Digital communications 1: fundamentals and techniques
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London, UK
ISTE
2020
Hoboken, NJ, USA Wiley |
Schriftenreihe: | Information systems, web and pervasive computing series
|
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | 1 Online-Ressource (xii, 299 Seiten) Illustrationen, Diagramme |
ISBN: | 9781119779797 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442033 | ||
003 | DE-604 | ||
005 | 20230215 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781119779797 |9 978-1-119-77979-7 | ||
035 | |a (ZDB-30-PQE)EBC6360677 | ||
035 | |a (ZDB-30-PAD)EBC6360677 | ||
035 | |a (ZDB-89-EBL)EBL6360677 | ||
035 | |a (OCoLC)1202481220 | ||
035 | |a (DE-599)BVBBV047442033 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 621.382 | |
100 | 1 | |a El Assad, Safwan |e Verfasser |0 (DE-588)1050280172 |4 aut | |
245 | 1 | 0 | |a Digital communications 1 |b fundamentals and techniques |c Safwan El Assad, Dominique Barba |
264 | 1 | |a London, UK |b ISTE |c 2020 | |
264 | 1 | |a Hoboken, NJ, USA |b Wiley | |
264 | 4 | |c © 2020 | |
300 | |a 1 Online-Ressource (xii, 299 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Information systems, web and pervasive computing series | |
505 | 8 | |a Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Part 1 Theory of Information -- Introduction to Part 1 -- Chapter 1 Introduction to Telecommunications -- 1.1. Role of a communication system -- 1.1.1. Types of services offered by communication systems -- 1.1.2. Examples of telecommunications services -- 1.2. Principle of communication -- 1.3. Trend towards digital communications -- Chapter 2 Measurement of Information of a Discrete Source and Channel Capacity -- 2.1. Introduction and definitions -- 2.2. Examples of discrete sources -- 2.2.1. Simple source (memoryless) -- 2.2.2. Discrete source with memory -- 2.2.3. Ergodic source: stationary source with finite memory -- 2.2.4. First order Markovian source (first order Markov chain) -- 2.3. Uncertainty, amount of information and entropy (Shannon's 1948 theorem) -- 2.3.1. Entropy of a source -- 2.3.2. Fundamental lemma -- 2.3.3. Properties of entropy -- 2.3.4. Examples of entropy -- 2.4. Information rate and redundancy of a source -- 2.5. Discrete channels and entropies -- 2.5.1. Conditional entropies -- 2.5.2. Relations between the various entropies -- 2.6. Mutual information -- 2.7. Capacity, redundancy and efficiency of a discrete channel -- 2.7.1. Shannon's theorem: capacity of a communication system -- 2.8. Entropies with k random variables -- Chapter 3 Source Coding for Non-disturbance Channels -- 3.1. Introduction -- 3.2. Interest of binary codes -- 3.3. Single decoding codes -- 3.3.1. Regular code -- 3.3.2. Single-decoded code (decipherable or decodable code) -- 3.3.3. Instantaneous code (irreducible code) -- 3.3.4. Prefix -- 3.3.5. Design of an instantaneous binary code -- 3.3.6. Kraft-McMillan inequality -- 3.4. Average codeword length -- 3.4.1. Coding efficiency in terms of transmission speed -- 3.4.2. Minimum average codeword length lmin | |
505 | 8 | |a 3.5. Capacity, efficiency and redundancy of a code -- 3.6. Absolute optimal codes -- 3.7. K-order extension of a source -- 3.7.1. Entropy of the 2nd order extension of a source -- 3.7.2. Simple example of the interest of coding a source extension -- 3.8. Shannon's first theorem -- 3.9. Design of optimal binary codes -- 3.9.1. Shannon-Fano coding -- 3.9.2. Huffman code -- Chapter 4 Channel Coding for Disturbed Transmission Channels -- 4.1. Introduction -- 4.2. Shannon's second theorem (1948) -- 4.3. Error correction strategies -- 4.4. Classification of error detection codes or error correction codes -- 4.5. Definitions related to code performance -- 4.5.1. Efficiency -- 4.5.2. Weight of linear code or Hamming's weight -- 4.5.3. Hamming distance -- 4.6. Form of the decision -- 4.6.1. Maximum a posteriori likelihood decoding -- 4.7. Linear group codes -- 4.7.1. Decoding ball concept: Hamming's theorem -- 4.7.2. Generating matrix [G] and test matrix [H] -- 4.7.3. Error detection and correction -- 4.7.4. Applications: Hamming codes (r = 1) -- 4.7.5. Coding and decoding circuits -- 4.7.6. Extension of Hamming codes -- 4.7.7. Relationships between columns of the matrix [H'] -- 4.8. Cyclic codes -- 4.8.1. Introduction -- 4.8.2. Expression of a circular permutation -- 4.8.3. Generating polynomial g(x), generating matrix [G] and theorem of cyclic codes -- 4.8.4. Dual code generated by h(x) and parity control matrix [H] -- 4.8.5. Construction of the codewords (coding) -- 4.9. Linear feedback shift register (LFSR) and its applications -- 4.9.1. Properties -- 4.9.2. Linear feedback shift register encoder and decoder (LFSR) -- 4.9.3. Coding by multiplication: non-systematic code -- 4.9.4. Detection of standard errors with cyclic codes -- 4.9.5. Pseudo-random sequence generators: M-sequences, Gold, Kasami and Trivium | |
505 | 8 | |a Part 2 Baseband Digital Transmissions and with Carrier Modulation -- Introduction to Part 2 -- Chapter 5 Binary to M-ary Coding and M-ary to Signal Coding: On-line Codes -- 5.1. Presentation and typology -- 5.2. Criteria for choosing an on-line code -- 5.3. Power spectral densities (PSD) of on-line codes -- 5.4. Description and spectral characterization of the main linear on-line codes with successive independent symbols -- 5.4.1. Binary NRZ code (non-return to zero): two-level code, two types of code -- 5.4.2. NRZ M-ary code -- 5.4.3. Binary RZ code (return to zero) -- 5.4.4. Polar RZ on-line code -- 5.4.5. Binary biphase on-line code (Manchester code) -- 5.4.6. Binary biphase mark or differential code (Manchester mark code) -- 5.5. Description and spectral characterization of the main on-line non-linear and non-alphabetic codes with successive dependent -- 5.5.1. Miller's code -- 5.5.2. Bipolar RZ code or AMI code (alternate marked inversion) -- 5.5.3. CMI code (code mark inversion) -- 5.5.4. HDB-n code (high density bipolar on-line code of order n) -- 5.6. Description and spectral characterization of partial response linear codes -- 5.6.1. Generation and interest of precoding -- 5.6.2. Structure of the coder and precoder -- 5.6.3. Power spectral density of partial response linear on-line codes -- 5.6.4. Most common partial response linear on-line codes -- Chapter 6 Transmission of an M-ary Digital Signal on a Low-pass Channel -- 6.1. Introduction -- 6.2. Digital systems and standardization for high data rate transmissions -- 6.3. Modeling the transmission of an M-ary digital signal through the communication chain -- 6.3.1. Equivalent energy bandwidth Δfe of a low-pass filter -- 6.4. Characterization of the intersymbol interference: eye pattern -- 6.4.1. Eye pattern -- 6.5. Probability of error Pe | |
505 | 8 | |a 6.5.1. Probability of error: case of binary symbols -- 6.5.2. Probability of error: case of binary RZ code -- 6.5.3. Probability of error: general case of M-ary symbols -- 6.5.4. Probability of error: case of bipolar code -- 6.6. Conditions of absence of intersymbol interference: Nyquist criteria -- 6.6.1. Nyquist temporal criterion -- 6.6.2. Nyquist frequency criterion -- 6.6.3. Interpretation of the Nyquist frequency criterion -- 6.7. Optimal distribution of filtering between transmission and reception -- 6.7.1. Expression of the minimum probability of error for a low-pass channel satisfying the Nyquist criterion -- 6.8. Transmission with a partial response linear coder -- 6.8.1. Transmission using the duobinary code -- 6.8.2. Transmission using 2nd order interleaved bipolar code -- 6.8.3. Reception of partial response linear codes -- 6.8.4. Probability of error -- Chapter 7 Digital Transmissions with Carrier Modulation -- 7.1. Introduction and schematic diagram of a digital radio transmission -- 7.2. Multiple access techniques and most common standards -- 7.3. Structure of a radio link, a satellite link and a mobile radio channel -- 7.3.1. Structure of a terrestrial link (one jump) -- 7.3.2. Structure of a satellite telecommunication link -- 7.3.3. Mobile radio channel -- 7.4. Effects of multiple paths and non-linearities of power amplifiers -- 7.4.1. Effects of multiple paths: simple case of a direct path and onlyone delayed path -- 7.4.2. Effects of non-linearities of power amplifiers -- 7.5. Linear digital carrier modulations -- 7.5.1. Principle -- 7.5.2. General characteristics of the modulated signal s(t) -- 7.6. Quadrature digital linear modulations: general structure of the modulator, spatial diagram, constellation diagram and choic -- 7.6.1. General structure of the modulator | |
505 | 8 | |a 7.6.2. Spatial diagram (or vectorial) and constellation diagram -- 7.6.3. Choosing a constellation diagram -- 7.7. Digital radio transmission and equivalent baseband digital transmission: complex envelope -- 7.7.1. Equivalent baseband digital transmission: complex envelope -- 7.8. Equivalent baseband transmission, interest and justification: analytical signal and complex envelope -- 7.8.1. Interest: important simplification in numerical simulation -- 7.8.2. Analytical signal and complex envelope of a modulated signal -- 7.9. Relationship between band-pass filter H and equivalent low-pass filter -- 7.9.1. Probability of errors -- 7.10. M-ary Phase Shift Keying Modulation (M-PSK) -- 7.10.1. Binary Phase Shift Keying (BPSK) modulation and demodulation -- 7.10.2. Quaternary Phase Shift Keying (QPSK) modulation and demodulation -- 7.10.3. Differential M-PSK receiver -- 7.10.4. Offset Quaternary Phase Shift Keying (OQPSK) -- 7.11. M-ary Quadrature Amplitude Modulation (M-QAM) -- 7.12. Detailed presentation of 16-QAM modulation and demodulation -- 7.12.1. Spectral occupancy of the 16-QAM modulated signal -- 7.13. Amplitude and Phase Shift Keying Modulation (APSK) -- 7.13.1. CIR (4, 4, 4, 4) modulation: 4 amplitudes, 4 phases -- 7.14. Detailed presentation of the 8-PSK modulation and demoludation -- 7.14.1. Differential coding and decoding of the 8-PSK modulation -- 7.14.2. Realization of the differential encoder and decoder: by Simulink simulation (MATLAB) and hardware implementation based o -- 7.15. Performances of modulations in spectral occupancy and efficiency -- References -- Index -- Other titles from ISTE in Information Systems, Web and Pervasive Computing -- EULA. | |
650 | 4 | |a Digital communications | |
700 | 1 | |a Barba, Dominique |e Verfasser |0 (DE-588)1235863875 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |a El Assad, Safwan |t Digital Communications 1 |d Newark : John Wiley & Sons, Incorporated,c2020 |n Druck-Ausgabe |z 978-1-78630-541-1 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032844185 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6360677 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734709456896 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | El Assad, Safwan Barba, Dominique |
author_GND | (DE-588)1050280172 (DE-588)1235863875 |
author_facet | El Assad, Safwan Barba, Dominique |
author_role | aut aut |
author_sort | El Assad, Safwan |
author_variant | a s e as ase d b db |
building | Verbundindex |
bvnumber | BV047442033 |
collection | ZDB-30-PQE |
contents | Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Part 1 Theory of Information -- Introduction to Part 1 -- Chapter 1 Introduction to Telecommunications -- 1.1. Role of a communication system -- 1.1.1. Types of services offered by communication systems -- 1.1.2. Examples of telecommunications services -- 1.2. Principle of communication -- 1.3. Trend towards digital communications -- Chapter 2 Measurement of Information of a Discrete Source and Channel Capacity -- 2.1. Introduction and definitions -- 2.2. Examples of discrete sources -- 2.2.1. Simple source (memoryless) -- 2.2.2. Discrete source with memory -- 2.2.3. Ergodic source: stationary source with finite memory -- 2.2.4. First order Markovian source (first order Markov chain) -- 2.3. Uncertainty, amount of information and entropy (Shannon's 1948 theorem) -- 2.3.1. Entropy of a source -- 2.3.2. Fundamental lemma -- 2.3.3. Properties of entropy -- 2.3.4. Examples of entropy -- 2.4. Information rate and redundancy of a source -- 2.5. Discrete channels and entropies -- 2.5.1. Conditional entropies -- 2.5.2. Relations between the various entropies -- 2.6. Mutual information -- 2.7. Capacity, redundancy and efficiency of a discrete channel -- 2.7.1. Shannon's theorem: capacity of a communication system -- 2.8. Entropies with k random variables -- Chapter 3 Source Coding for Non-disturbance Channels -- 3.1. Introduction -- 3.2. Interest of binary codes -- 3.3. Single decoding codes -- 3.3.1. Regular code -- 3.3.2. Single-decoded code (decipherable or decodable code) -- 3.3.3. Instantaneous code (irreducible code) -- 3.3.4. Prefix -- 3.3.5. Design of an instantaneous binary code -- 3.3.6. Kraft-McMillan inequality -- 3.4. Average codeword length -- 3.4.1. Coding efficiency in terms of transmission speed -- 3.4.2. Minimum average codeword length lmin 3.5. Capacity, efficiency and redundancy of a code -- 3.6. Absolute optimal codes -- 3.7. K-order extension of a source -- 3.7.1. Entropy of the 2nd order extension of a source -- 3.7.2. Simple example of the interest of coding a source extension -- 3.8. Shannon's first theorem -- 3.9. Design of optimal binary codes -- 3.9.1. Shannon-Fano coding -- 3.9.2. Huffman code -- Chapter 4 Channel Coding for Disturbed Transmission Channels -- 4.1. Introduction -- 4.2. Shannon's second theorem (1948) -- 4.3. Error correction strategies -- 4.4. Classification of error detection codes or error correction codes -- 4.5. Definitions related to code performance -- 4.5.1. Efficiency -- 4.5.2. Weight of linear code or Hamming's weight -- 4.5.3. Hamming distance -- 4.6. Form of the decision -- 4.6.1. Maximum a posteriori likelihood decoding -- 4.7. Linear group codes -- 4.7.1. Decoding ball concept: Hamming's theorem -- 4.7.2. Generating matrix [G] and test matrix [H] -- 4.7.3. Error detection and correction -- 4.7.4. Applications: Hamming codes (r = 1) -- 4.7.5. Coding and decoding circuits -- 4.7.6. Extension of Hamming codes -- 4.7.7. Relationships between columns of the matrix [H'] -- 4.8. Cyclic codes -- 4.8.1. Introduction -- 4.8.2. Expression of a circular permutation -- 4.8.3. Generating polynomial g(x), generating matrix [G] and theorem of cyclic codes -- 4.8.4. Dual code generated by h(x) and parity control matrix [H] -- 4.8.5. Construction of the codewords (coding) -- 4.9. Linear feedback shift register (LFSR) and its applications -- 4.9.1. Properties -- 4.9.2. Linear feedback shift register encoder and decoder (LFSR) -- 4.9.3. Coding by multiplication: non-systematic code -- 4.9.4. Detection of standard errors with cyclic codes -- 4.9.5. Pseudo-random sequence generators: M-sequences, Gold, Kasami and Trivium Part 2 Baseband Digital Transmissions and with Carrier Modulation -- Introduction to Part 2 -- Chapter 5 Binary to M-ary Coding and M-ary to Signal Coding: On-line Codes -- 5.1. Presentation and typology -- 5.2. Criteria for choosing an on-line code -- 5.3. Power spectral densities (PSD) of on-line codes -- 5.4. Description and spectral characterization of the main linear on-line codes with successive independent symbols -- 5.4.1. Binary NRZ code (non-return to zero): two-level code, two types of code -- 5.4.2. NRZ M-ary code -- 5.4.3. Binary RZ code (return to zero) -- 5.4.4. Polar RZ on-line code -- 5.4.5. Binary biphase on-line code (Manchester code) -- 5.4.6. Binary biphase mark or differential code (Manchester mark code) -- 5.5. Description and spectral characterization of the main on-line non-linear and non-alphabetic codes with successive dependent -- 5.5.1. Miller's code -- 5.5.2. Bipolar RZ code or AMI code (alternate marked inversion) -- 5.5.3. CMI code (code mark inversion) -- 5.5.4. HDB-n code (high density bipolar on-line code of order n) -- 5.6. Description and spectral characterization of partial response linear codes -- 5.6.1. Generation and interest of precoding -- 5.6.2. Structure of the coder and precoder -- 5.6.3. Power spectral density of partial response linear on-line codes -- 5.6.4. Most common partial response linear on-line codes -- Chapter 6 Transmission of an M-ary Digital Signal on a Low-pass Channel -- 6.1. Introduction -- 6.2. Digital systems and standardization for high data rate transmissions -- 6.3. Modeling the transmission of an M-ary digital signal through the communication chain -- 6.3.1. Equivalent energy bandwidth Δfe of a low-pass filter -- 6.4. Characterization of the intersymbol interference: eye pattern -- 6.4.1. Eye pattern -- 6.5. Probability of error Pe 6.5.1. Probability of error: case of binary symbols -- 6.5.2. Probability of error: case of binary RZ code -- 6.5.3. Probability of error: general case of M-ary symbols -- 6.5.4. Probability of error: case of bipolar code -- 6.6. Conditions of absence of intersymbol interference: Nyquist criteria -- 6.6.1. Nyquist temporal criterion -- 6.6.2. Nyquist frequency criterion -- 6.6.3. Interpretation of the Nyquist frequency criterion -- 6.7. Optimal distribution of filtering between transmission and reception -- 6.7.1. Expression of the minimum probability of error for a low-pass channel satisfying the Nyquist criterion -- 6.8. Transmission with a partial response linear coder -- 6.8.1. Transmission using the duobinary code -- 6.8.2. Transmission using 2nd order interleaved bipolar code -- 6.8.3. Reception of partial response linear codes -- 6.8.4. Probability of error -- Chapter 7 Digital Transmissions with Carrier Modulation -- 7.1. Introduction and schematic diagram of a digital radio transmission -- 7.2. Multiple access techniques and most common standards -- 7.3. Structure of a radio link, a satellite link and a mobile radio channel -- 7.3.1. Structure of a terrestrial link (one jump) -- 7.3.2. Structure of a satellite telecommunication link -- 7.3.3. Mobile radio channel -- 7.4. Effects of multiple paths and non-linearities of power amplifiers -- 7.4.1. Effects of multiple paths: simple case of a direct path and onlyone delayed path -- 7.4.2. Effects of non-linearities of power amplifiers -- 7.5. Linear digital carrier modulations -- 7.5.1. Principle -- 7.5.2. General characteristics of the modulated signal s(t) -- 7.6. Quadrature digital linear modulations: general structure of the modulator, spatial diagram, constellation diagram and choic -- 7.6.1. General structure of the modulator 7.6.2. Spatial diagram (or vectorial) and constellation diagram -- 7.6.3. Choosing a constellation diagram -- 7.7. Digital radio transmission and equivalent baseband digital transmission: complex envelope -- 7.7.1. Equivalent baseband digital transmission: complex envelope -- 7.8. Equivalent baseband transmission, interest and justification: analytical signal and complex envelope -- 7.8.1. Interest: important simplification in numerical simulation -- 7.8.2. Analytical signal and complex envelope of a modulated signal -- 7.9. Relationship between band-pass filter H and equivalent low-pass filter -- 7.9.1. Probability of errors -- 7.10. M-ary Phase Shift Keying Modulation (M-PSK) -- 7.10.1. Binary Phase Shift Keying (BPSK) modulation and demodulation -- 7.10.2. Quaternary Phase Shift Keying (QPSK) modulation and demodulation -- 7.10.3. Differential M-PSK receiver -- 7.10.4. Offset Quaternary Phase Shift Keying (OQPSK) -- 7.11. M-ary Quadrature Amplitude Modulation (M-QAM) -- 7.12. Detailed presentation of 16-QAM modulation and demodulation -- 7.12.1. Spectral occupancy of the 16-QAM modulated signal -- 7.13. Amplitude and Phase Shift Keying Modulation (APSK) -- 7.13.1. CIR (4, 4, 4, 4) modulation: 4 amplitudes, 4 phases -- 7.14. Detailed presentation of the 8-PSK modulation and demoludation -- 7.14.1. Differential coding and decoding of the 8-PSK modulation -- 7.14.2. Realization of the differential encoder and decoder: by Simulink simulation (MATLAB) and hardware implementation based o -- 7.15. Performances of modulations in spectral occupancy and efficiency -- References -- Index -- Other titles from ISTE in Information Systems, Web and Pervasive Computing -- EULA. |
ctrlnum | (ZDB-30-PQE)EBC6360677 (ZDB-30-PAD)EBC6360677 (ZDB-89-EBL)EBL6360677 (OCoLC)1202481220 (DE-599)BVBBV047442033 |
dewey-full | 621.382 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.382 |
dewey-search | 621.382 |
dewey-sort | 3621.382 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10640nmm a2200457zc 4500</leader><controlfield tag="001">BV047442033</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119779797</subfield><subfield code="9">978-1-119-77979-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6360677</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6360677</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6360677</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1202481220</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442033</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.382</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">El Assad, Safwan</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1050280172</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Digital communications 1</subfield><subfield code="b">fundamentals and techniques</subfield><subfield code="c">Safwan El Assad, Dominique Barba</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London, UK</subfield><subfield code="b">ISTE</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ, USA</subfield><subfield code="b">Wiley</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 299 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Information systems, web and pervasive computing series</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Part 1 Theory of Information -- Introduction to Part 1 -- Chapter 1 Introduction to Telecommunications -- 1.1. Role of a communication system -- 1.1.1. Types of services offered by communication systems -- 1.1.2. Examples of telecommunications services -- 1.2. Principle of communication -- 1.3. Trend towards digital communications -- Chapter 2 Measurement of Information of a Discrete Source and Channel Capacity -- 2.1. Introduction and definitions -- 2.2. Examples of discrete sources -- 2.2.1. Simple source (memoryless) -- 2.2.2. Discrete source with memory -- 2.2.3. Ergodic source: stationary source with finite memory -- 2.2.4. First order Markovian source (first order Markov chain) -- 2.3. Uncertainty, amount of information and entropy (Shannon's 1948 theorem) -- 2.3.1. Entropy of a source -- 2.3.2. Fundamental lemma -- 2.3.3. Properties of entropy -- 2.3.4. Examples of entropy -- 2.4. Information rate and redundancy of a source -- 2.5. Discrete channels and entropies -- 2.5.1. Conditional entropies -- 2.5.2. Relations between the various entropies -- 2.6. Mutual information -- 2.7. Capacity, redundancy and efficiency of a discrete channel -- 2.7.1. Shannon's theorem: capacity of a communication system -- 2.8. Entropies with k random variables -- Chapter 3 Source Coding for Non-disturbance Channels -- 3.1. Introduction -- 3.2. Interest of binary codes -- 3.3. Single decoding codes -- 3.3.1. Regular code -- 3.3.2. Single-decoded code (decipherable or decodable code) -- 3.3.3. Instantaneous code (irreducible code) -- 3.3.4. Prefix -- 3.3.5. Design of an instantaneous binary code -- 3.3.6. Kraft-McMillan inequality -- 3.4. Average codeword length -- 3.4.1. Coding efficiency in terms of transmission speed -- 3.4.2. Minimum average codeword length lmin</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.5. Capacity, efficiency and redundancy of a code -- 3.6. Absolute optimal codes -- 3.7. K-order extension of a source -- 3.7.1. Entropy of the 2nd order extension of a source -- 3.7.2. Simple example of the interest of coding a source extension -- 3.8. Shannon's first theorem -- 3.9. Design of optimal binary codes -- 3.9.1. Shannon-Fano coding -- 3.9.2. Huffman code -- Chapter 4 Channel Coding for Disturbed Transmission Channels -- 4.1. Introduction -- 4.2. Shannon's second theorem (1948) -- 4.3. Error correction strategies -- 4.4. Classification of error detection codes or error correction codes -- 4.5. Definitions related to code performance -- 4.5.1. Efficiency -- 4.5.2. Weight of linear code or Hamming's weight -- 4.5.3. Hamming distance -- 4.6. Form of the decision -- 4.6.1. Maximum a posteriori likelihood decoding -- 4.7. Linear group codes -- 4.7.1. Decoding ball concept: Hamming's theorem -- 4.7.2. Generating matrix [G] and test matrix [H] -- 4.7.3. Error detection and correction -- 4.7.4. Applications: Hamming codes (r = 1) -- 4.7.5. Coding and decoding circuits -- 4.7.6. Extension of Hamming codes -- 4.7.7. Relationships between columns of the matrix [H'] -- 4.8. Cyclic codes -- 4.8.1. Introduction -- 4.8.2. Expression of a circular permutation -- 4.8.3. Generating polynomial g(x), generating matrix [G] and theorem of cyclic codes -- 4.8.4. Dual code generated by h(x) and parity control matrix [H] -- 4.8.5. Construction of the codewords (coding) -- 4.9. Linear feedback shift register (LFSR) and its applications -- 4.9.1. Properties -- 4.9.2. Linear feedback shift register encoder and decoder (LFSR) -- 4.9.3. Coding by multiplication: non-systematic code -- 4.9.4. Detection of standard errors with cyclic codes -- 4.9.5. Pseudo-random sequence generators: M-sequences, Gold, Kasami and Trivium</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Part 2 Baseband Digital Transmissions and with Carrier Modulation -- Introduction to Part 2 -- Chapter 5 Binary to M-ary Coding and M-ary to Signal Coding: On-line Codes -- 5.1. Presentation and typology -- 5.2. Criteria for choosing an on-line code -- 5.3. Power spectral densities (PSD) of on-line codes -- 5.4. Description and spectral characterization of the main linear on-line codes with successive independent symbols -- 5.4.1. Binary NRZ code (non-return to zero): two-level code, two types of code -- 5.4.2. NRZ M-ary code -- 5.4.3. Binary RZ code (return to zero) -- 5.4.4. Polar RZ on-line code -- 5.4.5. Binary biphase on-line code (Manchester code) -- 5.4.6. Binary biphase mark or differential code (Manchester mark code) -- 5.5. Description and spectral characterization of the main on-line non-linear and non-alphabetic codes with successive dependent -- 5.5.1. Miller's code -- 5.5.2. Bipolar RZ code or AMI code (alternate marked inversion) -- 5.5.3. CMI code (code mark inversion) -- 5.5.4. HDB-n code (high density bipolar on-line code of order n) -- 5.6. Description and spectral characterization of partial response linear codes -- 5.6.1. Generation and interest of precoding -- 5.6.2. Structure of the coder and precoder -- 5.6.3. Power spectral density of partial response linear on-line codes -- 5.6.4. Most common partial response linear on-line codes -- Chapter 6 Transmission of an M-ary Digital Signal on a Low-pass Channel -- 6.1. Introduction -- 6.2. Digital systems and standardization for high data rate transmissions -- 6.3. Modeling the transmission of an M-ary digital signal through the communication chain -- 6.3.1. Equivalent energy bandwidth Δfe of a low-pass filter -- 6.4. Characterization of the intersymbol interference: eye pattern -- 6.4.1. Eye pattern -- 6.5. Probability of error Pe</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.5.1. Probability of error: case of binary symbols -- 6.5.2. Probability of error: case of binary RZ code -- 6.5.3. Probability of error: general case of M-ary symbols -- 6.5.4. Probability of error: case of bipolar code -- 6.6. Conditions of absence of intersymbol interference: Nyquist criteria -- 6.6.1. Nyquist temporal criterion -- 6.6.2. Nyquist frequency criterion -- 6.6.3. Interpretation of the Nyquist frequency criterion -- 6.7. Optimal distribution of filtering between transmission and reception -- 6.7.1. Expression of the minimum probability of error for a low-pass channel satisfying the Nyquist criterion -- 6.8. Transmission with a partial response linear coder -- 6.8.1. Transmission using the duobinary code -- 6.8.2. Transmission using 2nd order interleaved bipolar code -- 6.8.3. Reception of partial response linear codes -- 6.8.4. Probability of error -- Chapter 7 Digital Transmissions with Carrier Modulation -- 7.1. Introduction and schematic diagram of a digital radio transmission -- 7.2. Multiple access techniques and most common standards -- 7.3. Structure of a radio link, a satellite link and a mobile radio channel -- 7.3.1. Structure of a terrestrial link (one jump) -- 7.3.2. Structure of a satellite telecommunication link -- 7.3.3. Mobile radio channel -- 7.4. Effects of multiple paths and non-linearities of power amplifiers -- 7.4.1. Effects of multiple paths: simple case of a direct path and onlyone delayed path -- 7.4.2. Effects of non-linearities of power amplifiers -- 7.5. Linear digital carrier modulations -- 7.5.1. Principle -- 7.5.2. General characteristics of the modulated signal s(t) -- 7.6. Quadrature digital linear modulations: general structure of the modulator, spatial diagram, constellation diagram and choic -- 7.6.1. General structure of the modulator</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.6.2. Spatial diagram (or vectorial) and constellation diagram -- 7.6.3. Choosing a constellation diagram -- 7.7. Digital radio transmission and equivalent baseband digital transmission: complex envelope -- 7.7.1. Equivalent baseband digital transmission: complex envelope -- 7.8. Equivalent baseband transmission, interest and justification: analytical signal and complex envelope -- 7.8.1. Interest: important simplification in numerical simulation -- 7.8.2. Analytical signal and complex envelope of a modulated signal -- 7.9. Relationship between band-pass filter H and equivalent low-pass filter -- 7.9.1. Probability of errors -- 7.10. M-ary Phase Shift Keying Modulation (M-PSK) -- 7.10.1. Binary Phase Shift Keying (BPSK) modulation and demodulation -- 7.10.2. Quaternary Phase Shift Keying (QPSK) modulation and demodulation -- 7.10.3. Differential M-PSK receiver -- 7.10.4. Offset Quaternary Phase Shift Keying (OQPSK) -- 7.11. M-ary Quadrature Amplitude Modulation (M-QAM) -- 7.12. Detailed presentation of 16-QAM modulation and demodulation -- 7.12.1. Spectral occupancy of the 16-QAM modulated signal -- 7.13. Amplitude and Phase Shift Keying Modulation (APSK) -- 7.13.1. CIR (4, 4, 4, 4) modulation: 4 amplitudes, 4 phases -- 7.14. Detailed presentation of the 8-PSK modulation and demoludation -- 7.14.1. Differential coding and decoding of the 8-PSK modulation -- 7.14.2. Realization of the differential encoder and decoder: by Simulink simulation (MATLAB) and hardware implementation based o -- 7.15. Performances of modulations in spectral occupancy and efficiency -- References -- Index -- Other titles from ISTE in Information Systems, Web and Pervasive Computing -- EULA.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital communications</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barba, Dominique</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1235863875</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">El Assad, Safwan</subfield><subfield code="t">Digital Communications 1</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2020</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-78630-541-1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844185</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6360677</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047442033 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:24Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9781119779797 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844185 |
oclc_num | 1202481220 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xii, 299 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | ISTE Wiley |
record_format | marc |
series2 | Information systems, web and pervasive computing series |
spelling | El Assad, Safwan Verfasser (DE-588)1050280172 aut Digital communications 1 fundamentals and techniques Safwan El Assad, Dominique Barba London, UK ISTE 2020 Hoboken, NJ, USA Wiley © 2020 1 Online-Ressource (xii, 299 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Information systems, web and pervasive computing series Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Part 1 Theory of Information -- Introduction to Part 1 -- Chapter 1 Introduction to Telecommunications -- 1.1. Role of a communication system -- 1.1.1. Types of services offered by communication systems -- 1.1.2. Examples of telecommunications services -- 1.2. Principle of communication -- 1.3. Trend towards digital communications -- Chapter 2 Measurement of Information of a Discrete Source and Channel Capacity -- 2.1. Introduction and definitions -- 2.2. Examples of discrete sources -- 2.2.1. Simple source (memoryless) -- 2.2.2. Discrete source with memory -- 2.2.3. Ergodic source: stationary source with finite memory -- 2.2.4. First order Markovian source (first order Markov chain) -- 2.3. Uncertainty, amount of information and entropy (Shannon's 1948 theorem) -- 2.3.1. Entropy of a source -- 2.3.2. Fundamental lemma -- 2.3.3. Properties of entropy -- 2.3.4. Examples of entropy -- 2.4. Information rate and redundancy of a source -- 2.5. Discrete channels and entropies -- 2.5.1. Conditional entropies -- 2.5.2. Relations between the various entropies -- 2.6. Mutual information -- 2.7. Capacity, redundancy and efficiency of a discrete channel -- 2.7.1. Shannon's theorem: capacity of a communication system -- 2.8. Entropies with k random variables -- Chapter 3 Source Coding for Non-disturbance Channels -- 3.1. Introduction -- 3.2. Interest of binary codes -- 3.3. Single decoding codes -- 3.3.1. Regular code -- 3.3.2. Single-decoded code (decipherable or decodable code) -- 3.3.3. Instantaneous code (irreducible code) -- 3.3.4. Prefix -- 3.3.5. Design of an instantaneous binary code -- 3.3.6. Kraft-McMillan inequality -- 3.4. Average codeword length -- 3.4.1. Coding efficiency in terms of transmission speed -- 3.4.2. Minimum average codeword length lmin 3.5. Capacity, efficiency and redundancy of a code -- 3.6. Absolute optimal codes -- 3.7. K-order extension of a source -- 3.7.1. Entropy of the 2nd order extension of a source -- 3.7.2. Simple example of the interest of coding a source extension -- 3.8. Shannon's first theorem -- 3.9. Design of optimal binary codes -- 3.9.1. Shannon-Fano coding -- 3.9.2. Huffman code -- Chapter 4 Channel Coding for Disturbed Transmission Channels -- 4.1. Introduction -- 4.2. Shannon's second theorem (1948) -- 4.3. Error correction strategies -- 4.4. Classification of error detection codes or error correction codes -- 4.5. Definitions related to code performance -- 4.5.1. Efficiency -- 4.5.2. Weight of linear code or Hamming's weight -- 4.5.3. Hamming distance -- 4.6. Form of the decision -- 4.6.1. Maximum a posteriori likelihood decoding -- 4.7. Linear group codes -- 4.7.1. Decoding ball concept: Hamming's theorem -- 4.7.2. Generating matrix [G] and test matrix [H] -- 4.7.3. Error detection and correction -- 4.7.4. Applications: Hamming codes (r = 1) -- 4.7.5. Coding and decoding circuits -- 4.7.6. Extension of Hamming codes -- 4.7.7. Relationships between columns of the matrix [H'] -- 4.8. Cyclic codes -- 4.8.1. Introduction -- 4.8.2. Expression of a circular permutation -- 4.8.3. Generating polynomial g(x), generating matrix [G] and theorem of cyclic codes -- 4.8.4. Dual code generated by h(x) and parity control matrix [H] -- 4.8.5. Construction of the codewords (coding) -- 4.9. Linear feedback shift register (LFSR) and its applications -- 4.9.1. Properties -- 4.9.2. Linear feedback shift register encoder and decoder (LFSR) -- 4.9.3. Coding by multiplication: non-systematic code -- 4.9.4. Detection of standard errors with cyclic codes -- 4.9.5. Pseudo-random sequence generators: M-sequences, Gold, Kasami and Trivium Part 2 Baseband Digital Transmissions and with Carrier Modulation -- Introduction to Part 2 -- Chapter 5 Binary to M-ary Coding and M-ary to Signal Coding: On-line Codes -- 5.1. Presentation and typology -- 5.2. Criteria for choosing an on-line code -- 5.3. Power spectral densities (PSD) of on-line codes -- 5.4. Description and spectral characterization of the main linear on-line codes with successive independent symbols -- 5.4.1. Binary NRZ code (non-return to zero): two-level code, two types of code -- 5.4.2. NRZ M-ary code -- 5.4.3. Binary RZ code (return to zero) -- 5.4.4. Polar RZ on-line code -- 5.4.5. Binary biphase on-line code (Manchester code) -- 5.4.6. Binary biphase mark or differential code (Manchester mark code) -- 5.5. Description and spectral characterization of the main on-line non-linear and non-alphabetic codes with successive dependent -- 5.5.1. Miller's code -- 5.5.2. Bipolar RZ code or AMI code (alternate marked inversion) -- 5.5.3. CMI code (code mark inversion) -- 5.5.4. HDB-n code (high density bipolar on-line code of order n) -- 5.6. Description and spectral characterization of partial response linear codes -- 5.6.1. Generation and interest of precoding -- 5.6.2. Structure of the coder and precoder -- 5.6.3. Power spectral density of partial response linear on-line codes -- 5.6.4. Most common partial response linear on-line codes -- Chapter 6 Transmission of an M-ary Digital Signal on a Low-pass Channel -- 6.1. Introduction -- 6.2. Digital systems and standardization for high data rate transmissions -- 6.3. Modeling the transmission of an M-ary digital signal through the communication chain -- 6.3.1. Equivalent energy bandwidth Δfe of a low-pass filter -- 6.4. Characterization of the intersymbol interference: eye pattern -- 6.4.1. Eye pattern -- 6.5. Probability of error Pe 6.5.1. Probability of error: case of binary symbols -- 6.5.2. Probability of error: case of binary RZ code -- 6.5.3. Probability of error: general case of M-ary symbols -- 6.5.4. Probability of error: case of bipolar code -- 6.6. Conditions of absence of intersymbol interference: Nyquist criteria -- 6.6.1. Nyquist temporal criterion -- 6.6.2. Nyquist frequency criterion -- 6.6.3. Interpretation of the Nyquist frequency criterion -- 6.7. Optimal distribution of filtering between transmission and reception -- 6.7.1. Expression of the minimum probability of error for a low-pass channel satisfying the Nyquist criterion -- 6.8. Transmission with a partial response linear coder -- 6.8.1. Transmission using the duobinary code -- 6.8.2. Transmission using 2nd order interleaved bipolar code -- 6.8.3. Reception of partial response linear codes -- 6.8.4. Probability of error -- Chapter 7 Digital Transmissions with Carrier Modulation -- 7.1. Introduction and schematic diagram of a digital radio transmission -- 7.2. Multiple access techniques and most common standards -- 7.3. Structure of a radio link, a satellite link and a mobile radio channel -- 7.3.1. Structure of a terrestrial link (one jump) -- 7.3.2. Structure of a satellite telecommunication link -- 7.3.3. Mobile radio channel -- 7.4. Effects of multiple paths and non-linearities of power amplifiers -- 7.4.1. Effects of multiple paths: simple case of a direct path and onlyone delayed path -- 7.4.2. Effects of non-linearities of power amplifiers -- 7.5. Linear digital carrier modulations -- 7.5.1. Principle -- 7.5.2. General characteristics of the modulated signal s(t) -- 7.6. Quadrature digital linear modulations: general structure of the modulator, spatial diagram, constellation diagram and choic -- 7.6.1. General structure of the modulator 7.6.2. Spatial diagram (or vectorial) and constellation diagram -- 7.6.3. Choosing a constellation diagram -- 7.7. Digital radio transmission and equivalent baseband digital transmission: complex envelope -- 7.7.1. Equivalent baseband digital transmission: complex envelope -- 7.8. Equivalent baseband transmission, interest and justification: analytical signal and complex envelope -- 7.8.1. Interest: important simplification in numerical simulation -- 7.8.2. Analytical signal and complex envelope of a modulated signal -- 7.9. Relationship between band-pass filter H and equivalent low-pass filter -- 7.9.1. Probability of errors -- 7.10. M-ary Phase Shift Keying Modulation (M-PSK) -- 7.10.1. Binary Phase Shift Keying (BPSK) modulation and demodulation -- 7.10.2. Quaternary Phase Shift Keying (QPSK) modulation and demodulation -- 7.10.3. Differential M-PSK receiver -- 7.10.4. Offset Quaternary Phase Shift Keying (OQPSK) -- 7.11. M-ary Quadrature Amplitude Modulation (M-QAM) -- 7.12. Detailed presentation of 16-QAM modulation and demodulation -- 7.12.1. Spectral occupancy of the 16-QAM modulated signal -- 7.13. Amplitude and Phase Shift Keying Modulation (APSK) -- 7.13.1. CIR (4, 4, 4, 4) modulation: 4 amplitudes, 4 phases -- 7.14. Detailed presentation of the 8-PSK modulation and demoludation -- 7.14.1. Differential coding and decoding of the 8-PSK modulation -- 7.14.2. Realization of the differential encoder and decoder: by Simulink simulation (MATLAB) and hardware implementation based o -- 7.15. Performances of modulations in spectral occupancy and efficiency -- References -- Index -- Other titles from ISTE in Information Systems, Web and Pervasive Computing -- EULA. Digital communications Barba, Dominique Verfasser (DE-588)1235863875 aut Erscheint auch als El Assad, Safwan Digital Communications 1 Newark : John Wiley & Sons, Incorporated,c2020 Druck-Ausgabe 978-1-78630-541-1 |
spellingShingle | El Assad, Safwan Barba, Dominique Digital communications 1 fundamentals and techniques Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Part 1 Theory of Information -- Introduction to Part 1 -- Chapter 1 Introduction to Telecommunications -- 1.1. Role of a communication system -- 1.1.1. Types of services offered by communication systems -- 1.1.2. Examples of telecommunications services -- 1.2. Principle of communication -- 1.3. Trend towards digital communications -- Chapter 2 Measurement of Information of a Discrete Source and Channel Capacity -- 2.1. Introduction and definitions -- 2.2. Examples of discrete sources -- 2.2.1. Simple source (memoryless) -- 2.2.2. Discrete source with memory -- 2.2.3. Ergodic source: stationary source with finite memory -- 2.2.4. First order Markovian source (first order Markov chain) -- 2.3. Uncertainty, amount of information and entropy (Shannon's 1948 theorem) -- 2.3.1. Entropy of a source -- 2.3.2. Fundamental lemma -- 2.3.3. Properties of entropy -- 2.3.4. Examples of entropy -- 2.4. Information rate and redundancy of a source -- 2.5. Discrete channels and entropies -- 2.5.1. Conditional entropies -- 2.5.2. Relations between the various entropies -- 2.6. Mutual information -- 2.7. Capacity, redundancy and efficiency of a discrete channel -- 2.7.1. Shannon's theorem: capacity of a communication system -- 2.8. Entropies with k random variables -- Chapter 3 Source Coding for Non-disturbance Channels -- 3.1. Introduction -- 3.2. Interest of binary codes -- 3.3. Single decoding codes -- 3.3.1. Regular code -- 3.3.2. Single-decoded code (decipherable or decodable code) -- 3.3.3. Instantaneous code (irreducible code) -- 3.3.4. Prefix -- 3.3.5. Design of an instantaneous binary code -- 3.3.6. Kraft-McMillan inequality -- 3.4. Average codeword length -- 3.4.1. Coding efficiency in terms of transmission speed -- 3.4.2. Minimum average codeword length lmin 3.5. Capacity, efficiency and redundancy of a code -- 3.6. Absolute optimal codes -- 3.7. K-order extension of a source -- 3.7.1. Entropy of the 2nd order extension of a source -- 3.7.2. Simple example of the interest of coding a source extension -- 3.8. Shannon's first theorem -- 3.9. Design of optimal binary codes -- 3.9.1. Shannon-Fano coding -- 3.9.2. Huffman code -- Chapter 4 Channel Coding for Disturbed Transmission Channels -- 4.1. Introduction -- 4.2. Shannon's second theorem (1948) -- 4.3. Error correction strategies -- 4.4. Classification of error detection codes or error correction codes -- 4.5. Definitions related to code performance -- 4.5.1. Efficiency -- 4.5.2. Weight of linear code or Hamming's weight -- 4.5.3. Hamming distance -- 4.6. Form of the decision -- 4.6.1. Maximum a posteriori likelihood decoding -- 4.7. Linear group codes -- 4.7.1. Decoding ball concept: Hamming's theorem -- 4.7.2. Generating matrix [G] and test matrix [H] -- 4.7.3. Error detection and correction -- 4.7.4. Applications: Hamming codes (r = 1) -- 4.7.5. Coding and decoding circuits -- 4.7.6. Extension of Hamming codes -- 4.7.7. Relationships between columns of the matrix [H'] -- 4.8. Cyclic codes -- 4.8.1. Introduction -- 4.8.2. Expression of a circular permutation -- 4.8.3. Generating polynomial g(x), generating matrix [G] and theorem of cyclic codes -- 4.8.4. Dual code generated by h(x) and parity control matrix [H] -- 4.8.5. Construction of the codewords (coding) -- 4.9. Linear feedback shift register (LFSR) and its applications -- 4.9.1. Properties -- 4.9.2. Linear feedback shift register encoder and decoder (LFSR) -- 4.9.3. Coding by multiplication: non-systematic code -- 4.9.4. Detection of standard errors with cyclic codes -- 4.9.5. Pseudo-random sequence generators: M-sequences, Gold, Kasami and Trivium Part 2 Baseband Digital Transmissions and with Carrier Modulation -- Introduction to Part 2 -- Chapter 5 Binary to M-ary Coding and M-ary to Signal Coding: On-line Codes -- 5.1. Presentation and typology -- 5.2. Criteria for choosing an on-line code -- 5.3. Power spectral densities (PSD) of on-line codes -- 5.4. Description and spectral characterization of the main linear on-line codes with successive independent symbols -- 5.4.1. Binary NRZ code (non-return to zero): two-level code, two types of code -- 5.4.2. NRZ M-ary code -- 5.4.3. Binary RZ code (return to zero) -- 5.4.4. Polar RZ on-line code -- 5.4.5. Binary biphase on-line code (Manchester code) -- 5.4.6. Binary biphase mark or differential code (Manchester mark code) -- 5.5. Description and spectral characterization of the main on-line non-linear and non-alphabetic codes with successive dependent -- 5.5.1. Miller's code -- 5.5.2. Bipolar RZ code or AMI code (alternate marked inversion) -- 5.5.3. CMI code (code mark inversion) -- 5.5.4. HDB-n code (high density bipolar on-line code of order n) -- 5.6. Description and spectral characterization of partial response linear codes -- 5.6.1. Generation and interest of precoding -- 5.6.2. Structure of the coder and precoder -- 5.6.3. Power spectral density of partial response linear on-line codes -- 5.6.4. Most common partial response linear on-line codes -- Chapter 6 Transmission of an M-ary Digital Signal on a Low-pass Channel -- 6.1. Introduction -- 6.2. Digital systems and standardization for high data rate transmissions -- 6.3. Modeling the transmission of an M-ary digital signal through the communication chain -- 6.3.1. Equivalent energy bandwidth Δfe of a low-pass filter -- 6.4. Characterization of the intersymbol interference: eye pattern -- 6.4.1. Eye pattern -- 6.5. Probability of error Pe 6.5.1. Probability of error: case of binary symbols -- 6.5.2. Probability of error: case of binary RZ code -- 6.5.3. Probability of error: general case of M-ary symbols -- 6.5.4. Probability of error: case of bipolar code -- 6.6. Conditions of absence of intersymbol interference: Nyquist criteria -- 6.6.1. Nyquist temporal criterion -- 6.6.2. Nyquist frequency criterion -- 6.6.3. Interpretation of the Nyquist frequency criterion -- 6.7. Optimal distribution of filtering between transmission and reception -- 6.7.1. Expression of the minimum probability of error for a low-pass channel satisfying the Nyquist criterion -- 6.8. Transmission with a partial response linear coder -- 6.8.1. Transmission using the duobinary code -- 6.8.2. Transmission using 2nd order interleaved bipolar code -- 6.8.3. Reception of partial response linear codes -- 6.8.4. Probability of error -- Chapter 7 Digital Transmissions with Carrier Modulation -- 7.1. Introduction and schematic diagram of a digital radio transmission -- 7.2. Multiple access techniques and most common standards -- 7.3. Structure of a radio link, a satellite link and a mobile radio channel -- 7.3.1. Structure of a terrestrial link (one jump) -- 7.3.2. Structure of a satellite telecommunication link -- 7.3.3. Mobile radio channel -- 7.4. Effects of multiple paths and non-linearities of power amplifiers -- 7.4.1. Effects of multiple paths: simple case of a direct path and onlyone delayed path -- 7.4.2. Effects of non-linearities of power amplifiers -- 7.5. Linear digital carrier modulations -- 7.5.1. Principle -- 7.5.2. General characteristics of the modulated signal s(t) -- 7.6. Quadrature digital linear modulations: general structure of the modulator, spatial diagram, constellation diagram and choic -- 7.6.1. General structure of the modulator 7.6.2. Spatial diagram (or vectorial) and constellation diagram -- 7.6.3. Choosing a constellation diagram -- 7.7. Digital radio transmission and equivalent baseband digital transmission: complex envelope -- 7.7.1. Equivalent baseband digital transmission: complex envelope -- 7.8. Equivalent baseband transmission, interest and justification: analytical signal and complex envelope -- 7.8.1. Interest: important simplification in numerical simulation -- 7.8.2. Analytical signal and complex envelope of a modulated signal -- 7.9. Relationship between band-pass filter H and equivalent low-pass filter -- 7.9.1. Probability of errors -- 7.10. M-ary Phase Shift Keying Modulation (M-PSK) -- 7.10.1. Binary Phase Shift Keying (BPSK) modulation and demodulation -- 7.10.2. Quaternary Phase Shift Keying (QPSK) modulation and demodulation -- 7.10.3. Differential M-PSK receiver -- 7.10.4. Offset Quaternary Phase Shift Keying (OQPSK) -- 7.11. M-ary Quadrature Amplitude Modulation (M-QAM) -- 7.12. Detailed presentation of 16-QAM modulation and demodulation -- 7.12.1. Spectral occupancy of the 16-QAM modulated signal -- 7.13. Amplitude and Phase Shift Keying Modulation (APSK) -- 7.13.1. CIR (4, 4, 4, 4) modulation: 4 amplitudes, 4 phases -- 7.14. Detailed presentation of the 8-PSK modulation and demoludation -- 7.14.1. Differential coding and decoding of the 8-PSK modulation -- 7.14.2. Realization of the differential encoder and decoder: by Simulink simulation (MATLAB) and hardware implementation based o -- 7.15. Performances of modulations in spectral occupancy and efficiency -- References -- Index -- Other titles from ISTE in Information Systems, Web and Pervasive Computing -- EULA. Digital communications |
title | Digital communications 1 fundamentals and techniques |
title_auth | Digital communications 1 fundamentals and techniques |
title_exact_search | Digital communications 1 fundamentals and techniques |
title_exact_search_txtP | Digital communications 1 fundamentals and techniques |
title_full | Digital communications 1 fundamentals and techniques Safwan El Assad, Dominique Barba |
title_fullStr | Digital communications 1 fundamentals and techniques Safwan El Assad, Dominique Barba |
title_full_unstemmed | Digital communications 1 fundamentals and techniques Safwan El Assad, Dominique Barba |
title_short | Digital communications 1 |
title_sort | digital communications 1 fundamentals and techniques |
title_sub | fundamentals and techniques |
topic | Digital communications |
topic_facet | Digital communications |
work_keys_str_mv | AT elassadsafwan digitalcommunications1fundamentalsandtechniques AT barbadominique digitalcommunications1fundamentalsandtechniques |