Title -- Copyright -- Dedication -- Contents -- Preface -- Authors' CVs -- 1 Introduction -- 1.1 Definition and purposes of dams -- 1.2 Worldwide importance of dams and reservoirs -- 1.3 Historical overview and challenges of dam engineering -- 1.4 Dams as critical water infrastructures -- 1.5 Safe operation of dams and reservoirs through advanced dam safety concepts: example of Switzerland -- 1.6 Appurtenant structures of dams -- 1.6.1 Overview -- 1.6.2 Spillways including overflow and dissipation structures -- 1.6.3 Bottom outlets -- 1.6.4 Intakes -- 1.6.5 River diversion -- 1.7 Hydraulic engineering of dams: structure of the book -- References -- 2 Frontal crest overflow -- 2.1 Introduction -- 2.1.1 Overflow structures -- 2.1.2 Overflow types -- 2.1.3 Significance of overflow structure -- 2.2 Frontal overflow -- 2.2.1 Crest shapes and standard crest -- 2.2.2 Free surface profile and discharge characteristics -- 2.2.3 Bottom pressure characteristics -- 2.2.4 Velocity distribution -- 2.2.5 Cavitation design -- 2.2.6 Crest piers -- 2.2.7 Overflow crest gates -- 2.3 Additional weir effects -- 2.3.1 Influence of weir face slopes -- 2.3.2 Embankment weir -- 2.4 Scale effects -- 2.4.1 Real fluid effects in weir flow -- 2.4.2 Boundary layer development -- 2.4.3 Discharge coefficient -- 2.4.4 Round-crested weir flow analogy -- Notation -- References -- Bibliography -- 3 Spatial crest overflow -- 3.1 Introduction -- 3.2 Side channel -- 3.2.1 Typology -- 3.2.2 Hydraulic design -- 3.2.3 Spatial flow features -- 3.2.4 Examples of physical model studies -- 3.3 Morning glory overfall -- 3.3.1 Hydraulic concept -- 3.3.2 Crest shape -- 3.3.3 Discharge and pressure characteristics -- 3.3.4 Vertical shaft structure -- 3.3.5 Shaft air supply -- 3.3.6 Case study -- 3.4 Labyrinth weir -- 3.4.1 Historical evolution -- 3.4.2 Design criteria 3.5 Piano key weir -- 3.5.1 Historical evolution -- 3.5.2 PKW types and notation -- 3.5.3 Rating curve -- 3.5.4 Further design aspects -- 3.5.5 Downstream toe scour on riverbed -- 3.5.6 Upstream riverbed -- 3.6 Siphon -- 3.6.1 Description -- 3.6.2 Black-water siphon -- 3.6.3 White-water siphon -- Notation -- References -- Bibliography -- 4 Spillway chute -- 4.1 Introduction -- 4.2 Smooth chute -- 4.2.1 Hydraulic design -- 4.2.2 Surface air entrainment -- 4.2.3 Development of aerated chute flow -- 4.2.4 Spacing of chute aerators -- 4.2.5 Air transport phenomena -- 4.3 Uniform-aerated chute flow -- 4.3.1 Experimental approach -- 4.4 Chute aerator -- 4.4.1 Motivation and historical development -- 4.4.2 Cavitation potential -- 4.4.3 Cavitation protection -- 4.4.4 Aerator geometry and air supply system -- 4.4.5 Air transport downstream of aerator -- 4.4.6 Jet length and air entrainment coefficient -- 4.4.7 Downstream air concentration development -- 4.4.8 Effect of pre-aerated approach flow -- 4.4.9 Steep deflectors and cavity sub-pressure -- 4.4.10 Design procedure -- 4.5 Shock waves -- 4.5.1 Introduction -- 4.5.2 Chute expansion -- 4.5.3 Chute bend -- 4.5.4 Chute contraction -- 4.6 Roll waves -- 4.6.1 Definition and early advances -- 4.6.2 Advances from Montuori -- 4.7 Stepped chute -- 4.7.1 Introduction -- 4.7.2 Main application -- 4.7.3 General considerations -- 4.7.4 Hydraulic design -- Notation -- References -- Bibliography -- 5 Dissipation structures -- 5.1 Introduction -- 5.2 Hydraulic jump -- 5.2.1 Classical hydraulic jump -- 5.2.2 Hydraulic approach -- 5.2.3 Undular hydraulic jump -- 5.3 Stilling basins -- 5.3.1 General -- 5.3.2 Baffle-sill basin -- 5.3.3 Baffle-block basin -- 5.3.4 Abruptly expanding stilling basin -- 5.3.5 Slotted-bucket stilling basin -- 5.3.6 Basin characteristics -- 5.4 Drop structures -- 5.4.1 Basic flow features 5.4.2 Drop impact structures -- 5.4.3 Scour characteristics at unlined drop structures -- 5.5 Free fall outlets -- 5.5.1 Introduction -- 5.5.2 Jet trajectory -- 5.5.3 Jet impact -- Notation -- References -- Bibliography -- 6 Ski jump and plunge pool -- 6.1 Introduction -- 6.2 Ski jump -- 6.2.1 Description of structure and takeoff -- 6.2.2 Jet trajectory and disintegration -- 6.2.3 Bucket pressure, energy dissipation and choking features -- 6.2.4 Ski jump with triangular bucket -- 6.2.5 Air entrainment in ski-jump jets -- 6.2.6 Generalized jet air concentration features -- 6.3 Flip bucket -- 6.3.1 Types of bucket geometries -- 6.3.2 Horizontal triangular-shaped flip bucket -- 6.4 Granular scour -- 6.4.1 Granular scour and assessment methods -- 6.4.2 Effect of jet air content -- 6.4.3 Hydraulics of plane plunge pool scour -- 6.4.4 Hydraulics of spatial plunge pool scour -- 6.4.5 3D Flow features in plunge pool -- 6.4.6 Temporal evolution of spatial plunge pool scour -- 6.5 Rock scour -- 6.5.1 Introduction and challenges -- 6.5.2 Comprehensive scour method -- 6.5.3 CSM with active jet air entrainment -- 6.5.4 Difficulties in estimating scour depth -- 6.5.5 Measures for scour control -- 6.5.6 Case study: Kariba Dam scour hole -- Notation -- References -- Bibliography -- 7 River diversion structures -- 7.1 Introduction -- 7.2 Diversion tunnel -- 7.2.1 Introduction -- 7.2.2 Inlet flow -- 7.2.3 Tunnel flow -- 7.2.4 Choking flow -- 7.2.5 Outlet structure -- 7.2.6 Erosion protection at tunnel outlet -- 7.2.7 Surface protection of cofferdams -- 7.3 River diversion -- 7.3.1 Effect of constriction -- 7.3.2 Transitional flow -- 7.3.3 Subcritical flow -- 7.4 Culvert -- 7.4.1 Introduction -- 7.4.2 Hydraulic design -- 7.5 Pier and abutment scour -- 7.5.1 Introduction -- 7.5.2 Experimental setup -- 7.5.3 Scour depth equation -- 7.5.4 Limitations and further results 7.5.5 Effect of flood wave -- 7.5.6 Protection against scour using riprap -- Notation -- References -- Bibliography -- 8 Intakes and outlets -- 8.1 Introduction -- 8.2 High submergence intakes -- 8.2.1 Design principles -- 8.2.2 Orifice flow -- 8.2.3 Inlet geometry -- 8.3 Low submergence intakes -- 8.3.1 Vortex flow -- 8.3.2 Vertical intake vortex -- 8.3.3 Limit or critical intake submergence -- 8.3.4 Air entrainment -- 8.3.5 Design recommendations -- 8.4 Practical aspects -- 8.4.1 Floating debris and trash-rack vibrations -- 8.4.2 Emergency gate closure -- 8.5 Gate flow -- 8.5.1 Introduction -- 8.5.2 Vertical planar gate flow -- 8.5.3 Hinged sloping flap gate -- 8.5.4 Hydraulics of standard vertical gate -- 8.6 Low-level outlet -- 8.6.1 Design principles -- 8.6.2 Gate types -- 8.6.3 Gate vibrations -- 8.6.4 Hydraulics of high-head gates -- 8.6.5 Cavitation and cavitation damage -- 8.6.6 Passive and active air entrainment -- 8.6.7 Interaction of water flow and air entrainment -- 8.6.8 Recent experimentation on air demand -- Notation -- References -- Bibliography -- 9 Reservoir sedimentation -- 9.1 Involved processes and sustainable reservoir use -- 9.2 Sedimentation rate and sediment distribution -- 9.3 Evolution of knowledge and management competence -- 9.4 Measures against reservoir sedimentation -- 9.4.1 Overview -- 9.4.2 Measures in catchment area -- 9.4.3 Measures in reservoir -- 9.4.4 Measures at dam -- 9.5 Sediment bypass tunnel -- 9.5.1 General -- 9.5.2 Suitable bypassing discharge and target sediment granulometry -- 9.5.3 Hydraulic design -- 9.5.4 Hydro-abrasion processes -- 9.5.5 Bed load particle motion dynamics -- 9.5.6 Mechanistic abrasion model -- 9.5.7 Lining material -- 9.5.8 Design of tunnel invert lining -- 9.5.9 Tunnel operation, maintenance, and rehabilitation -- 9.5.10 Instrumentation and monitoring techniques 9.5.11 Ecological impacts of SBT operation -- 9.6 Turbidity currents -- 9.6.1 Definition -- 9.6.2 Plunge point and equilibrium flow -- 9.6.3 Flow over obstacle -- 9.6.4 Flow across screen -- 9.6.5 Control by opposing jets -- 9.6.6 Intrusion -- 9.7 Sedimentation control -- 9.7.1 Turbulent suspension -- 9.7.2 Recommendations on turbidity current venting -- 9.7.3 Sediment flushing -- 9.7.4 Selection of reservoir geometry and locations of inlets and outlets -- 9.8 Secondary hydraulic effects -- 9.8.1 Upstream river -- 9.8.2 Downstream river -- 9.8.3 Replenishment or disposal of sediments -- Notation -- References -- Bibliography -- 10 Impulse waves in reservoirs -- 10.1 Introduction -- 10.2 Fundamental approaches -- 10.2.1 Wave theories and impulse waves -- 10.2.2 Wave generation by moving wedge -- 10.2.3 Wave generation by falling mass -- 10.2.4 Wave run-up and overtopping features -- 10.3 2D impulse wave generation and propagation -- 10.3.1 Review of research activities -- 10.3.2 Experimentation -- 10.3.3 Experimental results -- 10.4 Impulse wave types -- 10.4.1 Motivation and experimentation -- 10.4.2 Experimental results and discussion -- 10.4.3 Shortcut on nonlinear wave theories -- 10.5 Transformation of solitary wave to overland flow -- 10.5.1 Motivation and experimentation -- 10.5.2 Plane wave run-up -- 10.5.3 Plane overland flow -- 10.6 Underwater deposition feature -- 10.6.1 Motivation and data basis -- 10.6.2 Test results -- 10.7 Rigid dam overtopping -- 10.7.1 Motivation and experimentation -- 10.7.2 Overtopping processes -- 10.7.3 Experimental results -- 10.8 Erodable dam overtopping -- 10.8.1 Motivation and literature review -- 10.8.2 Experimental program -- 10.8.3 Experimental results -- 10.8.4 Discussion of results -- 10.9 Spatial impulse waves -- 10.9.1 Motivation -- 10.9.2 Experimental setup -- 10.9.3 Process description 10.9.4 Experimental results Hydraulic engineering Staudamm (DE-588)4057020-4 gnd |
subject_GND | (DE-588)4057020-4 |
title | Hydraulic engineering of dams |
title_auth | Hydraulic engineering of dams |
title_exact_search | Hydraulic engineering of dams |
title_exact_search_txtP | Hydraulic engineering of dams |
title_full | Hydraulic engineering of dams Willi H. Hager, Anton J. Schleiss, Robert M. Boes, Michael Pfister |
title_fullStr | Hydraulic engineering of dams Willi H. Hager, Anton J. Schleiss, Robert M. Boes, Michael Pfister |
title_full_unstemmed | Hydraulic engineering of dams Willi H. Hager, Anton J. Schleiss, Robert M. Boes, Michael Pfister |
title_short | Hydraulic engineering of dams |
title_sort | hydraulic engineering of dams |
topic | Hydraulic engineering Staudamm (DE-588)4057020-4 gnd |
topic_facet | Hydraulic engineering Staudamm |
work_keys_str_mv | AT hagerwillih hydraulicengineeringofdams AT schleissantonj hydraulicengineeringofdams AT boesrobertm hydraulicengineeringofdams AT pfistermichael hydraulicengineeringofdams |