High-temperature superconducting devices for energy applications:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
2021
|
Ausgabe: | First edition |
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | 1 Online-Ressource (xi, 214 Seiten) Illustrationen, Diagramme |
ISBN: | 9781000191882 9781003045304 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442008 | ||
003 | DE-604 | ||
005 | 20230113 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781000191882 |9 978-1-00-019188-2 | ||
020 | |a 9781003045304 |9 978-1-003-04530-4 | ||
035 | |a (ZDB-30-PQE)EBC6356230 | ||
035 | |a (ZDB-30-PAD)EBC6356230 | ||
035 | |a (ZDB-89-EBL)EBL6356230 | ||
035 | |a (OCoLC)1198016260 | ||
035 | |a (DE-599)BVBBV047442008 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 537.62300000000005 | |
245 | 1 | 0 | |a High-temperature superconducting devices for energy applications |c edited by Raja Sekhar Dondapati |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c 2021 | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (xi, 214 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editor -- Contributors -- Chapter 1 Introduction to Superconducting Devices -- 1.1 Introduction -- 1.2 Theory of Superconductivity -- 1.2.1 Two-Fluid Model -- 1.2.2 Microscopic Theory - BCS Theory -- 1.3 Fundamental Properties of Superconductivity -- 1.3.1 Zero Resistance Characteristics -- 1.3.2 Perfect Diamagnetism - Meissner Effect -- 1.3.3 London Equations and Magnetic Penetration Depth -- 1.4 Critical Parameters -- 1.4.1 Critical Temperature Tc -- 1.4.2 Critical Field Hc -- 1.4.3 Critical Current Density Jc -- 1.5 Classification and Magnetization -- 1.5.1 Coherence Length -- 1.5.2 Classifications -- 1.5.3 Type I Superconductor and Magnetization -- 1.5.4 Type II Superconductor and Magnetization -- 1.6 Superconducting Devices -- 1.6.1 Superconducting Generator/Motors -- 1.6.2 Electric Energy Storage -- 1.6.3 Overhead Cables and Underground Cables -- 1.6.4 Circuit Limiters -- 1.6.5 Power Transformers -- 1.7 Summary -- References -- Chapter 2 Cryogenic Cooling Strategies -- 2.1 Introduction -- 2.1.1 Cryogenic Heat Transfer Applications -- 2.1.2 Development and Applications of Cryogenics for HTS System -- 2.2 Cryogenic Cooling Methodology -- 2.3 Cryogenic Cooling Strategies for Superconducting Devices -- 2.4 Heat Sources -- 2.4.1 Conduction Heat Transfer at Low Temperature -- 2.4.2 Radiation Heat Transfer -- 2.4.3 Joule Heating Due to Transport Current -- 2.5 Cooling Sources -- 2.5.1 Cryogen -- 2.6 Typical Guidelines for Cryogen-Free Magnet Systems -- 2.6.1 Design for Low Operating Temperature -- 2.7 Elements of Construction -- 2.7.1 Materials -- 2.7.1.1 Thermal Properties -- 2.7.1.2 Mechanical Properties -- 2.7.1.3 Magnetic Properties (Magnetic Susceptibility) -- 2.7.2 Vacuum -- 2.7.3 Cryogenic Insulations -- 2.7.3.1 Expanded Closed-Cell Foams | |
505 | 8 | |a 2.7.3.2 Gas-Filled Powders and Fibrous Materials -- 2.7.4 Electric Wiring and Connections -- 2.7.5 Thermometry -- 2.7.6 Switch (in Case of Persistence) -- 2.7.7 Current Leads -- 2.7.8 Protection -- 2.7.9 Design and Manufacture of Joints -- 2.7.10 Thermal Shielding and Anchoring -- 2.8 Cooling Strategies for Superconducting Devices in Electric Power Applications -- 2.8.1 Motors/Generators -- 2.8.2 Superconducting Magnet Energy -- 2.8.3 HTS Cables -- 2.8.4 Superconducting Fault Current Limiter -- 2.8.5 HTS Transformer -- 2.9 Issues Pertaining to Cryogenic Heat Transfer -- 2.10 Challenges and Requirements -- 2.11 Summary -- References -- Chapter 3 Superconducting Generators/Motors -- 3.1 Introduction -- 3.2 Principles of Superconducting Motors and Generators -- 3.3 Types of Superconducting Motors and Generators -- 3.4 Design Analysis and Parameter Calculation -- 3.5 Summary and Future Trends -- References -- Chapter 4 Superconducting Magnetic Energy Storage (SMES) -- 4.1 Introduction to SMES -- 4.1.1 Working of SMES -- 4.1.2 Technical Aspects of SMES -- 4.1.3 Basic Principle of SMES -- 4.2 Superconducting Coils -- 4.2.1 Superconducting Materials -- 4.2.2 Superconducting Coil Topologies -- 4.2.2.1 Solenoid Topology of SMES -- 4.2.2.2 Toroidal Topology of SMES -- 4.2.2.3 Shielded Topology of SMES -- 4.2.2.4 Other Configurations of Basic Topologies of SMES -- 4.2.3 Generalized Thermo-Electrical Strategy for Designing a Superconducting Coil -- 4.2.4 Thermal Stability of a Superconducting Coil -- 4.2.5 Mechanical Stability of a Superconducting Coil -- 4.3 Cryogenic Refrigeration Systems -- 4.3.1 Heat Loads on Cryogenic Refrigeration System -- 4.3.1.1 Eddy Current Losses -- 4.3.1.2 Hysteresis Losses -- 4.3.1.3 Current Lead Losses -- 4.3.1.4 Conductive Losses -- 4.3.1.5 Radiation Losses -- 4.3.2 Efficiency of Refrigeration System -- 4.3.3 Cooling Methods | |
505 | 8 | |a 4.3.3.1 Liquid Bath Cooling -- 4.3.3.2 Steps for Solving the Heat Transfer Rate in the Bath Cooling System -- 4.3.3.3 Conduction Cooling -- 4.3.4 Thermal Issues Related to Cooling of SMES -- 4.4 Power Conditioning System (PCS) -- 4.4.1 Power Converters of PCS in the Three-Phase AC Grid -- 4.4.2 Mechanism of Charging and Discharging of SMES -- 4.5 Future Applications of SMES -- 4.5.1 Power Quality -- 4.5.2 System Stability and Frequency Regulation -- 4.5.3 Load Leveling -- 4.5.4 Bulk Energy Storage -- References -- Chapter 5 Superconducting Cables -- 5.1 Introduction -- 5.2 Configurations of High-Temperature Superconducting Cables -- 5.3 Design Analysis of High-Temperature Superconducting Cables -- 5.3.1 Superconducting Materials for HTS Cables -- 5.3.2 Number of Tapes -- 5.3.3 Former Diameter -- 5.3.4 Dielectric Insulation -- 5.3.5 Design of Cryostat -- 5.3.6 Cooling Strategies -- 5.3.7 Pumping Losses and Temperature Difference -- 5.4 Existing Challenges and Opportunities -- 5.4.1 Large Concentration of LN2 -- 5.4.2 Capital and Operating Cost -- 5.4.3 Refrigeration and Cooling System Reliability -- 5.4.4 Performance during Normal and Fault Currents -- 5.4.5 FCL Cable -- 5.5 Summary -- References -- Chapter 6 Superconducting Fault Current Limiters -- 6.1 Introduction -- 6.2 Types of Faults -- 6.2.1 Open Circuit Faults -- 6.2.2 Short Circuit Faults -- 6.2.2.1 Symmetric Faults -- 6.2.2.2 Unsymmetrical Faults -- 6.3 Introduction to Superconducting Fault Current Limiters (SFCLs) -- 6.3.1 Working of an SFCL -- 6.3.2 Characteristics of Ideal Fault Current Limiter -- 6.4 Types of Superconducting Materials Used in Fault Current Limiters -- 6.5 Types of SFCLs -- 6.5.1 Resistive Type SFCL (RSFCL) -- 6.5.1.1 Advantages of RSFCLs -- 6.5.1.2 Disadvantages of RSFCLs -- 6.5.2 Inductive Type SFCL -- 6.5.2.1 Shielded Core SFCL -- 6.5.2.2 Saturated Core SFCL. | |
505 | 8 | |a 6.5.3 Advantages of Inductive SFCLs -- 6.5.4 Disadvantages of Inductive SFCLs -- 6.6 Other Types of SFCLs -- 6.6.1 Resistive Magnetic SFCL -- 6.6.2 Bridge SFCL -- 6.6.2.1 Advantages of Bridge SFCL -- 6.6.2.2 Disadvantages of Bridge SFCL -- 6.6.3 DC Biased Iron Core SFCL -- 6.6.4 Solid State FCL (SSFCL) -- 6.6.5 Fault Current Controllable SFCL -- 6.7 Applications of SFCL in Power Transmission and Distribution Systems -- 6.8 Thermo-Electrical Design of SFCL -- 6.8.1 Resistive Superconducting Fault Current Limiter (RSFCL) -- 6.8.1.1 Basic Parameters -- 6.8.2 Electrical Strategy -- 6.8.2.1 State-1 (Superconducting State) (ρ=0) -- 6.8.2.2 State-2 (Flux Flow State) (ρ=ρ (J)) -- 6.8.2.3 State-3 (Normal State) (ρ=constant) -- 6.8.3 Thermal Strategy -- 6.9 Inductive Superconducting Fault Current Limiter -- 6.10 Issues Related to Cryogenics in SFCL -- References -- Index | |
650 | 4 | |a High temperature superconductors | |
700 | 1 | |a Dondapati, Raja Sekhar |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a Dondapati, Raja Sekhar |t High-Temperature Superconducting Devices for Energy Applications |d Milton : Taylor & Francis Group,c2020 |n Druck-Ausgabe, Hardcover |z 978-0-367-49250-2 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032844160 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6356230 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734691631104 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Dondapati, Raja Sekhar |
author2_role | edt |
author2_variant | r s d rs rsd |
author_facet | Dondapati, Raja Sekhar |
building | Verbundindex |
bvnumber | BV047442008 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editor -- Contributors -- Chapter 1 Introduction to Superconducting Devices -- 1.1 Introduction -- 1.2 Theory of Superconductivity -- 1.2.1 Two-Fluid Model -- 1.2.2 Microscopic Theory - BCS Theory -- 1.3 Fundamental Properties of Superconductivity -- 1.3.1 Zero Resistance Characteristics -- 1.3.2 Perfect Diamagnetism - Meissner Effect -- 1.3.3 London Equations and Magnetic Penetration Depth -- 1.4 Critical Parameters -- 1.4.1 Critical Temperature Tc -- 1.4.2 Critical Field Hc -- 1.4.3 Critical Current Density Jc -- 1.5 Classification and Magnetization -- 1.5.1 Coherence Length -- 1.5.2 Classifications -- 1.5.3 Type I Superconductor and Magnetization -- 1.5.4 Type II Superconductor and Magnetization -- 1.6 Superconducting Devices -- 1.6.1 Superconducting Generator/Motors -- 1.6.2 Electric Energy Storage -- 1.6.3 Overhead Cables and Underground Cables -- 1.6.4 Circuit Limiters -- 1.6.5 Power Transformers -- 1.7 Summary -- References -- Chapter 2 Cryogenic Cooling Strategies -- 2.1 Introduction -- 2.1.1 Cryogenic Heat Transfer Applications -- 2.1.2 Development and Applications of Cryogenics for HTS System -- 2.2 Cryogenic Cooling Methodology -- 2.3 Cryogenic Cooling Strategies for Superconducting Devices -- 2.4 Heat Sources -- 2.4.1 Conduction Heat Transfer at Low Temperature -- 2.4.2 Radiation Heat Transfer -- 2.4.3 Joule Heating Due to Transport Current -- 2.5 Cooling Sources -- 2.5.1 Cryogen -- 2.6 Typical Guidelines for Cryogen-Free Magnet Systems -- 2.6.1 Design for Low Operating Temperature -- 2.7 Elements of Construction -- 2.7.1 Materials -- 2.7.1.1 Thermal Properties -- 2.7.1.2 Mechanical Properties -- 2.7.1.3 Magnetic Properties (Magnetic Susceptibility) -- 2.7.2 Vacuum -- 2.7.3 Cryogenic Insulations -- 2.7.3.1 Expanded Closed-Cell Foams 2.7.3.2 Gas-Filled Powders and Fibrous Materials -- 2.7.4 Electric Wiring and Connections -- 2.7.5 Thermometry -- 2.7.6 Switch (in Case of Persistence) -- 2.7.7 Current Leads -- 2.7.8 Protection -- 2.7.9 Design and Manufacture of Joints -- 2.7.10 Thermal Shielding and Anchoring -- 2.8 Cooling Strategies for Superconducting Devices in Electric Power Applications -- 2.8.1 Motors/Generators -- 2.8.2 Superconducting Magnet Energy -- 2.8.3 HTS Cables -- 2.8.4 Superconducting Fault Current Limiter -- 2.8.5 HTS Transformer -- 2.9 Issues Pertaining to Cryogenic Heat Transfer -- 2.10 Challenges and Requirements -- 2.11 Summary -- References -- Chapter 3 Superconducting Generators/Motors -- 3.1 Introduction -- 3.2 Principles of Superconducting Motors and Generators -- 3.3 Types of Superconducting Motors and Generators -- 3.4 Design Analysis and Parameter Calculation -- 3.5 Summary and Future Trends -- References -- Chapter 4 Superconducting Magnetic Energy Storage (SMES) -- 4.1 Introduction to SMES -- 4.1.1 Working of SMES -- 4.1.2 Technical Aspects of SMES -- 4.1.3 Basic Principle of SMES -- 4.2 Superconducting Coils -- 4.2.1 Superconducting Materials -- 4.2.2 Superconducting Coil Topologies -- 4.2.2.1 Solenoid Topology of SMES -- 4.2.2.2 Toroidal Topology of SMES -- 4.2.2.3 Shielded Topology of SMES -- 4.2.2.4 Other Configurations of Basic Topologies of SMES -- 4.2.3 Generalized Thermo-Electrical Strategy for Designing a Superconducting Coil -- 4.2.4 Thermal Stability of a Superconducting Coil -- 4.2.5 Mechanical Stability of a Superconducting Coil -- 4.3 Cryogenic Refrigeration Systems -- 4.3.1 Heat Loads on Cryogenic Refrigeration System -- 4.3.1.1 Eddy Current Losses -- 4.3.1.2 Hysteresis Losses -- 4.3.1.3 Current Lead Losses -- 4.3.1.4 Conductive Losses -- 4.3.1.5 Radiation Losses -- 4.3.2 Efficiency of Refrigeration System -- 4.3.3 Cooling Methods 4.3.3.1 Liquid Bath Cooling -- 4.3.3.2 Steps for Solving the Heat Transfer Rate in the Bath Cooling System -- 4.3.3.3 Conduction Cooling -- 4.3.4 Thermal Issues Related to Cooling of SMES -- 4.4 Power Conditioning System (PCS) -- 4.4.1 Power Converters of PCS in the Three-Phase AC Grid -- 4.4.2 Mechanism of Charging and Discharging of SMES -- 4.5 Future Applications of SMES -- 4.5.1 Power Quality -- 4.5.2 System Stability and Frequency Regulation -- 4.5.3 Load Leveling -- 4.5.4 Bulk Energy Storage -- References -- Chapter 5 Superconducting Cables -- 5.1 Introduction -- 5.2 Configurations of High-Temperature Superconducting Cables -- 5.3 Design Analysis of High-Temperature Superconducting Cables -- 5.3.1 Superconducting Materials for HTS Cables -- 5.3.2 Number of Tapes -- 5.3.3 Former Diameter -- 5.3.4 Dielectric Insulation -- 5.3.5 Design of Cryostat -- 5.3.6 Cooling Strategies -- 5.3.7 Pumping Losses and Temperature Difference -- 5.4 Existing Challenges and Opportunities -- 5.4.1 Large Concentration of LN2 -- 5.4.2 Capital and Operating Cost -- 5.4.3 Refrigeration and Cooling System Reliability -- 5.4.4 Performance during Normal and Fault Currents -- 5.4.5 FCL Cable -- 5.5 Summary -- References -- Chapter 6 Superconducting Fault Current Limiters -- 6.1 Introduction -- 6.2 Types of Faults -- 6.2.1 Open Circuit Faults -- 6.2.2 Short Circuit Faults -- 6.2.2.1 Symmetric Faults -- 6.2.2.2 Unsymmetrical Faults -- 6.3 Introduction to Superconducting Fault Current Limiters (SFCLs) -- 6.3.1 Working of an SFCL -- 6.3.2 Characteristics of Ideal Fault Current Limiter -- 6.4 Types of Superconducting Materials Used in Fault Current Limiters -- 6.5 Types of SFCLs -- 6.5.1 Resistive Type SFCL (RSFCL) -- 6.5.1.1 Advantages of RSFCLs -- 6.5.1.2 Disadvantages of RSFCLs -- 6.5.2 Inductive Type SFCL -- 6.5.2.1 Shielded Core SFCL -- 6.5.2.2 Saturated Core SFCL. 6.5.3 Advantages of Inductive SFCLs -- 6.5.4 Disadvantages of Inductive SFCLs -- 6.6 Other Types of SFCLs -- 6.6.1 Resistive Magnetic SFCL -- 6.6.2 Bridge SFCL -- 6.6.2.1 Advantages of Bridge SFCL -- 6.6.2.2 Disadvantages of Bridge SFCL -- 6.6.3 DC Biased Iron Core SFCL -- 6.6.4 Solid State FCL (SSFCL) -- 6.6.5 Fault Current Controllable SFCL -- 6.7 Applications of SFCL in Power Transmission and Distribution Systems -- 6.8 Thermo-Electrical Design of SFCL -- 6.8.1 Resistive Superconducting Fault Current Limiter (RSFCL) -- 6.8.1.1 Basic Parameters -- 6.8.2 Electrical Strategy -- 6.8.2.1 State-1 (Superconducting State) (ρ=0) -- 6.8.2.2 State-2 (Flux Flow State) (ρ=ρ (J)) -- 6.8.2.3 State-3 (Normal State) (ρ=constant) -- 6.8.3 Thermal Strategy -- 6.9 Inductive Superconducting Fault Current Limiter -- 6.10 Issues Related to Cryogenics in SFCL -- References -- Index |
ctrlnum | (ZDB-30-PQE)EBC6356230 (ZDB-30-PAD)EBC6356230 (ZDB-89-EBL)EBL6356230 (OCoLC)1198016260 (DE-599)BVBBV047442008 |
dewey-full | 537.62300000000005 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 537 - Electricity and electronics |
dewey-raw | 537.62300000000005 |
dewey-search | 537.62300000000005 |
dewey-sort | 3537.62300000000005 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08067nmm a2200433zc 4500</leader><controlfield tag="001">BV047442008</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230113 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000191882</subfield><subfield code="9">978-1-00-019188-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003045304</subfield><subfield code="9">978-1-003-04530-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6356230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6356230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6356230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1198016260</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442008</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">537.62300000000005</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-temperature superconducting devices for energy applications</subfield><subfield code="c">edited by Raja Sekhar Dondapati</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 214 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editor -- Contributors -- Chapter 1 Introduction to Superconducting Devices -- 1.1 Introduction -- 1.2 Theory of Superconductivity -- 1.2.1 Two-Fluid Model -- 1.2.2 Microscopic Theory - BCS Theory -- 1.3 Fundamental Properties of Superconductivity -- 1.3.1 Zero Resistance Characteristics -- 1.3.2 Perfect Diamagnetism - Meissner Effect -- 1.3.3 London Equations and Magnetic Penetration Depth -- 1.4 Critical Parameters -- 1.4.1 Critical Temperature Tc -- 1.4.2 Critical Field Hc -- 1.4.3 Critical Current Density Jc -- 1.5 Classification and Magnetization -- 1.5.1 Coherence Length -- 1.5.2 Classifications -- 1.5.3 Type I Superconductor and Magnetization -- 1.5.4 Type II Superconductor and Magnetization -- 1.6 Superconducting Devices -- 1.6.1 Superconducting Generator/Motors -- 1.6.2 Electric Energy Storage -- 1.6.3 Overhead Cables and Underground Cables -- 1.6.4 Circuit Limiters -- 1.6.5 Power Transformers -- 1.7 Summary -- References -- Chapter 2 Cryogenic Cooling Strategies -- 2.1 Introduction -- 2.1.1 Cryogenic Heat Transfer Applications -- 2.1.2 Development and Applications of Cryogenics for HTS System -- 2.2 Cryogenic Cooling Methodology -- 2.3 Cryogenic Cooling Strategies for Superconducting Devices -- 2.4 Heat Sources -- 2.4.1 Conduction Heat Transfer at Low Temperature -- 2.4.2 Radiation Heat Transfer -- 2.4.3 Joule Heating Due to Transport Current -- 2.5 Cooling Sources -- 2.5.1 Cryogen -- 2.6 Typical Guidelines for Cryogen-Free Magnet Systems -- 2.6.1 Design for Low Operating Temperature -- 2.7 Elements of Construction -- 2.7.1 Materials -- 2.7.1.1 Thermal Properties -- 2.7.1.2 Mechanical Properties -- 2.7.1.3 Magnetic Properties (Magnetic Susceptibility) -- 2.7.2 Vacuum -- 2.7.3 Cryogenic Insulations -- 2.7.3.1 Expanded Closed-Cell Foams</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.7.3.2 Gas-Filled Powders and Fibrous Materials -- 2.7.4 Electric Wiring and Connections -- 2.7.5 Thermometry -- 2.7.6 Switch (in Case of Persistence) -- 2.7.7 Current Leads -- 2.7.8 Protection -- 2.7.9 Design and Manufacture of Joints -- 2.7.10 Thermal Shielding and Anchoring -- 2.8 Cooling Strategies for Superconducting Devices in Electric Power Applications -- 2.8.1 Motors/Generators -- 2.8.2 Superconducting Magnet Energy -- 2.8.3 HTS Cables -- 2.8.4 Superconducting Fault Current Limiter -- 2.8.5 HTS Transformer -- 2.9 Issues Pertaining to Cryogenic Heat Transfer -- 2.10 Challenges and Requirements -- 2.11 Summary -- References -- Chapter 3 Superconducting Generators/Motors -- 3.1 Introduction -- 3.2 Principles of Superconducting Motors and Generators -- 3.3 Types of Superconducting Motors and Generators -- 3.4 Design Analysis and Parameter Calculation -- 3.5 Summary and Future Trends -- References -- Chapter 4 Superconducting Magnetic Energy Storage (SMES) -- 4.1 Introduction to SMES -- 4.1.1 Working of SMES -- 4.1.2 Technical Aspects of SMES -- 4.1.3 Basic Principle of SMES -- 4.2 Superconducting Coils -- 4.2.1 Superconducting Materials -- 4.2.2 Superconducting Coil Topologies -- 4.2.2.1 Solenoid Topology of SMES -- 4.2.2.2 Toroidal Topology of SMES -- 4.2.2.3 Shielded Topology of SMES -- 4.2.2.4 Other Configurations of Basic Topologies of SMES -- 4.2.3 Generalized Thermo-Electrical Strategy for Designing a Superconducting Coil -- 4.2.4 Thermal Stability of a Superconducting Coil -- 4.2.5 Mechanical Stability of a Superconducting Coil -- 4.3 Cryogenic Refrigeration Systems -- 4.3.1 Heat Loads on Cryogenic Refrigeration System -- 4.3.1.1 Eddy Current Losses -- 4.3.1.2 Hysteresis Losses -- 4.3.1.3 Current Lead Losses -- 4.3.1.4 Conductive Losses -- 4.3.1.5 Radiation Losses -- 4.3.2 Efficiency of Refrigeration System -- 4.3.3 Cooling Methods</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3.3.1 Liquid Bath Cooling -- 4.3.3.2 Steps for Solving the Heat Transfer Rate in the Bath Cooling System -- 4.3.3.3 Conduction Cooling -- 4.3.4 Thermal Issues Related to Cooling of SMES -- 4.4 Power Conditioning System (PCS) -- 4.4.1 Power Converters of PCS in the Three-Phase AC Grid -- 4.4.2 Mechanism of Charging and Discharging of SMES -- 4.5 Future Applications of SMES -- 4.5.1 Power Quality -- 4.5.2 System Stability and Frequency Regulation -- 4.5.3 Load Leveling -- 4.5.4 Bulk Energy Storage -- References -- Chapter 5 Superconducting Cables -- 5.1 Introduction -- 5.2 Configurations of High-Temperature Superconducting Cables -- 5.3 Design Analysis of High-Temperature Superconducting Cables -- 5.3.1 Superconducting Materials for HTS Cables -- 5.3.2 Number of Tapes -- 5.3.3 Former Diameter -- 5.3.4 Dielectric Insulation -- 5.3.5 Design of Cryostat -- 5.3.6 Cooling Strategies -- 5.3.7 Pumping Losses and Temperature Difference -- 5.4 Existing Challenges and Opportunities -- 5.4.1 Large Concentration of LN2 -- 5.4.2 Capital and Operating Cost -- 5.4.3 Refrigeration and Cooling System Reliability -- 5.4.4 Performance during Normal and Fault Currents -- 5.4.5 FCL Cable -- 5.5 Summary -- References -- Chapter 6 Superconducting Fault Current Limiters -- 6.1 Introduction -- 6.2 Types of Faults -- 6.2.1 Open Circuit Faults -- 6.2.2 Short Circuit Faults -- 6.2.2.1 Symmetric Faults -- 6.2.2.2 Unsymmetrical Faults -- 6.3 Introduction to Superconducting Fault Current Limiters (SFCLs) -- 6.3.1 Working of an SFCL -- 6.3.2 Characteristics of Ideal Fault Current Limiter -- 6.4 Types of Superconducting Materials Used in Fault Current Limiters -- 6.5 Types of SFCLs -- 6.5.1 Resistive Type SFCL (RSFCL) -- 6.5.1.1 Advantages of RSFCLs -- 6.5.1.2 Disadvantages of RSFCLs -- 6.5.2 Inductive Type SFCL -- 6.5.2.1 Shielded Core SFCL -- 6.5.2.2 Saturated Core SFCL.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.5.3 Advantages of Inductive SFCLs -- 6.5.4 Disadvantages of Inductive SFCLs -- 6.6 Other Types of SFCLs -- 6.6.1 Resistive Magnetic SFCL -- 6.6.2 Bridge SFCL -- 6.6.2.1 Advantages of Bridge SFCL -- 6.6.2.2 Disadvantages of Bridge SFCL -- 6.6.3 DC Biased Iron Core SFCL -- 6.6.4 Solid State FCL (SSFCL) -- 6.6.5 Fault Current Controllable SFCL -- 6.7 Applications of SFCL in Power Transmission and Distribution Systems -- 6.8 Thermo-Electrical Design of SFCL -- 6.8.1 Resistive Superconducting Fault Current Limiter (RSFCL) -- 6.8.1.1 Basic Parameters -- 6.8.2 Electrical Strategy -- 6.8.2.1 State-1 (Superconducting State) (ρ=0) -- 6.8.2.2 State-2 (Flux Flow State) (ρ=ρ (J)) -- 6.8.2.3 State-3 (Normal State) (ρ=constant) -- 6.8.3 Thermal Strategy -- 6.9 Inductive Superconducting Fault Current Limiter -- 6.10 Issues Related to Cryogenics in SFCL -- References -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High temperature superconductors</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dondapati, Raja Sekhar</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Dondapati, Raja Sekhar</subfield><subfield code="t">High-Temperature Superconducting Devices for Energy Applications</subfield><subfield code="d">Milton : Taylor & Francis Group,c2020</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-367-49250-2</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844160</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6356230</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047442008 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:24Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9781000191882 9781003045304 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844160 |
oclc_num | 1198016260 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xi, 214 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | CRC Press |
record_format | marc |
spelling | High-temperature superconducting devices for energy applications edited by Raja Sekhar Dondapati First edition Boca Raton ; London ; New York CRC Press 2021 © 2021 1 Online-Ressource (xi, 214 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editor -- Contributors -- Chapter 1 Introduction to Superconducting Devices -- 1.1 Introduction -- 1.2 Theory of Superconductivity -- 1.2.1 Two-Fluid Model -- 1.2.2 Microscopic Theory - BCS Theory -- 1.3 Fundamental Properties of Superconductivity -- 1.3.1 Zero Resistance Characteristics -- 1.3.2 Perfect Diamagnetism - Meissner Effect -- 1.3.3 London Equations and Magnetic Penetration Depth -- 1.4 Critical Parameters -- 1.4.1 Critical Temperature Tc -- 1.4.2 Critical Field Hc -- 1.4.3 Critical Current Density Jc -- 1.5 Classification and Magnetization -- 1.5.1 Coherence Length -- 1.5.2 Classifications -- 1.5.3 Type I Superconductor and Magnetization -- 1.5.4 Type II Superconductor and Magnetization -- 1.6 Superconducting Devices -- 1.6.1 Superconducting Generator/Motors -- 1.6.2 Electric Energy Storage -- 1.6.3 Overhead Cables and Underground Cables -- 1.6.4 Circuit Limiters -- 1.6.5 Power Transformers -- 1.7 Summary -- References -- Chapter 2 Cryogenic Cooling Strategies -- 2.1 Introduction -- 2.1.1 Cryogenic Heat Transfer Applications -- 2.1.2 Development and Applications of Cryogenics for HTS System -- 2.2 Cryogenic Cooling Methodology -- 2.3 Cryogenic Cooling Strategies for Superconducting Devices -- 2.4 Heat Sources -- 2.4.1 Conduction Heat Transfer at Low Temperature -- 2.4.2 Radiation Heat Transfer -- 2.4.3 Joule Heating Due to Transport Current -- 2.5 Cooling Sources -- 2.5.1 Cryogen -- 2.6 Typical Guidelines for Cryogen-Free Magnet Systems -- 2.6.1 Design for Low Operating Temperature -- 2.7 Elements of Construction -- 2.7.1 Materials -- 2.7.1.1 Thermal Properties -- 2.7.1.2 Mechanical Properties -- 2.7.1.3 Magnetic Properties (Magnetic Susceptibility) -- 2.7.2 Vacuum -- 2.7.3 Cryogenic Insulations -- 2.7.3.1 Expanded Closed-Cell Foams 2.7.3.2 Gas-Filled Powders and Fibrous Materials -- 2.7.4 Electric Wiring and Connections -- 2.7.5 Thermometry -- 2.7.6 Switch (in Case of Persistence) -- 2.7.7 Current Leads -- 2.7.8 Protection -- 2.7.9 Design and Manufacture of Joints -- 2.7.10 Thermal Shielding and Anchoring -- 2.8 Cooling Strategies for Superconducting Devices in Electric Power Applications -- 2.8.1 Motors/Generators -- 2.8.2 Superconducting Magnet Energy -- 2.8.3 HTS Cables -- 2.8.4 Superconducting Fault Current Limiter -- 2.8.5 HTS Transformer -- 2.9 Issues Pertaining to Cryogenic Heat Transfer -- 2.10 Challenges and Requirements -- 2.11 Summary -- References -- Chapter 3 Superconducting Generators/Motors -- 3.1 Introduction -- 3.2 Principles of Superconducting Motors and Generators -- 3.3 Types of Superconducting Motors and Generators -- 3.4 Design Analysis and Parameter Calculation -- 3.5 Summary and Future Trends -- References -- Chapter 4 Superconducting Magnetic Energy Storage (SMES) -- 4.1 Introduction to SMES -- 4.1.1 Working of SMES -- 4.1.2 Technical Aspects of SMES -- 4.1.3 Basic Principle of SMES -- 4.2 Superconducting Coils -- 4.2.1 Superconducting Materials -- 4.2.2 Superconducting Coil Topologies -- 4.2.2.1 Solenoid Topology of SMES -- 4.2.2.2 Toroidal Topology of SMES -- 4.2.2.3 Shielded Topology of SMES -- 4.2.2.4 Other Configurations of Basic Topologies of SMES -- 4.2.3 Generalized Thermo-Electrical Strategy for Designing a Superconducting Coil -- 4.2.4 Thermal Stability of a Superconducting Coil -- 4.2.5 Mechanical Stability of a Superconducting Coil -- 4.3 Cryogenic Refrigeration Systems -- 4.3.1 Heat Loads on Cryogenic Refrigeration System -- 4.3.1.1 Eddy Current Losses -- 4.3.1.2 Hysteresis Losses -- 4.3.1.3 Current Lead Losses -- 4.3.1.4 Conductive Losses -- 4.3.1.5 Radiation Losses -- 4.3.2 Efficiency of Refrigeration System -- 4.3.3 Cooling Methods 4.3.3.1 Liquid Bath Cooling -- 4.3.3.2 Steps for Solving the Heat Transfer Rate in the Bath Cooling System -- 4.3.3.3 Conduction Cooling -- 4.3.4 Thermal Issues Related to Cooling of SMES -- 4.4 Power Conditioning System (PCS) -- 4.4.1 Power Converters of PCS in the Three-Phase AC Grid -- 4.4.2 Mechanism of Charging and Discharging of SMES -- 4.5 Future Applications of SMES -- 4.5.1 Power Quality -- 4.5.2 System Stability and Frequency Regulation -- 4.5.3 Load Leveling -- 4.5.4 Bulk Energy Storage -- References -- Chapter 5 Superconducting Cables -- 5.1 Introduction -- 5.2 Configurations of High-Temperature Superconducting Cables -- 5.3 Design Analysis of High-Temperature Superconducting Cables -- 5.3.1 Superconducting Materials for HTS Cables -- 5.3.2 Number of Tapes -- 5.3.3 Former Diameter -- 5.3.4 Dielectric Insulation -- 5.3.5 Design of Cryostat -- 5.3.6 Cooling Strategies -- 5.3.7 Pumping Losses and Temperature Difference -- 5.4 Existing Challenges and Opportunities -- 5.4.1 Large Concentration of LN2 -- 5.4.2 Capital and Operating Cost -- 5.4.3 Refrigeration and Cooling System Reliability -- 5.4.4 Performance during Normal and Fault Currents -- 5.4.5 FCL Cable -- 5.5 Summary -- References -- Chapter 6 Superconducting Fault Current Limiters -- 6.1 Introduction -- 6.2 Types of Faults -- 6.2.1 Open Circuit Faults -- 6.2.2 Short Circuit Faults -- 6.2.2.1 Symmetric Faults -- 6.2.2.2 Unsymmetrical Faults -- 6.3 Introduction to Superconducting Fault Current Limiters (SFCLs) -- 6.3.1 Working of an SFCL -- 6.3.2 Characteristics of Ideal Fault Current Limiter -- 6.4 Types of Superconducting Materials Used in Fault Current Limiters -- 6.5 Types of SFCLs -- 6.5.1 Resistive Type SFCL (RSFCL) -- 6.5.1.1 Advantages of RSFCLs -- 6.5.1.2 Disadvantages of RSFCLs -- 6.5.2 Inductive Type SFCL -- 6.5.2.1 Shielded Core SFCL -- 6.5.2.2 Saturated Core SFCL. 6.5.3 Advantages of Inductive SFCLs -- 6.5.4 Disadvantages of Inductive SFCLs -- 6.6 Other Types of SFCLs -- 6.6.1 Resistive Magnetic SFCL -- 6.6.2 Bridge SFCL -- 6.6.2.1 Advantages of Bridge SFCL -- 6.6.2.2 Disadvantages of Bridge SFCL -- 6.6.3 DC Biased Iron Core SFCL -- 6.6.4 Solid State FCL (SSFCL) -- 6.6.5 Fault Current Controllable SFCL -- 6.7 Applications of SFCL in Power Transmission and Distribution Systems -- 6.8 Thermo-Electrical Design of SFCL -- 6.8.1 Resistive Superconducting Fault Current Limiter (RSFCL) -- 6.8.1.1 Basic Parameters -- 6.8.2 Electrical Strategy -- 6.8.2.1 State-1 (Superconducting State) (ρ=0) -- 6.8.2.2 State-2 (Flux Flow State) (ρ=ρ (J)) -- 6.8.2.3 State-3 (Normal State) (ρ=constant) -- 6.8.3 Thermal Strategy -- 6.9 Inductive Superconducting Fault Current Limiter -- 6.10 Issues Related to Cryogenics in SFCL -- References -- Index High temperature superconductors Dondapati, Raja Sekhar edt Erscheint auch als Dondapati, Raja Sekhar High-Temperature Superconducting Devices for Energy Applications Milton : Taylor & Francis Group,c2020 Druck-Ausgabe, Hardcover 978-0-367-49250-2 |
spellingShingle | High-temperature superconducting devices for energy applications Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editor -- Contributors -- Chapter 1 Introduction to Superconducting Devices -- 1.1 Introduction -- 1.2 Theory of Superconductivity -- 1.2.1 Two-Fluid Model -- 1.2.2 Microscopic Theory - BCS Theory -- 1.3 Fundamental Properties of Superconductivity -- 1.3.1 Zero Resistance Characteristics -- 1.3.2 Perfect Diamagnetism - Meissner Effect -- 1.3.3 London Equations and Magnetic Penetration Depth -- 1.4 Critical Parameters -- 1.4.1 Critical Temperature Tc -- 1.4.2 Critical Field Hc -- 1.4.3 Critical Current Density Jc -- 1.5 Classification and Magnetization -- 1.5.1 Coherence Length -- 1.5.2 Classifications -- 1.5.3 Type I Superconductor and Magnetization -- 1.5.4 Type II Superconductor and Magnetization -- 1.6 Superconducting Devices -- 1.6.1 Superconducting Generator/Motors -- 1.6.2 Electric Energy Storage -- 1.6.3 Overhead Cables and Underground Cables -- 1.6.4 Circuit Limiters -- 1.6.5 Power Transformers -- 1.7 Summary -- References -- Chapter 2 Cryogenic Cooling Strategies -- 2.1 Introduction -- 2.1.1 Cryogenic Heat Transfer Applications -- 2.1.2 Development and Applications of Cryogenics for HTS System -- 2.2 Cryogenic Cooling Methodology -- 2.3 Cryogenic Cooling Strategies for Superconducting Devices -- 2.4 Heat Sources -- 2.4.1 Conduction Heat Transfer at Low Temperature -- 2.4.2 Radiation Heat Transfer -- 2.4.3 Joule Heating Due to Transport Current -- 2.5 Cooling Sources -- 2.5.1 Cryogen -- 2.6 Typical Guidelines for Cryogen-Free Magnet Systems -- 2.6.1 Design for Low Operating Temperature -- 2.7 Elements of Construction -- 2.7.1 Materials -- 2.7.1.1 Thermal Properties -- 2.7.1.2 Mechanical Properties -- 2.7.1.3 Magnetic Properties (Magnetic Susceptibility) -- 2.7.2 Vacuum -- 2.7.3 Cryogenic Insulations -- 2.7.3.1 Expanded Closed-Cell Foams 2.7.3.2 Gas-Filled Powders and Fibrous Materials -- 2.7.4 Electric Wiring and Connections -- 2.7.5 Thermometry -- 2.7.6 Switch (in Case of Persistence) -- 2.7.7 Current Leads -- 2.7.8 Protection -- 2.7.9 Design and Manufacture of Joints -- 2.7.10 Thermal Shielding and Anchoring -- 2.8 Cooling Strategies for Superconducting Devices in Electric Power Applications -- 2.8.1 Motors/Generators -- 2.8.2 Superconducting Magnet Energy -- 2.8.3 HTS Cables -- 2.8.4 Superconducting Fault Current Limiter -- 2.8.5 HTS Transformer -- 2.9 Issues Pertaining to Cryogenic Heat Transfer -- 2.10 Challenges and Requirements -- 2.11 Summary -- References -- Chapter 3 Superconducting Generators/Motors -- 3.1 Introduction -- 3.2 Principles of Superconducting Motors and Generators -- 3.3 Types of Superconducting Motors and Generators -- 3.4 Design Analysis and Parameter Calculation -- 3.5 Summary and Future Trends -- References -- Chapter 4 Superconducting Magnetic Energy Storage (SMES) -- 4.1 Introduction to SMES -- 4.1.1 Working of SMES -- 4.1.2 Technical Aspects of SMES -- 4.1.3 Basic Principle of SMES -- 4.2 Superconducting Coils -- 4.2.1 Superconducting Materials -- 4.2.2 Superconducting Coil Topologies -- 4.2.2.1 Solenoid Topology of SMES -- 4.2.2.2 Toroidal Topology of SMES -- 4.2.2.3 Shielded Topology of SMES -- 4.2.2.4 Other Configurations of Basic Topologies of SMES -- 4.2.3 Generalized Thermo-Electrical Strategy for Designing a Superconducting Coil -- 4.2.4 Thermal Stability of a Superconducting Coil -- 4.2.5 Mechanical Stability of a Superconducting Coil -- 4.3 Cryogenic Refrigeration Systems -- 4.3.1 Heat Loads on Cryogenic Refrigeration System -- 4.3.1.1 Eddy Current Losses -- 4.3.1.2 Hysteresis Losses -- 4.3.1.3 Current Lead Losses -- 4.3.1.4 Conductive Losses -- 4.3.1.5 Radiation Losses -- 4.3.2 Efficiency of Refrigeration System -- 4.3.3 Cooling Methods 4.3.3.1 Liquid Bath Cooling -- 4.3.3.2 Steps for Solving the Heat Transfer Rate in the Bath Cooling System -- 4.3.3.3 Conduction Cooling -- 4.3.4 Thermal Issues Related to Cooling of SMES -- 4.4 Power Conditioning System (PCS) -- 4.4.1 Power Converters of PCS in the Three-Phase AC Grid -- 4.4.2 Mechanism of Charging and Discharging of SMES -- 4.5 Future Applications of SMES -- 4.5.1 Power Quality -- 4.5.2 System Stability and Frequency Regulation -- 4.5.3 Load Leveling -- 4.5.4 Bulk Energy Storage -- References -- Chapter 5 Superconducting Cables -- 5.1 Introduction -- 5.2 Configurations of High-Temperature Superconducting Cables -- 5.3 Design Analysis of High-Temperature Superconducting Cables -- 5.3.1 Superconducting Materials for HTS Cables -- 5.3.2 Number of Tapes -- 5.3.3 Former Diameter -- 5.3.4 Dielectric Insulation -- 5.3.5 Design of Cryostat -- 5.3.6 Cooling Strategies -- 5.3.7 Pumping Losses and Temperature Difference -- 5.4 Existing Challenges and Opportunities -- 5.4.1 Large Concentration of LN2 -- 5.4.2 Capital and Operating Cost -- 5.4.3 Refrigeration and Cooling System Reliability -- 5.4.4 Performance during Normal and Fault Currents -- 5.4.5 FCL Cable -- 5.5 Summary -- References -- Chapter 6 Superconducting Fault Current Limiters -- 6.1 Introduction -- 6.2 Types of Faults -- 6.2.1 Open Circuit Faults -- 6.2.2 Short Circuit Faults -- 6.2.2.1 Symmetric Faults -- 6.2.2.2 Unsymmetrical Faults -- 6.3 Introduction to Superconducting Fault Current Limiters (SFCLs) -- 6.3.1 Working of an SFCL -- 6.3.2 Characteristics of Ideal Fault Current Limiter -- 6.4 Types of Superconducting Materials Used in Fault Current Limiters -- 6.5 Types of SFCLs -- 6.5.1 Resistive Type SFCL (RSFCL) -- 6.5.1.1 Advantages of RSFCLs -- 6.5.1.2 Disadvantages of RSFCLs -- 6.5.2 Inductive Type SFCL -- 6.5.2.1 Shielded Core SFCL -- 6.5.2.2 Saturated Core SFCL. 6.5.3 Advantages of Inductive SFCLs -- 6.5.4 Disadvantages of Inductive SFCLs -- 6.6 Other Types of SFCLs -- 6.6.1 Resistive Magnetic SFCL -- 6.6.2 Bridge SFCL -- 6.6.2.1 Advantages of Bridge SFCL -- 6.6.2.2 Disadvantages of Bridge SFCL -- 6.6.3 DC Biased Iron Core SFCL -- 6.6.4 Solid State FCL (SSFCL) -- 6.6.5 Fault Current Controllable SFCL -- 6.7 Applications of SFCL in Power Transmission and Distribution Systems -- 6.8 Thermo-Electrical Design of SFCL -- 6.8.1 Resistive Superconducting Fault Current Limiter (RSFCL) -- 6.8.1.1 Basic Parameters -- 6.8.2 Electrical Strategy -- 6.8.2.1 State-1 (Superconducting State) (ρ=0) -- 6.8.2.2 State-2 (Flux Flow State) (ρ=ρ (J)) -- 6.8.2.3 State-3 (Normal State) (ρ=constant) -- 6.8.3 Thermal Strategy -- 6.9 Inductive Superconducting Fault Current Limiter -- 6.10 Issues Related to Cryogenics in SFCL -- References -- Index High temperature superconductors |
title | High-temperature superconducting devices for energy applications |
title_auth | High-temperature superconducting devices for energy applications |
title_exact_search | High-temperature superconducting devices for energy applications |
title_exact_search_txtP | High-temperature superconducting devices for energy applications |
title_full | High-temperature superconducting devices for energy applications edited by Raja Sekhar Dondapati |
title_fullStr | High-temperature superconducting devices for energy applications edited by Raja Sekhar Dondapati |
title_full_unstemmed | High-temperature superconducting devices for energy applications edited by Raja Sekhar Dondapati |
title_short | High-temperature superconducting devices for energy applications |
title_sort | high temperature superconducting devices for energy applications |
topic | High temperature superconductors |
topic_facet | High temperature superconductors |
work_keys_str_mv | AT dondapatirajasekhar hightemperaturesuperconductingdevicesforenergyapplications |